{ "metadata": { "name": "", "signature": "sha256:0be077d15f32f0d1b8e0a08fdc77fccd31f63a0aa5b7d4531be27e5ff004495f" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Radiation Exchange between surfaces" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.2 Page 821" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math\n", "# (1) Sphere within Cube\n", "F12a = 1 \t\t;#By Inspection\n", "F21a = (math.pi/6.)*F12a \t; #By Reciprocity\n", "#calculations\n", "\n", "# (2) Partition within a Square Duct\n", "F11b = 0 \t\t;#By Inspection\n", "#By Symmetry F12 = F13\n", "F12b = (1-F11b)/2. ;\t\t #By Summation Rule\n", "F21b = math.sqrt(2.)*F12b ; #By Reciprocity\n", "\n", "# (3) Circular Tube\n", "#From Table 13.2 or 13.5, with r3/L = 0.5 and L/r1 = 2\n", "F13c = .172;\n", "F11c = 0; \t\t#By Inspection\n", "F12c = 1 - F11c - F13c \t\t;#By Summation Rule\n", "F21c = F12c/4. \t\t;#By Reciprocity\n", "#results\n", "\n", "print' %s' %('\\n Desired View Factors may be obtained from inspection, the reciprocity rule, the summation rule and/or use of charts')\n", "print '%s %.3f' %('\\n (1) Sphere within Cube F21 =',F21a)\n", "print '%s %.3f' %('\\n (2) Partition within a Square Duct F21 = ',F21b)\n", "print '%s %.3f' %('\\n (3) Circular Tube F21 =',F21c);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " \n", " Desired View Factors may be obtained from inspection, the reciprocity rule, the summation rule and/or use of charts\n", "\n", " (1) Sphere within Cube F21 = 0.524\n", "\n", " (2) Partition within a Square Duct F21 = 0.707\n", "\n", " (3) Circular Tube F21 = 0.207\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.3 Page 826" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math\n", "import numpy\n", "from numpy import linalg\n", "\n", "L = 10 \t;#[m] Collector length = Heater Length\n", "T2 = 600 \t;#[K] Temperature of curved surface\n", "A2 = 15 \t;#[m^2] Area of curved surface\n", "e2 = .5 \t;# emissivity of curved surface\n", "stfncnstt = 5.67*math.pow(10,-8);\t\t#[W/m^2.K^4] Stefan-Boltzmann constant\n", "T1 = 1000 ;#[K] Temperature of heater\n", "A1 = 10 ;#[m^2] area of heater\n", "e1 = .9 ;# emissivity of heater\n", "W = 1 ;#[m] Width of heater\n", "H = 1 ;#[m] Height\n", "T3 = 300 ;#[K] Temperature of surrounding\n", "e3 = 1 ;# emissivity of surrounding\n", "#calculations\n", "\n", "J3 = stfncnstt*T3*T3*T3*T3; #[W/m^2]\n", "#From Figure 13.4 or Table 13.2, with Y/L = 10 and X/L =1\n", "F12 = .39;\n", "F13 = 1 - F12; \t\t\t#By Summation Rule\n", "#For a hypothetical surface A2h\n", "A2h = L*W;\n", "F2h3 = F13; \t\t\t#By Symmetry\n", "F23 = A2h/A2*F13; \t#By reciprocity\n", "Eb1 = stfncnstt*T1*T1*T1*T1;#[W/m^2]\n", "Eb2 = stfncnstt*T2*T2*T2*T2;#[W/m^2]\n", "#Radiation network analysis at Node corresponding 1\n", "#-10J1 + 0.39J2 = -510582\n", "#.26J1 - 1.67J2 = -7536\n", "#Solving above equations\n", "A = ([[-10 ,.39],\n", " [.26, -1.67]]);\n", "B = ([[-510582.],\n", " [-7536.]]);\n", "\n", "X = numpy.linalg.solve (A,B);\n", "\n", "q2 = (Eb2 - X[1])/(1-e2)*(e2*A2);\n", "#results\n", "\n", "print '%s %.1f %s' %('\\n Net Heat transfer rate to the absorber is = ',q2/1000. ,'kW');" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " Net Heat transfer rate to the absorber is = -77.8 kW\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.4 Page 830" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math\n", "\n", "T3 = 300. \t\t\t\t\t;#[K] Temperature of surrounding\n", "L = .15 \t\t\t\t\t\t;#[m] Furnace Length\n", "T2 = 1650+273. \t\t\t\t;#[K] Temperature of bottom surface\n", "T1 = 1350+273. \t\t\t\t;#[K] Temperature of sides of furnace\n", "D = .075 \t\t\t\t\t;#[m] Diameter of furnace\n", "stfncnstt = 5.670*math.pow(10,-8); #[W/m^2.K^4] Stefan Boltzman Constant\n", "#calculations\n", "\n", "A2 = math.pi*D*D/4. \t\t\t;#[m] Area of bottom surface\n", "A1 = math.pi*D*L \t \t\t;#[m] Area of curved sides\n", "#From Figure 13.5 or Table 13.2, with ri/L = .25 \n", "F23 = .056;\n", "F21 = 1 - F23; \t\t\t\t#By Summation Rule\n", "F12 = A2/A1*F21; \t\t\t#By reciprocity\n", "F13 = F12 \t\t\t\t;#By Symmetry\n", "#From Equation 13.17 Heat balance\n", "q = A1*F13*stfncnstt*(T1*T1*T1*T1 - T3*T3*T3*T3) + A2*F23*stfncnstt*(T2*T2*T2*T2 - T3*T3*T3*T3);\n", "#results\n", "\n", "print '%s %d %s' %('\\n Power required to maintain prescribed temperatures is =',q, 'W');" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " Power required to maintain prescribed temperatures is = 1830 W\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.5 Page 834" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math\n", "\n", "T2 = 300 \t;#[K] Temperature of inner surface\n", "D2 = .05 \t;#[m] Diameter of Inner Surface\n", "e2 = .05 \t;# emissivity of Inner Surface\n", "T1 = 77 \t;#[K] Temperature of Outer Surface\n", "D1 = .02 ;#[m] Diameter of Inner Surface\n", "e1 = .02 \t;# emissivity of Outer Surface\n", "D3 = .035 ;#[m] Diameter of Shield\n", "e3 = .02 ;# emissivity of Shield\n", "stfncnstt = 5.670*math.pow(10,-8) ;#[W/m^2.K^4] Stefan Boltzman Constant\n", "#calculations\n", "\n", "#From Equation 13.20 Heat balance\n", "q = stfncnstt*(math.pi*D1)*(T1*T1*T1*T1-T2*T2*T2*T2)/(1/e1 + (1-e2)/e2*D1/D2) ;#[W/m] \n", "\n", "RtotL = (1-e1)/(e1*math.pi*D1) + 1/(math.pi*D1*1) + 2*((1-e3)/(e3*math.pi*D3)) + 1/(math.pi*D3*1) + (1-e2)/(e2*math.pi*D2) ;#[m^-2]\n", "q2 = stfncnstt*(T1*T1*T1*T1 - T2*T2*T2*T2)/RtotL; #[W/m] \n", "#results\n", "\n", "print '%s %.2f %s' %('\\n Heat gain by the fluid passing through the inner tube =',q,'W/m') \n", "print '%s %.2f %s' %('\\n Percentage change in heat gain with radiation shield inserted midway between inner and outer tubes is =',(q2-q)*100/q,'percent'); " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " Heat gain by the fluid passing through the inner tube = -0.50 W/m\n", "\n", " Percentage change in heat gain with radiation shield inserted midway between inner and outer tubes is = -49.55 percent\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.6 Page 836" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "\n", "T2 = 500 \t\t\t\t\t;#[K] Temperature of Painted surface\n", "e2 = .4 \t \t\t\t\t;# emissivity of Painted Surface\n", "T1 = 1200 \t\t\t\t\t;#[K] Temperature of Heated Surface\n", "W = 1 \t\t\t\t\t; #[m] Width of Painted Surface\n", "e1 = .8 \t\t\t\t\t;# emissivity of Heated Surface\n", "er = .8 \t\t\t\t\t;# emissivity of Insulated Surface\n", "stfncnstt = 5.670*math.pow(10,-8);#[W/m^2.K^4] Stefan Boltzman Constant\n", "\n", "#By Symmetry Rule\n", "F2R = .5;\n", "F12 = .5;\n", "F1R = .5;\n", "#calculations\n", "\n", "#From Equation 13.20 Heat balance\n", "q = stfncnstt*(T1*T1*T1*T1-T2*T2*T2*T2)/((1-e1)/e1*W+ 1/(W*F12+1/((1/W/F1R) + (1/W/F2R))) + (1-e2)/e2*W) ;#[W/m] \n", "\n", "#Surface Energy Balance 13.13\n", "J1 = stfncnstt*T1*T1*T1*T1 - (1-e1)*q/(e1*W)\t\t;# [W/m^2] Surface 1\n", "J2 = stfncnstt*T2*T2*T2*T2 - (1-e2)*(-q)/(e2*W)\t\t;# [W/m^2] Surface 2\n", "#From Equation 13.26 Heat balance\n", "JR = (J1+J2)/2.;\n", "TR = math.pow((JR/stfncnstt),.25);\n", "#results\n", "\n", "print '%s %.2f %s' %('\\n Rate at which heat must be supplied per unit length of duct = ',q/1000.,'kW/m') \n", "print '%s %d %s' %('\\n Temperature of the insulated surface = ',TR,'K');" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " Rate at which heat must be supplied per unit length of duct = 36.98 kW/m\n", "\n", " Temperature of the insulated surface = 1102 K\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13.7 Page 841" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math\n", "\n", "\n", "T1 = 1000. \t\t\t\t;#[K] Temperature of Heated Surface\n", "e1 = .8 \t\t\t\t\t;# emissivity of Heated Surface\n", "e2 = .8 \t\t\t\t\t; # emissivity of Insulated Surface\n", "r = .02 \t\t\t\t\t;#[m] Radius of surface\n", "Tm = 400 \t\t\t\t;#[K] Temperature of surrounding air\n", "m = .01 \t\t\t\t\t;#[kg/s] Flow rate of surrounding air\n", "p = 101325 \t\t\t\t\t;#[Pa] Pressure of surrounding air\n", "stfncnstt = 5.670*math.pow(10,-8);#[W/m^2.K^4] Stefan Boltzman Constant\n", "#Table A.4 Air Properties at 1 atm, 400 K\n", "k = .0338 \t\t\t\t;#[W/m.K] conductivity\n", "u = 230*math.pow(10,-7) \t\t;#[kg/s.m] Viscosity\n", "cp = 1014 \t\t\t\t;#[J/kg] Specific heat\n", "Pr = .69 \t\t\t\t;# Prandtl Number\n", "#calculations and results\n", "\n", "#Hydraulic Diameter\n", "Dh = 2*math.pi*r/(math.pi+2.) ;#[m]\n", "#Reynolds number\n", "Re = m*Dh/(math.pi*r*r/2.)/u;\n", "#View Factor\n", "F12 = 1 ;\n", "\n", "print '%s %d %s' %(\"\\n As Reynolds Number is\",Re,\", Hence it is Turbulent flow inside a cylinder. Hence we will use Dittus-Boelter Equation\");\n", "\n", "#From Dittus-Boelter Equation\n", "Nu = .023*math.pow(Re,.8) *math.pow(Pr,.4);\n", "h = Nu*k/Dh; \t\t#[W/m^2.K]\n", "\n", "#From Equation 13.18 Heat Energy balance\n", "#Newton Raphson\n", "T2=600; \t\t\t\t\t#Initial Assumption\n", "T2=696. \t\t\t\t\t\t#Final answer\n", "#From energy Balance\n", "q = h*math.pi*r*(T2-Tm) + h*2*r*(T1-Tm) ;#[W/m]\n", "\n", "print '%s %.2f %s' %('\\n Rate at which heat must be supplied per unit length of duct =',q,'W/m') \n", "print '%s %.2f %s' %('& Temperature of the insulated surface =',T2,'K');" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " As Reynolds Number is 16912 , Hence it is Turbulent flow inside a cylinder. Hence we will use Dittus-Boelter Equation\n", "\n", " Rate at which heat must be supplied per unit length of duct = 2818.56 W/m\n", "& Temperature of the insulated surface = 696.00 K\n" ] } ], "prompt_number": 6 } ], "metadata": {} } ] }