{ "metadata": { "name": "", "signature": "sha256:4b81d2c2d1afd02d772e0a94bc27f4f0abc2b4c7049b86921017b2dd7bb1c1b3" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Introduction to conduction" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.1 Page 68" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "def alpha(p, Cp, k):\n", " a=k/(p*Cp); #[m^2/s]\n", " return a;\n", "\n", "p = 2702.; \t\t#[Kg/m^3] - Density Of Material \n", "Cp = 903.; \t\t\t#[J/kg.K] - Specific heat of Material\n", "k = 237.; \t\t#[W/m.k] - Thermal Conductivity of Material\n", "\n", "print '%s %.2e %s' %(\"\\n (a) Thermal Diffuisivity of Pure Aluminium at 300K = \",alpha(p, Cp, k),\" m^2/s\\n\");\n", "\n", "#(b) Pure Aluminium at 700K\n", "# From Appendix A, Table A.1\n", "\n", "p = 2702.; \t\t#[Kg/m^3] - Density Of Material \n", "Cp = 1090.; \t\t#[J/kg.K] - Specific heat of Material\n", "k = 225.; \t\t#[W/m.k] - Thermal Conductivity of Material\n", "\n", "print '%s %.2e %s' %(\"\\n (b) Thermal Diffuisivity of Pure Aluminium at 700K =\",alpha(p, Cp, k),\" m^2/s\\n\");\n", "\n", "#(c) Silicon Carbide at 1000K\n", "# From Appendix A, Table A.2\n", "\n", "p = 3160.; \t\t#[Kg/m^3] - Density Of Material \n", "Cp = 1195.; \t\t#[J/kg.K] - Specific heat of Material\n", "k = 87.; \t\t#[W/m.k] - Thermal Conductivity of Material\n", "\n", "print '%s %.2e %s' %(\"\\n (c) Thermal Diffuisivity of Silicon Carbide at 1000K =\",alpha(p, Cp, k),\" m^2/s\\n\");\n", "\n", "#(d) Paraffin at 300K\n", "# From Appendix A, Table A.3\n", "\n", "p = 900.; \t\t\t#[Kg/m^3] - Density Of Material \n", "Cp = 2890.; \t\t#[J/kg.K] - Specific heat of Material\n", "k = .24; \t\t#[W/m.k] - Thermal Conductivity of Material\n", "\n", "print '%s %.2e %s' %(\"\\n (d) Thermal Diffuisivity of Paraffin at 300K = \",alpha(p, Cp, k),\"m^2/s\");\n", "#END\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " (a) Thermal Diffuisivity of Pure Aluminium at 300K = 9.71e-05 m^2/s\n", "\n", "\n", " (b) Thermal Diffuisivity of Pure Aluminium at 700K = 7.64e-05 m^2/s\n", "\n", "\n", " (c) Thermal Diffuisivity of Silicon Carbide at 1000K = 2.30e-05 m^2/s\n", "\n", "\n", " (d) Thermal Diffuisivity of Paraffin at 300K = 9.23e-08 m^2/s\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.2 Page 75" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "a = 900.; \t\t\t#[degC]\n", "b = -300.; \t\t\t#[degC/m]\n", "c = -50.; \t\t\t#[degC/m^2]\n", "\n", "q = 1000.; \t\t\t#[W/m^2.K] - Uniform heat Generation\n", "A = 10. ; \t\t\t#[m^2] - Wall Area\n", "#Properties of Wall\n", "p = 1600.; \t\t\t#[kg/m^3] - Density\n", "k = 40.; \t\t\t#[W/m] - Thermal Conductivity\n", "Cp = 4000.; \t\t\t#[J/kg.K] - Specific Heat\n", "L = 1; \t\t\t #[m] - Length of wall\n", "#calculations and results\n", "\n", "#(i) Rate of Heat Transfer entering the wall and leaving the wall\n", "# From Eqn 2.1\n", "# qin = -kA(dT/dx)|x=0 = -kA(b)\n", "\n", "qin= - b*k*A;\n", "\n", "# Similarly\n", "# qout = -kA(dT/dx)|x=L = -kA(b+2cx)|x=L\n", "\n", "qout= - k*A*(b+2*c*L);\n", "\n", "print '%s %d %s' %(\"\\n (i) Rate of Heat Transfer entering the wall =\",qin,\" W \");\n", "print '%s %d %s' %(\"\\n And leaving the wall =\",qout,\"W \");\n", "\n", "#(ii) Rate of change Of Energy Storage in Wall E`st\n", "# Applying Overall Energy Balance across the Wall\n", "#E`st = E`in + E`g + E`out = qin + q`AL - qout\n", "Est = qin + q*A*L - qout;\n", "\n", "print '%s %d %s' %(\"\\n (ii) Rate of change Of Energy Storage in Wall =\",Est,\" W\\n\");\n", "\n", "#(iii) Time rate of Temperature change at x= 0, 0.25 and .5m\n", "#Using Eqn 2.19\n", "# T`= dT/dt = (k/p*Cp)*d(dT/dx)/dx + q`/p*Cp\n", "#As d(dT/dx)/dx = d(b + 2cx)/dx = 2c - Independent of x\n", "T = (k/(p*Cp))*(2*c)+ q/(p*Cp);\n", "print '%s %.6f %s' %(\"\\n (iii) Time rate of Temperature change independent of x =\",T,\" degC/s\\n\");\n", "\n", "#END\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " (i) Rate of Heat Transfer entering the wall = 120000 W \n", "\n", " And leaving the wall = 160000 W \n", "\n", " (ii) Rate of change Of Energy Storage in Wall = -30000 W\n", "\n", "\n", " (iii) Time rate of Temperature change independent of x = -0.000469 degC/s\n", "\n" ] } ], "prompt_number": 2 } ], "metadata": {} } ] }