{ "metadata": { "name": "", "signature": "sha256:3f70bd8e66ed069013ea8da0a0db103f64597532e63478b727d2e9fd79a10d32" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Radiation: Processes and Properties" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.1 Page 731 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math\n", "\n", "\n", "A1 = .001\t\t;#[m^2] Area of emitter\n", "In = 7000\t\t;#[W/m^2.Sr] Intensity of radiation in normal direction\n", "A2 = .001\t\t;#[m^2] Area of other intercepting plates\n", "A3 = A2\t\t\t;#[m^2] Area of other intercepting plates\n", "A4 = A2\t\t\t;#[m^2] Area of other intercepting plates\n", "r = .5\t\t\t;#[m] Distance of each plate from emitter\n", "theta1 = 60.\t;#[deg] Angle between surface 1 normal & direction of radiation to surface 2\n", "theta2 = 30.\t;#[deg] Angle between surface 2 normal & direction of radiation to surface 1\n", "theta3 = 45.\t;#[deg] Angle between surface 1 normal & direction of radiation to surface 4\n", "#calculations\n", "\n", "#From equation 12.2\n", "w31 = A3/(r*r);\n", "w41 = w31;\n", "w21 = A2*math.cos(theta2*0.0174532925)/(r*r);\n", "\n", "\n", "#From equation 12.6\n", "q12 = In*A1*math.cos(theta1*0.0174532925)*w21;\n", "q13 = In*A1*math.cos(0*math.pi/180.)*w31;\n", "q14 = In*A1*math.cos(theta3*0.0174532925)*w41;\n", "#results\n", "\n", "print '%s %d %s' %(\"\\n (a) As Intensity of emitted radiation is independent of direction, for each of the three directions I = \",In,\"W/m^2.sr\")\n", "print '%s' %(\"\\n\\n (b) By the Three Surfaces\\n Solid angles subtended Rate at which radiation is intercepted \\n\")\n", "print '%s %.2e %s' %(\"w4-1 =\",w41,\" sr\")\n", "print '%s %.2e %s' %(\"\\t \\t \\t \\t \\t \\t q1-4 =\",q14,\" W\") \n", "print '%s %.2e %s' %(\"\\nw3-1 = \",w31,\" sr\")\n", "print '%s %.2e %s' %(\"\\t \\t \\t \\t \\t \\t q1-3 =\",q13,\" W\")\n", "print '%s %.2e %s' %(\"\\n w2-1 = \",w21,\" sr\")\n", "print '%s %.2e %s' %(\"\\t \\t \\t \\t \\t \\tq1-2 = \",q12,\" W \");\n", "#END\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " (a) As Intensity of emitted radiation is independent of direction, for each of the three directions I = 7000 W/m^2.sr\n", "\n", "\n", " (b) By the Three Surfaces\n", " Solid angles subtended Rate at which radiation is intercepted \n", "\n", "w4-1 = 4.00e-03 sr\n", "\t \t \t \t \t \t q1-4 = 1.98e-02 W\n", "\n", "w3-1 = 4.00e-03 sr\n", "\t \t \t \t \t \t q1-3 = 2.80e-02 W\n", "\n", " w2-1 = 3.46e-03 sr\n", "\t \t \t \t \t \tq1-2 = 1.21e-02 W \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.2 Page 734" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "# Total Irradiation\n", "#calculations\n", "\n", "x=([0, 5, 20, 25]);\n", "y=([0, 1000, 1000, 0]);\n", "\n", "plt.plot(x,y);\n", "plt.xlabel(\"Spectral Distribution\")\n", "plt.ylabel(\"wavelength (micro-m)\")\n", "#By Equation 12.4\n", "G = 1000*(5-0)/2. +1000*(20-5)+1000*(25-20)/2.;\n", "#results\n", "\n", "print '%s %d %s' %(\"\\n G =\",G,\" W/m^2\");\n", "#END" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Populating the interactive namespace from numpy and matplotlib\n", "\n", " G = 20000 W/m^2" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEPCAYAAAC+35gCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X1UVHX+B/D3QJpupqWAFpC05BMww6OkBooPxAJaWT7Q\nCq5rttqpzE61uf22QO1EtKmpdZTNzLOQ/TSzXylIiomPiYqaYhvHDHSGJEB8VlLi+/tj5AYKzgxz\nZ+69M+/XOXPWuczM/TDNzofv9973/eqEEAJERERW8FC6ACIi0g42DSIishqbBhERWY1Ng4iIrMam\nQUREVmPTICIiqzmsaUydOhU9e/aEXq+XttXV1SE+Ph4GgwEJCQk4e/as9LPMzEwEBQVBr9dj06ZN\n0vaSkhKEh4cjODgYL7zwgqPKJSIiKzisafz1r39FQUFBi23p6elITk7G4cOHkZiYiPT0dADmxrBu\n3TocOXIEBQUFmD59Oq5duya9zooVK3D06FGcOHECX3zxhaNKJiIiCxzWNGJjY3H33Xe32Jafn4+0\ntDQAQGpqKvLy8gAAeXl5SElJgaenJ3x9fREcHIzi4mKcPHkSjY2NCA8Pv+k5RETkfE49plFTU4Me\nPXoAALy8vFBdXQ0AqKyshJ+fn/Q4Pz8/mEwmVFZWwt/fX9ru6+sLk8nkzJKJiKgZHggnIiKr3ebM\nnXl7e6O2thZeXl6oqamBj48PAPPIwmg0So8zmUzw9/dvdXvzEUlzDzzwAI4fP+7YX4CIyMUEBgbi\nxx9/tPrxTh1pJCUlITc3FwCQm5uLpKQkafvq1avR0NAAk8mE0tJSREdHw9/fHx4eHjh48CAA4JNP\nPpGec6Pjx49DCOHWt//7P4GRIwXS09MVr0UtN74XfC9uvOXlCdx3H9+Lpputf2w7bKTx5JNPYtu2\nbaitrYW/vz/mzp2LOXPmYOLEiVixYgV69eqFNWvWAAAiIyMxduxYGAwGeHh4IDs7Gx06dAAAfPzx\nx5g6dSquXr2KkSNH4vHHH3dUyZq3fj0wejTQ7ExmIrrB8OFAVRVw+jRw/RAr2cBhTePTTz9tdfvm\nzZtb3f7aa6/htddeu2l7ZGSkNNKgtjU2Anl5wD/+AeTkKF0NkXp17gwEBAAbNwKpqUpXoz08EO4i\n9u8H7r4bCAwE4uLilC5HNfhe/I7vxe8eeSQOGzYoXYU26YQQLrEIk06ng4v8Ku3yxhvAr78CWVlK\nV0KkfqdOAUFBQHU1cH0m3G3Z+t3JkYaLWL8eGDNG6SqItOGee4A+fYAdO5SuRHvYNFyA0Wi+DRqk\ndCVE2jF6tPmPLbINm4YL2LABSEwEbnNq6oZI28aMMTcNN57Vbhc2DRfAqSki24WFmY8DlpUpXYm2\nsGlo3KVLwM6dQEKC0pUQaYtOxymq9mDT0LjCQiA6GujWTelKiLSnaYqKrMemoXFNKXAist3w4cCh\nQ+Z0OFmHTUPDmlLgPJ5B1D6dO5sbx8aNSleiHWwaGtY8BU5E7TNmDJgOtwGbhoZt2MBRBpG9kpOB\nr78Grq8wTRawaWgYT7Ulsh/T4bZh09AopsCJ5MNTb63HpqFRTIETyYfpcOuxaWgUp6aI5MN0uPXY\nNDSIKXAieTEdbj02DQ1iCpxIfkyHW4dNQ4OYAieSH9Ph1mHT0BimwIkcg+lw67BpaAxT4ESOw3S4\nZWwaGsMUOJHjMB1uGZuGxvBUWyLHYTrcMjYNDWEKnMjxeOrtrbFpaAhT4ESOx3T4rbFpaAinpogc\nj+nwW2PT0AimwImcg+nwW2PT0AimwImch+nwtrFpaART4ETOw3R429g0NIApcCLnYjq8bWwaGsAU\nOJHzMR3eOjYNDWAKnMj5mA5vHZuGBvBUWyLnYzq8dWwaKscUOJFyeOrtzdg0VI4pcCLlMB1+MzYN\nlePUFJFymA6/mSJNIz09HX379kX//v0xbtw4XL58GXV1dYiPj4fBYEBCQgLOnj0rPT4zMxNBQUHQ\n6/XYtGmTEiUrgilwImUxHX4zpzeNH3/8ETk5OSgtLcUPP/wAT09PfPrpp0hPT0dycjIOHz6MxMRE\npKenAwBKSkqwbt06HDlyBAUFBZg+fTquXr3q7LIVwRQ4kfKYDm/J6U2je/fu6NChAy5duoSGhgZc\nvnwZ9913H/Lz85GWlgYASE1NRV5eHgAgLy8PKSkp8PT0hK+vL4KDg7F3715nl60IpsCJlMd0eEuK\nNI2XXnoJ9913H+69917cddddiI+PR01NDXr06AEA8PLyQnV1NQCgsrISfn5+0vP9/PxgMpmcXbbT\nMQVOpA5Mh7fk9HNyjh8/jvfeew8VFRXo1q0bxo8fj9zcXFleOyMjQ/p3XFwc4uLiZHldJTAFTqQe\nTenw1FSlK7FfUVERioqK2v18pzeNvXv3YsiQIdKo4vHHH8euXbvg7e2N2tpaeHl5oaamBj4+PgDM\nIwuj0Sg932Qywd/fv9XXbt40tI4pcCL1SE4GXnnFnA7v0EHpauxz4x/Uc+bMsen5Tp+eeuCBB7Bn\nzx5cuXIFQggUFhYiMDAQSUlJ0ogjNzcXSUlJAICkpCSsXr0aDQ0NMJlMKC0tRXR0tLPLdjqeakuk\nHkyH/87pI42BAwdi3LhxMBgM8PDwQHh4OJ577jlcvnwZEydOxIoVK9CrVy+sWbMGABAZGYmxY8dK\nj8/OzkYHrbd6C5gCJ1KfplNvR4xQuhJl6YRwjayjTqeDi/wqWLoU2L0byMlRuhIianLwIDB+PHDs\nmDm/4Sps/e5kIlyFODVFpD5Mh5uxaagMU+BE6sR0uBmbhsowBU6kXkyHs2moDlPgROrFdDibhqow\nBU6kbkyHs2moClPgROrn7muHs2moCFPgROrn7muHs2moCE+1JVI/d0+Hs2moBFPgRNrhzqfeWryM\nyNGjR7F9+3ZUVFRAp9MhICAAsbGxCA4OdkZ9boNrgRNpx5gx5nT4ggWulQ63RpsjjZycHERHR+Pl\nl19GVVUV/vjHPyIgIACnTp3Cyy+/jIEDB8p2SXPi1BSRlrhzOrzNv2vPnDmDLVu24M4772z15+fP\nn8fKlSsdVZdbaUqBf/qp0pUQkTWap8P791e6GufiBQtV4MsvgSVLzGlwItKG/Hzg7beB7duVrsQ+\ntn53WpxBP3bsGBYtWgSj0YjGxkZpJ1999VX7q6QWmAIn0p7hw4GUFHM6/Pqacm7B4kijX79+ePbZ\nZxESEgIPD/MhEJ1Oh2HDhjmlQGtpdaTR2Aj4+pqnpxjqI9KWRx81HxDX8jKwso80unfvjpkzZ9pV\nFLWNKXAi7XKltcOtZXGkkZOTg4qKCowaNQq33367tD0iIsLhxdlCqyONN94wn4WRlaV0JURkq1On\ngKAgoLpau2uHyz7SOHr0KHJyclBYWChNTwHA1q1b21chtbB+vfkgOBFpT/N0uLssA2txpPHAAw/g\n+++/R8eOHZ1VU7tocaRhNALh4UBVFUN9RFo1dy5w5gywcKHSlbSP7Mu9hoaG4vz583YVRa1jCpxI\n+5oWZtLY36ztZvHrqra2Fn369MHAgQOlYxo85VYe69cDU6YoXQUR2aN5Otwdgn4Wp6eKiop+f/D1\nYQxPubXfpUvm+VCjkUu7EmndM88Af/wj8MorSldiO1u/O21KhK9fvx5jVHqBJK01DabAiVyHltPh\nsh/TaO6NN96wuSBqHVPgRK7DndYO53oaCuBa4ESuxZ3WDrepaWRnZzuqDrfCFDiR63GXtcOtOtlz\n9erV2HF9bcMTJ05g/PjxDi3K1XEtcCLXk5xsPhB+7Zp20+HWsDjSmDVrFpYvX46IiAiEh4dj+fLl\nmDVrljNqc1lccInI9bjL2uEWz54KCgpCaWmpdAmRxsZGBAcH47///a9TCrSWVs6eYgqcyHVpMR3u\nkLOnmifCmQ63D1PgRK7LHdLhFr+6XnnlFYSEhGDUqFEQQuCbb77B3LlznVGbS2IKnMh1uUM6/JbT\nU42NjVi7di0GDRqEPXv2QKfTYdCgQfD393dmjVbRwvQUU+BErk9r6XDZE+EPPvggiouL7S7M0bTQ\nNJgCJ3J9WkuHy35MY/jw4Vi4cCGMRiPq6uqkG9mOKXAi1+fq6XCLI42AgADodLqbtpeXlzusqPZQ\n+0iDa4ETuQ8trR0u+0ijoqIC5eXlN93scfbsWYwfPx6hoaEYMGAA9uzZg7q6OsTHx8NgMCAhIQFn\nz56VHp+ZmYmgoCDo9Xps2rTJrn0rhSlwIvfhyulwi01j8eLFOHfunHT/3LlzeP/99+3a6dNPP43H\nH38c3333HY4ePYqgoCCkp6cjOTkZhw8fRmJiItLT0wEAJSUlWLduHY4cOYKCggJMnz4dV69etWv/\nSmAKnMh9JCcDX39tToe7GotN46OPPkK3Zqf6dOvWDcuXL2/3Dk+fPo1Dhw7hySefNBfg4YGuXbsi\nPz8faWlpAIDU1FTk5eUBAPLy8pCSkgJPT0/4+voiODgYe/fubff+lcIUOJH7cOV0uMWmceNf9UII\n1NfXt3uHx44dg7e3NyZMmICQkBBMnjwZFy5cQE1NDXr06AEA8PLyQnV1NQCgsrISfn5+0vP9/Pxg\nMpnavX8lGI3m26BBSldCRM4yerT5j0VXY7FpjBgxAikpKdiyZQsKCwuRkpKCESNGtHuHjY2N2Ldv\nH1555RWUlpaie/fumDdvXrtfTwuYAidyP66aDrf4NbZo0SIsWbIEC69fTCU+Ph7PPfdcu3fo7+8P\nX19fDBw4EAAwbtw4zJ07Fz4+PqitrYWXlxdqamrg4+MDwDyyMBqN0vNNJlOb4cKMjAzp33FxcYiL\ni2t3nXJiCpzI/ag1HV5UVNRiGW9b2bTcq1yioqKwatUq9O3bFxkZGThz5gwaGxsRGBiIWbNmYeHC\nhSgvL8fixYtRUlKCGTNm4Ntvv0VVVRViYmJw7NgxdLjh2sNqPeWWKXAi96WFdLit351tjjTGjx+P\nzz77DHq9vtWdHD58uH0VwnxwfdKkSbh8+TJ69+6NTz75BEIITJw4EStWrECvXr2wZs0aAEBkZCTG\njh0Lg8EADw8PZGdn39Qw1KywEIiOZsMgckdjxpjT4WpuGrZqc6Tx888/495770VFRUWrTwwICHBg\nWbZT60hj2jQgJATgEiRE7ufKFaBnT6C8HLh+no/qyH7tqSZnz55FY2OjdL979+62V+dAamwaTIET\nkdrT4bInwpcsWQJvb2+EhoYiMjISkZGRiIqKsqtId8EUOBG5WjrcqmtP7d+/H15eXs6qqV3UONJ4\n4w3z2RNZWUpXQkRKOXUKCAoCqqvVuXa47CONAQMGoEuXLnYV5a6YAiciV0uHWxxpHDhwAFOmTMHg\nwYPRsWNH85N0OixevNgpBVpLbSMNrgVORE3UvHa4bKfcNvnb3/6GUaNGQa/Xw8PDA0KIVi+VTi0x\nBU5ETcaMMR8MX7AA0PrXp1VfaQsWLHB0HS6HKXAiaqLWdHh7WDymkZCQgA8//BCnTp3iyn1WunTJ\nfJptQoLSlRCRGuh0rnMBw3at3KfT6fDTTz85tDBbqemYBtcCJ6IbqXXtcIeF+9ROTU2DKXAiupFa\n0+GynXJrzVUQt27davWO3EVjI5CXx1Ntiailzp2B4cOBjRuVrsQ+bR4I37BhA/7+979j1KhRiIqK\nwj333IPGxkZUVVVh//79KCwsxPDhwzF8+HBn1qt6TIETUVua0uFqvaSINW45PXXhwgV8+eWX2LVr\nF06cOAEA6N27N2JiYvDoo4+qKvSnlukppsCJqC1qTIfzmIbCwsPNB8FjYpSuhIjUKDrafEDcjgVQ\nZSX7ZUTIelwLnIgs0fqpt2waMmIKnIgs0fra4WwaMuIFConIkubpcC2yeExDCIFt27bBaDRKizDp\ndDpMnjzZKQVaS+ljGlwLnIispaa1w2W/YOGECRNQWVmJsLAweHp6StvV1jSUxrXAichaWl473OJI\no2/fvigrK1P9lW2VHmlMmwbo9cALLyhWAhFpRH094OOjjnS47GdPRUREoLq62q6iXF1TCnz0aKUr\nISIt6NRJu+nwNqenxlw/onvx4kX069cP0dHRuP322wGYO9NXX33lnAo1gClwIrKVVtPhbTaNl156\nCUDrQxe1T1U5G8+aIiJbJSebj2lcu6aedLg12pyeiouLQ1xcHPLy8qR/N93y8/OdWaPqbdjApkFE\nttHq2uEWj2ls3rz5pm3rtRxnlFlTCnzwYKUrISKtaQr6aUmbTWPp0qXQ6/UoKyuDXq+XboGBgRgw\nYIAza1S1phR4s7ORiYis0nRJES2lw9s85fbcuXM4c+YMZs+ejaysLOm4RufOndGzZ0+nFmkNpU65\nTUoyrwU+YYLTd01EGicEcN99wObNyq0dLvtVbk+fPn3Tge9OnTrhD3/4Q/sqdBAlmgZT4ERkL6XT\n4bLnNCIjI+Hl5YU+ffqgT58+8PLyQmBgIIKDg/Htt9/aVazWMQVORPbS2nENi03j4YcfxqZNm3D6\n9GmcPn0amzdvxiOPPILly5dj+vTpzqhRtXiqLRHZa8QI4NAh4PRppSuxjsWmsXfvXowaNUq6P3Lk\nSBQXF2Pw4MGqWPRIKUyBE5EctJYOt9g0unTpgnfffRcnTpxARUUF5s+fjy5duqCxsRG3ufHCEUyB\nE5FcmtLhWmCxaXz++ecoKytDUlISkpOT8cMPP2Dt2rVoaGjAmjVrnFGjKnFqiojkkpwMfP21OR2u\ndlwjvJ24FjgRyUmptcNlX0+jtLQU77777k2LMH3zzTftr1LjmAInIrk1nUXl7KZhK4sjjX79+mHW\nrFmIiIiQFmHS6XSIjIx0SoHWcuZIY+lSYPduICfHKbsjIjdw8CAwfjxw7BjgzGvCyp7T6NatG555\n5hk8+OCDiIqKQlRUlCwN47fffkN4eLh0Cfa6ujrEx8fDYDAgISEBZ8+elR6bmZmJoKAg6PV6bNq0\nye5924vHM4hIblpZO9xi00hKSsKyZctw6tQp1NXVSTd7LVq0CEFBQVLaPD09HcnJyTh8+DASExOR\nnp4OACgpKcG6detw5MgRFBQUYPr06bh69ard+2+vS5eAnTuBhATFSiAiF6TT/X4tKjWz2DRWrlyJ\nrKwsDBkyBJGRkdLNHiaTCfn5+Zg2bZo0LMrPz0daWhoAIDU1FXl5eQCAvLw8pKSkwNPTE76+vggO\nDsbevXvt2r89mAInIkfRQjrc4oHwiooK2Xf64osv4l//+hfOnz8vbaupqUGP64vlenl5SUvMVlZW\nYkSzI0N+fn4wmUyy12QtTk0RkaOMGAGkpJjT4UqvHd4WiyONCxcu4J///CemTp0KADh+/Lhd62ls\n2LABPj4+CA8P11yinClwInIkLaTDLY40UlNTMWTIEBQXFwMAfH19MXbsWOkAtq12796Nr776Cvn5\n+aivr8f58+eRlpYGb29v1NbWwsvLCzU1NfDx8QFgHlkYjUbp+SaTCf7+/q2+dkZGhvTvplUG5cQU\nOBE5mqPXDi8qKkJRUVH7X0BYEBISIoQQIiwsTNoWGhpq6WlWKSoqEqNHjxZCCPHcc8+JhQsXCiGE\nWLBggXj++eeFEELs379fREVFiWvXrgmj0Sh69+4trl69etNrWfGr2O2f/xTi7393+G6IyI39/LMQ\nd90lRCtfcw5h63enxZFGx44dceXKFen+yZMn29+hWtF09tScOXMwceJErFixAr169ZIuURIZGYmx\nY8fCYDDAw8MD2dnZ6KDQKuwbNphT4EREjtJ87XA1Bv0shvu++uorvP322zh27BgSExOxdetW/Pvf\n/0ZiYqKzarSKo8N9RqP50iG//MKlXYnIsebNA+rqgIULHb8v2VfuA4BffvkFO3bsAADExsa65XKv\nTIETkbM4Mx0uW9MoKSlpscxr08OatkVERNhTp+wc3TS4FjgROYsz1w6XrWnExcXdtDZ4c1u3brW9\nOgdyZNPgWuBE5GzOWjvcIdNTWuDIpvHll+YD4IWFDnl5IqKb5OebL5W+fbtj9yP7BQvlDvdpEVPg\nRORsal073GLTSE1NxZ133tki3Pc///M/Di9MLZgCJyIlqDUdbrFp/PTTT3j11VfRsWNHAECnTp3g\n4WHxaS6DKXAiUooa1w63+O3v6HCf2nFqioiUosa1wy02jfT0dIwcORImkwmTJ0/GQw89hMzMTGfU\npgobNrBpEJEymqfD1cLmcF9MTAx69erl8MJs5Yizp5gCJyKlOTodLvvZU2PGjMGWLVuQmJiIcePG\nqbJhOMqGDUBiIhsGESmnaTU/tYQjLDaNl156CTt27EBQUBDGjRuHtWvXor6+3hm1KY7HM4hIaWpb\nO9zqcF9DQwO2bt2KDz/8EAUFBS1W3VMDuaenmAInIrVwZDpc9ukpALhy5Qo+//xzLFu2DPv27cNf\n/vKXdheoFVwLnIjUQk1rh1scaUyYMAHFxcX405/+hJSUFAwdOhSeKpzkl3ukMW0aoNcDL7wg20sS\nEbVLfT3g4wOUl8u/drjs154qKChAfHy8KhtFc3I2jcZGwNcX2LmToT4iUodHHzVfZXvSJHlf1yEX\nLCwpKUFZWRkaGhqkbZMnT25fhQ4iZ9PYu9d8GfTvv5fl5YiI7LZ8uXna/H//V97Xlb1pzJ49G8XF\nxTh69CiSk5OxceNGxMTEYO3atXYXKyc5m8brrwNXrwJZWbK8HBGR3U6dAoKCgOpqQM4Vr2U/EL5u\n3ToUFhbi3nvvxccff4zS0lJcuHDBriLVjilwIlIbtaTDLTaNbt26wdPTE0IIXLx4ET169MDx48ed\nUZsijEbzbfBgpSshImpJDWdRWWwaEREROH/+PKZMmYKwsDCEh4djsAt/ozIFTkRqpYZ0uE0r95WV\nlaG+vh6hoaGOrKld5DqmwbXAiUitHLF2uOwHwlNTUzFs2DDExsaiv6NXOLeDHE2DKXAiUju50+Gy\nHwifOnUqfv75Zzz//PO4//778cQTT+C9996zq0i1YgqciNRO6eMaVk1PNTQ0YP/+/fjmm2+wbNky\ndO7cGWVquXrWdXKMNJgCJyK1kzsdLvv01MiRI3Hp0iUMHjwYMTExiI2NhY+Pj92Fys3epsEUOBFp\nhZzpcNmnpwwGAzp06IDS0lIcPnwYpaWlLZZ/dRVcC5yItELJKSqrz566cOECVq5ciXfffRdVVVX4\n9ddfHV2bTewdaTAFTkRaIWc63NbvztssPWDJkiXYsWMHSkpKcP/992Pq1KmIjY21q0g12rABWLJE\n6SqIiCxrng4fMcK5+7bYNOrr6/HSSy8hIiICHeS84ImKMAVORFrTNEXl7KZhU7hPzeyZnlq6FNi9\nG8jJkbkoIiIHOXgQGD8eOHYM0Ona/zoOWbnP1XEtcCLSGqXWDnf7pnHpkvk024QEpSshIrKeTvf7\ntaicye2bBlPgRKRVSpx66/ZNg1NTRKRVI0YAhw4Bp087b59u3TQaG4G8PPMQj4hIazp1AoYPBwoK\nnLdPpzcNo9GIoUOHQq/Xo1+/fnjnnXcAAHV1dYiPj4fBYEBCQgLOnj0rPSczMxNBQUHQ6/XYtGmT\nbLUwBU5EWufsKSqnn3L7yy+/oKamBiEhIbh48SIiIiLw2WefYfny5QgMDMSsWbPw3nvvoby8HIsW\nLUJJSQlmzJiBPXv2oKqqCjExMSgrK0PHjh1b/iLtOOWWKXAi0jp70+GqP+W2Z8+eCAkJAQB06dIF\nBoMBlZWVyM/PR1paGgDzGh55eXkAgLy8PKSkpMDT0xO+vr4IDg7G3r17ZamFa4ETkdY5e+1wRY9p\nVFRUYN++fYiJiUFNTQ16XL/Or5eXF6qrqwEAlZWV8PPzk57j5+cHk8lk976ZAiciV+HMKSqLlxFx\nlIsXL2LcuHFYtGgRunbtKstrZmRkSP+Oi4tDXFxcm4/lWuBE5CpGjzanwxcssJwOLyoqQlFRUbv3\npUjTuHbtGp544glMmjQJjz32GADA29sbtbW18PLyQk1NjbRmh5+fH4xGo/Rck8kEf3//Vl+3edOw\nZP1681rgRERa1zwdbmlV7hv/oJ4zZ45N+3L69JQQAk899RSCgoLw4osvStuTkpKQm5sLAMjNzUVS\nUpK0ffXq1WhoaIDJZEJpaSmio6PtqoEpcCJyJc5Mhzv97KmdO3di6NChMBgM0F0fR2VmZiI6OhoT\nJ07EL7/8gl69emHNmjW46667AABvvfUWcnNz4eHhgfnz5yOhlW97W84A+PJL82XQCwvl+72IiJSU\nnw+8/Tawfbttz5N9uVetsOUX51rgRORq2rt2uOpPuVUaU+BE5IqclQ53u6bBFDgRuSpnnHrrdk2D\nFygkIleVnAx8/TVw7Zrj9uF2TYMpcCJyVc5Ih7tV02AKnIhcnaOnqNyqaTAFTkSurimv4ajzYt2q\nafB4BhG5OkevHe42TYMpcCJyB45Oh7tN0+Ba4ETkLhx5XMNtmganpojIXThy7XC3aBpMgRORO3Fk\nOtwtmgZT4ETkbhw1ReUWTYNTU0TkbhyVDneLpsEUOBG5G0elw12+aTAFTkTuyhFTVC7fNJgCJyJ3\n5Yh0uMs3DR7PICJ35Yh0uEs3DabAicidOSId7tJNgylwInJ3ch/XcOmmwakpInJ3cqfDXbZpMAVO\nRCR/OtxlmwZT4EREZnJOUbls0+DUFBGRmZzpcJdtGkyBExGZyZkOd8mmwRQ4EVFLck1RuWTTYAqc\niKgludLhLtk0eDyDiKgludLhLtc0mAInIrqZXOlwl2saTIETEbVOjuMaLtc0ODVFRNQ6OdLhLtU0\nmAInImqbHOlwl2oaTIETEd2avVNULtU0ODVFRHRr9qbDXappMAVORHRr9qbDXappMAVORGSZPVNU\nmmkaBQUF0Ov1CAoKQlZWVquPYQqciMgye9Lhmmgav/76K5555hkUFBTg8OHDWLt2LQ4ePHjT4zg1\nZVZUVKR0CarB9+J3fC9+5+7vhT3pcE00jeLiYgQHB8PX1xe33XYbJk6ciLy8vJsexxS4mbv/H6I5\nvhe/43vxO3d/L+xJh2uiaZhMJvj7+0v3/fz8YDKZbnocU+BERNZp73ENTTQNnU6ndAlERC5lxAjg\nu+/a8URjh95/AAAJuElEQVShAdu3bxfJycnS/XfeeUe8+eabLR4TGBgoAPDGG2+88WbDLTAw0Kbv\nY50Q9l5d3fHq6+vRv39/7Nq1Cz4+PhgyZAiys7MRERGhdGlERG7lNqULsEanTp2wdOlSJCQkoLGx\nEWlpaWwYREQK0MRIg4iI1EETB8JvxZrQn7sICAiAwWBAeHg4oqOjlS7HqaZOnYqePXtCr9dL2+rq\n6hAfHw+DwYCEhAScPXtWwQqdp7X3IiMjA35+fggPD0d4eDgK7LnMqYYYjUYMHToUer0e/fr1wzvv\nvAPAPT8bbb0XNn827D5KraD6+noREBAgTCaTuHbtmoiKihIHDhxQuizFBAQEiNOnTytdhiK2b98u\nDhw4IEJCQqRtzz33nFi4cKEQQoiFCxeKmTNnKlWeU7X2XmRkZIj58+crWJUyqqqqxJEjR4QQQly4\ncEH06dNHHDp0yC0/G229F7Z+NjQ90rA29OdOhJvONsbGxuLuu+9usS0/Px9paWkAgNTUVLf5bLT2\nXgDu+dno2bMnQkJCAABdunSBwWBAZWWlW3422novANs+G5puGtaG/tyFTqeThtzvv/++0uUorqam\nBj169AAAeHl5obq6WuGKlPXBBx9gwIABSE1NRV1dndLlOF1FRQX27duHmJgYt/9sNL0XsbGxAGz7\nbGi6aTD019KePXtw4MABbNmyBR9//DEKCwuVLolU4tlnn8Xx48fx/fffIzAwEDNnzlS6JKe6ePEi\nxo0bh0WLFqFr165Kl6OoixcvYvz48Vi0aBHuvPNOmz8bmm4afn5+MBqN0n2j0dhi5OFufHx8AADe\n3t4YN24c9u3bp3BFyvL29kZtbS0A86ij6f1xR15eXtDpdNDpdJg+fbpbfTauXbuGJ554ApMmTcJj\njz0GwH0/G03vxZ///GfpvbD1s6HppjFw4ECUlpaisrIS165dw5o1a5CYmKh0WYq4fPkyLl++DAC4\ndOkSCgoKEBwcrHBVykpKSkJubi4AIDc3F0lJSQpXpJzm0y+ff/6523w2hBB46qmnEBQUhBdffFHa\n7o6fjbbeC5s/Gw44SO9U+fn5Ijg4WAwYMEC89dZbSpejmJ9++kkYDAYRGhoq+vTpI15//XWlS3Kq\nlJQUcc8994gOHToIPz8/sWLFCnH69GkxatQoodfrRXx8vDhz5ozSZTrFje/FRx99JFJTU4XBYBD9\n+/cXCQkJwmQyKV2mU+zYsUPodDoRGhoqwsLCRFhYmNi4caNbfjZaey/y8/Nt/mww3EdERFbT9PQU\nERE5F5sGERFZjU2DiIisxqZBRERWY9MgIiKrsWkQEZHV2DRItV5//XX069cPoaGhCA0NRXFxsayv\n/9Zbb7XreXFxcSgpKWl1e//+/REZGYnQ0FA8//zzOHfunPTzhx56yK56kpOTcf78eVRUVLS47Lk1\ntm3bhm+//Va6n52djZycHJtegwhg0yCVKioqwpYtW1BaWorvvvsOO3bsQO/evWXdR2ZmZqvbhRC3\nvOpn0yUXWtu+atUqlJSU4MCBA+jRowceffRR6ee7du2yq568vLx2Xzdp69at2L17t3R/+vTp0lVe\niWzBpkGqVFNTA29vb3To0AEA0LVrV/Tq1QuAebGpV199FVFRUQgNDUVZWRkAoKqqCqNHj0ZoaCjC\nwsKwbds2AMCFCxeQkpKC4OBghIaGYu3atfjHP/6BK1euIDw8HGlpaThx4gT69euHKVOmICwsDCaT\nCTNmzMDAgQPRt29fzJ4926q6m5qNp6cnMjIycOrUKRw5cgSA+XLUgPnqzEOHDkV4eDj0ej127NiB\n2bNnW6wnICBAugJpQ0MDJk+ejJCQEIwePVq6hEzzx+zfvx/Dhw/HiRMnkJ2djYULFyI8PBw7d+5E\nRkYG5s+fDwDYu3evVEtiYqL0/Li4OMyePRtDhgzB/fffj2+++caO/6LkMhwdXSdqj3PnzomQkBDR\nv39/MWPGDFFYWCj9LCAgQGRlZQkhhPjkk0/Eww8/LIQQYuzYsWLnzp1CCCFOnDghAgMDhRBCzJw5\nU7z88sstXlsIIbp06SJtKy8vFx4eHmL//v03Pa6hoUHExcVJP4uLixMlJSU31dza9pSUFLFmzZoW\n+8vKypLqF0KIixcvWlVP0yJb5eXlQqfTieLiYiGEEE8//bR0CZ3mC3Ht27dPxMXFCSFuXoSp+f2+\nffuKXbt2CSGEmDNnjpgxY4b0+7z66qtCCPPleoYNG3bT70zu5zalmxZRa7p27YpDhw5h27Zt2L59\nO1JTUzFv3jxMmzYNADBhwgQAwPjx4zFjxgwAQGFhIcrLy6XX+PXXX3H+/Hls2bIFX375ZYvXbk3v\n3r0RGRkp3f/oo4+wcuVK6HQ6/PzzzygrK2vxc2uIVqa5Bg8ejKeeegpXrlzBmDFjEBERYVU9zfn7\n+0tL+j755JN49913ba5FCIHq6mrU19djyJAhAMwLEj3yyCPSY5qm1yIiIlpcUZrcF6enSLU8PT0x\nYsQIZGRk4P3338fnn39+y8frdDrs27cPBw8exMGDB2E0GqUG0dqX943uuOMO6d9lZWX44IMPsGvX\nLhw6dAjJycloaGiw+Xc4dOgQBgwY0GJbbGwstm/fDj8/P0ybNg3/+c9/LNZzo+bHVIQQ0n0PDw80\nNjYCAOrr629ZW2vHZm58n26//XYA5v8WTa9L7o1Ng1Tp2LFjqKiokO4fPHiwxVopa9eulf636a/k\nUaNGYdmyZdJjjh49CgCIj49Hdna2tP38+fMAzF+Ev/32W6v7r6+vR5cuXXDHHXegtrYWGzdutKru\npi/dhoYGzJ07F/fcc4+0xGYTk8kEHx8fPPXUU5g6dSr2799vsZ4bnTx5Ulr3YPXq1YiJiQFgXmOm\n6fW++OIL6fGdO3eWjns0r9Xb2xudO3eWzqxatWoVhg0bZlUN5J7YNEiVmg5e6/V6DBgwAN999x3m\nzZsn/by2thZRUVHIysrC4sWLAQDLli3D5s2bodfrERISgkWLFgEA5s2bh5MnTyIoKAhhYWHYsmUL\nAGDKlCkYMGAA0tLSbvqrOzQ0FHq9Hn369MGkSZOkL2VLJk2ahIiICERERKCmpqbFtFjT6xcWFiI0\nNBQRERH47LPP8MILL1isp/nzAaBfv35YsmQJQkJCUFlZKb1Geno6nnnmGQwaNAgeHh7Sc8aMGYNV\nq1ZJB8Kbv15OTg6effZZGAwG7N69G2+++WarvxtXyiQA4KXRSXPuv/9+lJSUoHv37kqXQuR2ONIg\nzeFfvETK4UiDiIisxpEGERFZjU2DiIisxqZBRERWY9MgIiKrsWkQEZHV2DSIiMhq/w/7Ws1RmQme\nagAAAABJRU5ErkJggg==\n", "text": [ "<matplotlib.figure.Figure at 0x391dbd0>" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.3 Page 741" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math\n", "\n", "\n", "T = 2000.\t\t\t\t\t\t\t\t;#[K] temperature of surface\n", "stfncnstt = 5.67*math.pow(10,-8)\t\t;#[W/m^2.K^4] Stefan-Boltzmann constant\n", "E = stfncnstt*T*T*T*T; \t\t\t#[W/m^2]\n", "#calculations\n", "\n", "#From Table 12.1 \n", "constt1 = 2195. ; \t\t\t\t\t#[micro-m.K]\n", "wl1 = constt1/T;\n", "#From Table 12.1 \n", "constt2 = 9382. ; \t\t\t\t\t#[micro-m.K]\n", "wl2 = constt2/T;\n", "\n", "#From Weins Law, wlmax*T = consttmax = 2898 micro-m.K\n", "consttmax = 2898 \t\t\t\t;#micro-m.K\n", "wlmax = consttmax/T;\n", "#from Table 12.1 at wlmax = 1.45 micro-m.K and T = 2000 K\n", "I = .722*stfncnstt*T*T*T*T*T/10000.;\n", "Eb = math.pi*I;\n", "\n", "G = E; #[W/m^2] Irradiation of any small object inside the enclosure is equal to emission from blackbody at enclosure temperature\n", "#results\n", "\n", "print '%s %.2e %s' %(\"\\n (a) Spectral Emissive Power of a small aperture on the enclosure =\",E,\" W/m^2.Sr for each of the three directions\")\n", "print '%s %.1f %s' %(\"\\n (b) Wavelength below which 10percent of the radiation is concentrated = \",wl1,\" micro-m \\n\") \n", "print '%s %.2f %s' %(\" Wavelength above which 10percent of the radiation is concentrated = \",wl2,\" micro-m \\n\")\n", "print '%s %.2e %s %.2e %s' %(\"(c) Spectral emissive power and wavelength associated with maximum emission is \",Eb,\"micro-m and\",wlmax,\" W/m^2.micro-m respectively\")\n", "print '%s %.2e %s' %(\"\\n (d) Irradiation on a small object inside the enclosure =\",G,\"W/m^2\");\n", "#END" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " (a) Spectral Emissive Power of a small aperture on the enclosure = 9.07e+05 W/m^2.Sr for each of the three directions\n", "\n", " (b) Wavelength below which 10percent of the radiation is concentrated = 1.1 micro-m \n", "\n", " Wavelength above which 10percent of the radiation is concentrated = 4.69 micro-m \n", "\n", "(c) Spectral emissive power and wavelength associated with maximum emission is 4.12e+05 micro-m and 1.45e+00 W/m^2.micro-m respectively\n", "\n", " (d) Irradiation on a small object inside the enclosure = 9.07e+05 W/m^2\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.4 Page 743 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math\n", "import scipy\n", "from scipy import integrate\n", "\n", "\n", "T = 1500.\t\t\t\t\t\t\t\t;#[K] temperature of surface\n", "stfncnstt = 5.67*math.pow(10,-8)\t\t;#[W/m^2.K^4] Stefan-Boltzmann constant\n", "#calculations\n", "\n", "#From Equation 12.26 Black Body Radiation\n", "Eb = stfncnstt*T*T*T*T; \t\t\t#[W/m^2]\n", "\n", "#From Table 12.1 as wl1*T = 2*1500 (micro-m.K)\n", "F02 = .273;\n", "#From Table 12.1 as wl2*T = 4*1500 (micro-m.K)\n", "F04 = .738;\n", "def func(x):\n", "\tfunc = 2*math.cos(x) *math.sin(x)\n", "\treturn func;\n", "\n", "#From equation 12.10 and 12.11\n", "i1 = scipy.integrate.quad(func,0,math.pi/3.);\n", "delE = i1[0] *(F04-F02)*Eb;\n", "#results\n", "\n", "print '%s %.2e %s' %(\"\\n Rate of emission per unit area over all directions between 0 degC and 60 degC and over all wavelengths between wavelengths 2 micro-m and 4 micro-m =\",delE,\" W/m^2\");\n", "#END" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " Rate of emission per unit area over all directions between 0 degC and 60 degC and over all wavelengths between wavelengths 2 micro-m and 4 micro-m = 1.00e+05 W/m^2\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.5 Page 748" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "\n", "\n", "T = 1600.\t\t\t\t\t\t\t\t;#[K] temperature of surface\n", "wl1 = 2 \t\t\t\t\t\t;#[micro-m] wavelength 1\n", "wl2 = 5 \t\t\t\t\t\t;#[micro-m] wavelength 2\n", "stfncnstt = 5.67*math.pow(10,-8);\t\t#[W/m^2.K^4] Stefan-Boltzmann constant\n", "# From the given graph of emissivities\n", "e1 = .4;\n", "e2 = .8;\n", "#calculations\n", "\n", "#From Equation 12.26 Black Body Radiation\n", "Eb = stfncnstt*T*T*T*T; \t \t\t#[W/m^2]\n", "\n", "#Solution (A)\n", "#From Table 12.1 as wl1*T = 2*1600 (micro-m.K)\n", "F02 = .318;\n", "#From Table 12.1 as wl2*T = 5*1600 (micro-m.K)\n", "F05 = .856;\n", "#From Equation 12.36\n", "e = e1*F02 + e2*(F05 - F02);\n", "\n", "#Solution (B)\n", "#From equation 12.35\n", "E = e*Eb;\n", "\n", "#Solution (C)\n", "#For maximum condition Using Weins Law\n", "consttmax = 2898. \t\t\t\t;#[micro-m.K]\n", "wlmax = consttmax/T;\n", "\n", "#equation 12.32 with Table 12.1\n", "E1 = math.pi*e1*.722*stfncnstt*T*T*T*T*T/10000.;\n", "\n", "E2 = math.pi*e2*.706*stfncnstt*T*T*T*T*T/10000.;\n", "#results\n", "\n", "print '%s %.3f' %(\"\\n (a) Total hemispherical emissivity =\",e)\n", "print '%s %d %s' %(\"\\n (b) Total emissive Power =\",E/1000. ,\" kW/m^2\")\n", "print '%s %.1f %s %.1f %s ' %(\"\\n (c) Emissive Power at wavelength 2micro-m is greater than Emissive power at maximum wavelength \\n i.e.\",E2/1000.,\" kW/m^2 >\",E1/1000.,\" kW/m^2\")\n", "print '%s %d %s' %(\"\\n Thus, Peak emission occurs at\",wl1,\"micro-m\");\n", "#END" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " (a) Total hemispherical emissivity = 0.558\n", "\n", " (b) Total emissive Power = 207 kW/m^2\n", "\n", " (c) Emissive Power at wavelength 2micro-m is greater than Emissive power at maximum wavelength \n", " i.e. 105.5 kW/m^2 > 53.9 kW/m^2 \n", "\n", " Thus, Peak emission occurs at 2 micro-m\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.6 Page 751" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math\n", "import scipy\n", "from scipy import integrate\n", "\n", "T = 2000.\t\t\t\t\t\t\t\t;#[K] temperature of surface\n", "wl = 1 \t\t\t\t\t\t;#[micro-m] wavelength \n", "stfncnstt = 5.67*math.pow(10,-8);\t\t#[W/m^2.K^4] Stefan-Boltzmann constant\n", "\n", "# From the given graph of emissivities\n", "e1 = .3;\n", "e2 = .6;\n", "#calculations\n", "\n", "#From Equation 12.26 Black Body Radiation\n", "Eb = stfncnstt*T*T*T*T; \t\t\t\t\t\t#[W/m^2]\n", "def func1(x):\n", "\tfunc1=e1*math.cos(x) *math.sin(x);\n", "\treturn func1;\n", "\n", "def func2(x):\n", "\tfunc2=e2*math.cos(x) *math.sin(x);\n", "\treturn func2;\n", "\n", "#Equation 12.34\n", "i1 = scipy.integrate.quad(func1,0,math.pi/3.);\n", "i2 = scipy.integrate.quad(func2,math.pi/3. ,4*math.pi/9.);\n", "e = 2*(i1[0]+i2[0]);\n", "\n", "# From Table 12.1 at wl = 1 micro-m and T = 2000 K.\n", "\n", "I = .493*math.pow(10,-4) * stfncnstt*T*T*T*T*T ;#[W/m^2.micro-m.sr]\n", "\n", "In = e1*I;\n", "\n", "#Using Equation 12.32 for wl = 1 micro-m and T = 2000 K\n", "E = e*math.pi*I;\n", "#results\n", "\n", "print '%s %.1f' %('\\n Spectral Normal emissivity en =',e1)\n", "print '%s %.2f' %('and spectral hemispherical emissivity e = ',e)\n", "print '%s %.2e %s' %('\\n Spectral normal intensity In =',In,' W/m^2.micro-m.sr')\n", "print '%s %.1e %s' % ('and Spectral emissive power =',E,' W/m^2.micro-m.sr ');" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " Spectral Normal emissivity en = 0.3\n", "and spectral hemispherical emissivity e = 0.36\n", "\n", " Spectral normal intensity In = 2.68e+04 W/m^2.micro-m.sr\n", "and Spectral emissive power = 1.0e+05 W/m^2.micro-m.sr \n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.7 Page 759" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math\n", "import matplotlib\n", "from matplotlib import pyplot\n", "%matplotlib inline\n", "\n", "\n", "T = 500.\t\t\t\t\t\t\t\t;#[K] temperature of surface\n", "e = .8;\n", "stfncnstt = 5.67*math.pow(10,-8);\t\t#[W/m^2.K^4] Stefan-Boltzmann constant\n", "#calculations\n", "\n", "x=([0, 6, 8, 16]);\n", "y=([.8, .8, 0, 0]);\n", "\n", "pyplot.xlabel(\"Spectral Distribution of reflectivity\")\n", "pyplot.ylabel(\"wavelength (micro-m)\");\n", "pyplot.plot(x,y);\n", "pyplot.show();\n", "\n", "\n", "#From equation 12.43 and 12.44\n", "Gabs = (.2*500/2.*(6.-2.)+500*(.2*(8.-6.)+(1.-.2)*(8.-6.)/2.)+1*500*(12.-8.)+500*(16.-12.)/2.) ;#[w/m^2]\n", "G = (500*(6.-2.)/2.+500*(12.-6.)+500*(16.-12.)/2.) \t\t\t\t\t\t\t\t\t;#[w/m^2]\n", "a = Gabs/G;\n", "\n", "#Neglecting convection effects net het flux to the surface\n", "qnet = a*G - e*stfncnstt*T*T*T*T;\n", "#results\n", "\n", "print '%s %.2f' %('\\n Total, hemispherical absorptivity',a)\n", "print '%s %.2f %s' %('\\n Nature of surface temperature change =',qnet,' W/m^2 \\n Since qnet > 0, the sirface temperature will increase with the time');" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEPCAYAAABCyrPIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9cVFXeB/DPICAk/sgfkDIULprIOA4zwBimOSpGpGhP\npdgmpmZLviofd82srU0ss8U0K/d5CNc2nzVNybbSKCrTUVGX/E1YkRnqDIrmT1QUgTnPHyOzjAzM\njM6dO8Dn/XrxigvnXj5Azpd7zj3nKIQQAkRE1Or5yR2AiIh8AwsCEREBYEEgIqJrWBCIiAgACwIR\nEV3DgkBERAAkLgj5+flQq9WIiYlBVlZWg8+fPn0aKSkpUKlUGDBgAA4cOCBlHCIiaoJkBaGqqgrT\npk1Dfn4+ioqKsHbtWuzdu9euTWZmJgYOHIgDBw7gn//8J5544gmp4hARkROSFYTCwkKoVCqEh4fD\n398faWlpyMvLs2tTUlKCoUOHAgD69OmDkydP4vjx41JFIiKiJkhWEMxmMyIiImzHSqUSZrPZro1a\nrca//vUvAMB3332HI0eO4OjRo1JFIiKiJkhWEBQKhdM2c+bMwYkTJ6BSqbBgwQLEx8e7dB4REXme\nv1QXViqVMJlMtmOTyWR3xwAAHTp0wMqVK23HUVFRuPPOOxtcq1evXjh06JBUUYmIWqSoqCj88ssv\nLreX7A4hISEBxcXFKCsrQ3V1NXJzc5GSkmLXpqKiAjU1NQCADz74ADqdDp06dWpwrUOHDkEI4fNv\nc+bMkT0DczIjczJn3Zu7f0hLdocQFBSE7OxsJCcnw2KxID09HTqdDjk5OQCAjIwMFBcXY/LkyQgK\nCkLv3r3x3nvvSRWHiIickKwgAEBKSkqDu4KMjAzb+wMHDkRJSYmUEYiIyEWcqexBBoNB7gguYU7P\naQ4ZAeb0tOaS010KIYTPb5CjUCjQDGISEfkUd187eYdAREQAWBCIiOgaFgQiIgLAgkBERNewIBAR\nEQAWBCIiuoYFgYiIALAgEBHRNSwIREQEgAWBiIiuYUEgIiIALAhERHQNCwIREQFgQSAiomskLQj5\n+flQq9WIiYlBVlZWg8+Xl5dj+PDhUKlU6NOnj203NSIi8j7J9kOoqqpCdHQ0CgoKEBYWhsTERCxd\nuhRardbW5qWXXkJtbS1ef/11nDp1Cr1790Z5eTnatm1rH5L7IRARuc1n9kMoLCyESqVCeHg4/P39\nkZaWhry8PLs2ERERqKioAABUVFSgW7duDYoBERF5h2R7KpvNZkRERNiOlUoljEajXZsnnngCw4YN\nQ48ePXDhwgXk5uY2er1jx6RKSr4oOBi49Va5UxC1LpIVBIVC4bTN/PnzERsbC6PRiEOHDmHEiBHY\nv38/2rdv36Btnz6ZtvcDAw1o29bgwbTka86dA06eBEJC5E5C1HwYjcYGf3i7Q7KCoFQqYTKZbMcm\nk8nujgEACgoK8Je//AUAEBUVhZ49e+LHH3+EXq9vcL0LFzKliko+6K67gL17gcGD5U5C1HwYDAYY\nDAbb8dy5c906X7IxhISEBBQXF6OsrAzV1dXIzc1FSkqKXZuoqChs2LABAHDixAn88MMPiIyMlCoS\nNSN6PfDdd3KnIGpdJLtDCAoKQnZ2NpKTk2GxWJCeng6dTmd7tDQjIwMvv/wyJkyYgJiYGNTW1mLe\nvHkIDQ2VKhI1I3o9sH693CmIWhfJHjv1JD522vr8/DOQnAyUlsqdhKj58pnHToluRq9e/xlYJiLv\nYEEgn+TnByQkADt3yp2EqPVgQSCfxYFlIu9iQSCfxYJA5F0cVCafdfw40K8fcOoU4MI8RyK6DgeV\nqcXo3h1o1w749Ve5kxC1DiwI5NPYbUTkPSwI5NNYEIi8hwWBfBoLApH3cFCZfNqFC9axhLNngYAA\nudMQNS8cVKYWpX17IDISKC6WOwlRy8eCQD6P3UZE3sGCQD6PBYHIO1gQyOexIBB5BweVyedVVwOd\nOgHl5dYxBSJyDQeVqcUJCAA0GmDPHrmTELVskhaE/Px8qNVqxMTEICsrq8HnFy5cCK1WC61WC7Va\nDX9/f5w7d07KSNRMsduISHqSdRlVVVUhOjoaBQUFCAsLQ2JiIpYuXQqtVuuw/eeff4633nrLtsey\nXUh2GbV6q1YBn3wCfPSR3EmImg+f6TIqLCyESqVCeHg4/P39kZaWhry8vEbbr1q1Co888ohUcaiZ\n4x0CkfQkKwhmsxkRERG2Y6VSCbPZ7LBtZWUlvvrqKzz00ENSxaFmLirKOmu5vFzuJEQtl79UF1a4\nsYD9+vXrMWjQIHTq1KnRNpmZmbb3DQYDDAbDTaSj5kahsN4l7NwJpKbKnYbINxmNRhiNxhs+X7KC\noFQqYTKZbMcmk8nujqG+1atXO+0uql8QqHWq6zZiQSBy7Po/lufOnevW+ZJ1GSUkJKC4uBhlZWWo\nrq5Gbm4uUlJSGrQ7f/48tmzZgjFjxkgVhVoIjiMQSUuyO4SgoCBkZ2cjOTkZFosF6enp0Ol0yMnJ\nAQBkZGQAAD799FMkJycjODhYqijUQiQkWLuMhOCWmkRS4ExlalYiI4FvvgF695Y7CZHv85nHTomk\nwG4jIumwIFCzwoJAJB0WBGpWWBCIpMMxBGpWLl4EwsKsW2oGBsqdhsi3ufva6fQpowMHDmDLli04\nfPgwFAoFIiMjMXjwYKhUqpsKSnQjQkKss5a//x6Ii5M7DVHL0miX0YoVK6DX6/Hss8+ivLwcv/vd\n7xAZGYnjx4/j2WefRUJCAj744ANvZiUCwG4jIqk0eodw9uxZfPvtt2jfyI4kFRUVWL58uVS5iBql\n1wM7dgDTpsmdhKhl4RgCNTv79gGPPgocOCB3EiLf5u5rp9OCcPDgQbz99tswmUywWCy2L7Ju3bqb\nS+oGFgSqr7oauPVW4NgxoEMHudMQ+S6PDyqPGjUKTz31FB588EH4+fnZvgiRXAICgNhYYPduYOhQ\nudMQtRxOC0Lnzp0xffp0b2QhclndwDILApHnOO0yWrFiBQ4fPoykpCS0bdvW9nGdTid5uDrsMqLr\nrV5t3U7z44/lTkLkuySZh7BixQps2LDB1mUEAJs2bbqxhEQeoNcDs2bJnYKoZXF6h9CrVy/88MMP\nCJRxWijvEOh6QgDdugFFRUCPHnKnIfJNHl/tVKPRoKKi4qZCEXla/S01icgznHYZnTp1Cr1790ZC\nQoJtDMHbj50SOVI3sMzN9og8w2lBqL8nZ93th6uPnebn52PWrFmora3FY489htmzZzdoYzQa8dxz\nz+Hq1avo2LEjNm/e7EZ8as30emDxYrlTELUcbs1UXr9+PVJd3OG8qqoK0dHRKCgoQFhYGBITE7F0\n6VJotVpbm/LyciQlJWHjxo0IDQ3FmTNn0Llz54YhOYZADvz2m3XntDNnAD8u5E7UgKQ7pr388ssu\nty0sLIRKpUJ4eDj8/f2RlpaGvLw8uzarV69GWloaQkNDAcBhMSBqTLduQOfOwMGDcichahkk+7vK\nbDYjIiLCdqxUKmE2m+3alJSU4NixY0hMTET//v2xbNkyqeJQC8WVT4k8x+kYQn05OTkut3VlnKG2\nthbFxcXYuHEjKisrcddddyExMdHhXguZmZm29w0GAwwGg8tZqOWqKwjp6XInIZKf0WiE0Wi84fNd\nKghr1qzB1q1bAQBHjhzB2LFjnZ6jVCphMplsxyaTye6OAQBuv/129OjRA8HBwQgODsaQIUNQVFTk\ntCAQ1dHrgTVr5E5B5Buu/2O5/kNBrnDaZTRjxgwsW7YMOp0OWq0Wy5Ytw4wZM5xeOCEhAcXFxSgr\nK0N1dTVyc3ORkpJi12bkyJEoKChAbW0tKisrsWPHDvTt29etb4BaN60WKC4GqqrkTkLU/Dm9Q/j6\n669RXFxsW7Zi8uTJLm2fGRQUhOzsbCQnJ8NisSA9PR06nc7W7ZSRkQGtVov77rsP/fv3R3V1NaZO\nnYrY2Nib/JaoNWnXzvqkUVERkJAgdxqi5s3pY6cxMTHYvn07OnXqBAA4d+4cEhMT8eOPP3olIMDH\nTqlpf/gDoNEATz0ldxIi3+Lxxe1mzZqFfv36ISkpCUIIbNy4Ea+88spNhSTyJL0e2LqVBYHoZjVZ\nECwWC9q1a4ft27fj3//+NxQKBebNm9dgcJhITno9sGiR3CmImj+nXUYDBgxAYWGht/I4xC4jakpN\njXVLTbMZ6NhR7jREvsPjM5WHDh2KxYsXw2Qy4cyZM7Y3Il/h72992mjXLrmTEDVvTu8QIiMjHU4y\nKy0tlSzU9XiHQM48+yzQpQvwwgtyJyHyHR4fVD58+PDN5CHyCr0e+PBDuVMQNW9Ou4zeeecdnD9/\n3nZ8/vx5/O1vf5M0FJG7uKYR0c1z2mWk0Wiwf/9+u4/FxsZi3759kgarj11G5IwQQFgYsHcvEB4u\ndxoi3+DxQeWrV6/aHQshcOXKFfeTEUmobktN3iUQ3TinBWHYsGEYP348vv32W2zYsAHjx4/HsGHD\nvJGNyC0sCEQ3x2mXUU1NDZYsWYJvv/0WADBixAg8/fTTaNOmjVcCAuwyItfk5wNvvAFc+1+VqNVz\n97XTrS005cKCQK44fRr43e+As2e5pSYR4MHHTseOHYuPPvoIarXa4RcpKiq6sYREEunSxbqtZkkJ\nwFXUidzXaEF4++23AQDr16/3Whiim1U3jsCCQOS+RgtCjx49AFhnKgPWZa8tFotXQhHdqLqC8Nhj\ncichan6c9rQuWbIE3bp1g0ajQVxcHOLi4hAfH+/SxfPz86FWqxETE4OsrKwGnzcajejYsSO0Wi20\nWi3mzZvn/ndAVA+fNCK6cS6tZbRr1y507drVrQtXVVUhOjoaBQUFCAsLQ2JiIpYuXQqtVmtrYzQa\n8eabb2LdunVNh+SgMrno8mWga1frAHNQkNxpiOTl8Ylpffv2RUhIiNtBCgsLoVKpEB4eDn9/f6Sl\npSEvL69BO77QkycFBwN9+gDXTa4nIhc4Xdzutddeg16vR2JiIgIDAwFYq84777zT5Hlms9luIx2l\nUgmj0WjXRqFQYMeOHVCr1QgNDcWbb74JjUZzA98G0X/UdRsNGCB3EqLmxWlB+MMf/oCkpCSo1Wr4\n+flBCOFwOezrudImLi4OZrMZQUFB+Prrr/HAAw94dVltapn0emDTJrlTEDU/TgsCALz55ptuX1ip\nVMJkMtmOTSZTg60363dF3XvvvQgMDER5eTluu+22BtfLzMy0vW8wGGAwGNzORK2DXg84eIaBqMUz\nGo0NemLc4XRQ+cUXX0RkZCRGjRqFtm3b2j7euXPnJi985coVREdHY9u2bQgNDcXAgQORk5MDnU5n\na3Pq1CnbYPXu3bsxZswYHD16FH7XTTPloDK5o7bWuqXmkSPW/xK1Vh7fIGflypVQKBSYP3++3Rf5\n9ddfmzwvKCgI2dnZSE5OhsViQXp6OnQ6HXJycgAAGRkZ+PDDD7F06VIAQGBgIFatWtWgGBC5q00b\nQKezbqk5YoTcaYiaD65lRC3Sc88BHTsCL74odxIi+XjssVNX+qE2ceSOfBQnqBG5r9Euo88//xzP\nPfcckpKSEB8fj+7du8NisaC8vBy7du3Chg0bMHToUAwdOtSbeYlcotcDTz9t3UnNhQfeiAhOuowu\nXLiAzz77DNu2bcORI0cAAHfccQcGDRqEMWPG3NCEtRsKyS4jcpMQQPfuwM6dwHUPtxG1GtwPgeia\n0aOti9w99JDcSYjk4fGlK4iaK44jELmHBYFaLBYEIvewy4harDNngMhI65aaXtwCnMhneHximhAC\nmzdvhslksm2Qo1AoMHHixBtPSeQFnTsDt90G/PQToFLJnYbI9zktCOPGjUNZWRliY2PRpt6fWSwI\n1BzUdRuxIBA557Qg7N+/HyUlJS6tXkrka+oKwuTJcich8n1OB5V1Oh1OnjzpjSxEHseBZSLXNTqo\nnJqaCgC4ePEi9u7dC71eb1vtVKFQON320qMhOahMN+jKFaBLF+DUKetuakSticcGlWfOnNnoBdl9\nRM1FUBDQty+wbx+QmCh3GiLf1mhBqNuA5rnnnsOCBQvsPjd79mwMGTJE0mBEnlLXbcSCQNQ0p2MI\n33zzTYOPrV+/XpIwRFLgOAKRaxq9Q8jOzsb//u//4tChQ1Cr1baPV1ZWIjY21ivhiDxBrwdee03u\nFES+r9FB5fPnz+Ps2bN4/vnnkZWVZRtHCA4ORlhYmEsXz8/Px6xZs1BbW4vHHnsMs2fPdthu586d\nSExMRG5uLh588MGGITmoTDehttY6Sa201PpfotbC46udnj59usEgclBQEG655ZYmL1xVVYXo6GgU\nFBQgLCwMiYmJWLp0KbRarV272tpajBgxArfccgsmT56MhxwsTcmCQDdr2DBg9mwgOVnuJETe4/HV\nTuPi4tC1a1f07t0bvXv3RteuXREVFQWVSoUdO3Y0el5hYSFUKhXCw8Ph7++PtLQ05OXlNWi3ZMkS\nPPzww+jWrZvLoYncxXEEIuecFoR7770XX3/9NU6fPo3Tp0/jm2++wejRo7Fs2TJkZGQ0ep7ZbEZE\nvZ1JlEolzGazXZuysjJ89tlnmDZtGgA+zkrSYUEgcs5pQfjuu++QlJRkOx4+fDgKCwuRmJjY5K2I\nKy/uM2bMwF//+lfbbQ27hUgqdQWB/4sRNc7pWkYhISFYuHAhxo4dCyEEPv74Y4SEhMBiscDfv/HT\nlUolTCaT7dhkMtndMQDA7t27MX78eADAqVOn8OWXXyIgIACjR49ucL3MzEzb+waDwTZPgsgV4eHW\nJbCPHgXuuEPuNETSMBqNMBqNN3y+00HlEydO4KWXXsL27dsBAAMHDsSrr76Kzp0748iRI+jdu7fD\n865cuYLo6Ghs27YNoaGhGDhwIHJycqDT6Ry2nzx5MlJTU/mUEUnmgQeARx8Fxo6VOwmRd3h8P4Sw\nsDD8/e9/d/i5xooBYH0SKTs7G8nJybBYLEhPT4dOp0NOTg4ANDn+QCSFum4jFgQix5zeIRQXF2Ph\nwoUNNsjZuHGjVwLWfT3eIdDN2rABePVVYPNmuZMQeYfH5yH06dMHM2bMgE6ns22Qo1AoEBcXd3NJ\n3cCCQJ5w7hwQEWHdUrOJ4S+iFsPjXUYdO3a0PRZK1Jx16mQdXP7xR6DeaixEdI3Tx07vv/9+vPvu\nuzh+/DjOnDljeyNqjjgfgahxTruMIiMjHc4pKC0tlSzU9dhlRJ7yt78B338PXHu2gahF83iX0eHD\nh28mD5FP0euB996TOwWRb3LaZXThwgW89NJLmDJlCgDg0KFD3A+Bmi2NBvj5Z6CyUu4kRL7HaUGY\nMGEC2rdvj8LCQgBAeHg4XnzxRcmDEUmhbVtApQL27pU7CZHvcVoQfv31V8yePRuBgYEArBPO/Pyc\nnkbksziwTOSY01f2wMBAXL582XZ89OhRSQMRSY0FgcgxpwVhzpw5GD58OMxmMyZOnIi7774br7/+\nujeyEUmCBYHIMaePnQLWBe62bt0KABg8eLDLW2h6Ch87JU+yWKxbaf7yC9C1q9xpiKTjsaUrdu/e\nbTf/oK5Z3ccaW7VUCiwI5GlJScDMmUBKitxJiKTjsXkIM2fObHKTm02bNrmXjMiH1HUbsSAQ/Uej\nBeFmNlkg8nV6PdDIqu5ErRYnplGrxC01iRrixDRqlXr0sE5S48osRP8h6cS0/Px8qNVqxMTEICsr\nq8HnP/vsM/Tv3x8ajQZqtRr5+fluxie6cXz8lMieZBPTqqqqMG3aNOTn56OoqAhr167F3uvWC0hK\nSkJRURH279+PVatWcVtN8ioWBCJ7kk1MKywshEqlQnh4OPz9/ZGWloa8vDy7Nu3atbO9f/HiRXTv\n3v0GvgWiG8OCQGTP6fLXo0ePxoABA2wT0xYsWIDbbrvN6YXNZjMiIiJsx0ql0uGTS59++ileeOEF\nHD9+HF9//bUb0YluTlycdZG7mhpuqUkEuFAQUlNT8cgjj2DMmDF2f9E709QchvoeeOABPPDAA9i6\ndSvS09NRUlLisF1mZqbtfYPBAIPB4HIWIkc6dgRuvx04cMC6LDZRc2c0Gm9qyoDTpSuMRiPWrFmD\nL774AgkJCRg/fjxGjRqFoKCgJi+8detWZGVl4fPPPwcAvPHGG7h69WqTTyhFRUVh+/btDZbG4Exl\nksqkScDddwNPPCF3EiLPc/e10+kYgsFgQHZ2Ng4dOoSMjAzk5uYiNDTU6YUTEhJQXFyMsrIyVFdX\nIzc3FynXTQutvxvbnj17cPXqVZeuTeQpHEcg+g+Xek4vX76MdevWITc3F3v27MFjjz3m9JygoCBk\nZ2cjOTkZFosF6enp0Ol0yLm2mW1GRgZWr16NlStXAgCCg4OxevVql7uaiDxBr+f+ykR1nHYZjRs3\nDoWFhbjvvvswfvx43HPPPWjTpo238gFglxFJ5+pV4NZbgZMnATeGyIiaBY8tbldnypQp+PDDD71e\nBIi8ITAQUKuBPXuAwYPlTkMkL5f2Q9i9ezdKSkpQU1Nj+9jEiRMlDVYf7xBIStOnA3fcYV0Om6gl\n8fgdwvPPP4/CwkIcOHAAI0eOxJdffolBgwZ5tSAQSUmvB7heI5ELTxn961//woYNG9CjRw+8//77\nKC4uxoULF7yRjcgr+KQRkZXTgtCxY0e0adMGQghcvHgRXbp0waFDh7yRjcgrevUCzp2zDiwTtWZO\nC4JOp0NFRQUmTZqE2NhYaLVaJCYmeiMbkVf4+QEJCcDOnXInIZKXS4PKdUpKSnDlyhVovDzPn4PK\nJLWXXgLatAHmzpU7CZHneHxQecKECRgyZAgGDx6M6OjomwpH5Kv0eiA7W+4URPJyeoewceNGbN26\nFQUFBfjll1+g0+kwePBgzJgxw1sZeYdAkjt+HOjXDzh1CuBkeWop3H3tdKnLqKamBrt27cLGjRvx\n7rvvIjg4uNFVSaXAgkDecPvtwKZNQFSU3EmIPMPjXUbDhw/HpUuXkJiYiEGDBmHXrl1cgI5apLrH\nT1kQqLVy+pRR//79ERAQgOLiYhQVFaG4uNhuS02iloLzEai1c/kpowsXLmD58uVYuHAhysvLUVVV\nJXU2G3YZkTcYjcCLLwLbtsmdhMgzPN5ltGTJEmzduhW7d+9Gz549MWXKFAzmKmDUAsXFAfv3A9XV\nQECA3GmIvM9pQbhy5QpmzpwJnU6HAP4roRasfXsgMhIoLga0WrnTEHmfWxPT5MIuI/KWKVOAAQOA\njAy5kxDdPI9voXmz8vPzoVarERMTg6ysrAafX7FiBfr37w+1Wo34+Hjs3r1b6khEjeLAMrVmkhaE\nqqoqTJs2Dfn5+SgqKsLatWuxd+9euzZ9+vTBtm3b8P3332PevHmYOnWqlJGImsSCQK2ZpAWhsLAQ\nKpUK4eHh8Pf3R1paGvLy8uza6PV6tG/fHgBw9913o6ysTMpIRE1Sq4FffwW4wju1RpIWBLPZjIiI\nCNuxUqmE2WxutH1OTg7GjBkjZSSiJgUEABqNdUtNotbG6VNGN0PhxqIwRqMR//jHP7CtkYfAMzMz\nbe8bDAYYDIabTEfkWF230ZAhcichco/RaITRaLzh8yUtCEqlEiaTyXZsMpns7hjqFBUVYerUqcjP\nz8ett97q8Fr1CwKRlPR64JNP5E5B5L7r/1ie6+Z67pJ2GSUkJKC4uBhlZWWorq5Gbm4uUlJS7Noc\nPXoUDz74ID744AP06tVLyjhELuHAMrVWkt4hBAUFITs7G8nJybBYLEhPT4dOp0NOTg4AICMjA6+8\n8grOnj2LadOmAQACAgLwHf81koyioqyDyuXlwG23yZ2GyHs4MY3IgfvuA556CkhNlTsJ0Y3zuYlp\nRM0Ru42oNWJBIHKABYFaI3YZETlw4gTQty9w+jS31KTmi11GRB4QFgZ06AD88ovcSYi8hwWBqBHs\nNqLWhgWBqBEsCNTasCAQNYIFgVobDioTNeLiRetYwtmzQGCg3GmI3MdBZSIPCQmxzlr+/nu5kxB5\nBwsCURPYbUStCQsCURNYEKg1YUEgagILArUmHFQmakJ1NXDrrcCxY9aJakTNCQeViTwoIACIjQV2\n75Y7CZH0WBCInGC3EbUWLAhETrAgUGsheUHIz8+HWq1GTEwMsrKyGnz+p59+QmJiIoKCgrBo0SKp\n4xC5jQWBWgtJt9CsqqrCtGnTUFBQgLCwMCQmJuLee++FVqu1tenSpQuWLFmCTz/9VMooRDesZ0/g\n8mXrwHKPHnKnIZKOpHcIhYWFUKlUCA8Ph7+/P9LS0pCXl2fXplu3boiPj0dAQICUUYhumEJhvUvY\nuVPuJETSkrQgmM1mRERE2I6VSiXMZrOUX5JIEuw2otZA0i4jhQe3msrMzLS9bzAYYDAYPHZtImf0\nemDxYrlTEDXNaDTCaDTe8PmSFgSlUgmTyWQ7NplMdncM7qhfEIi8LSHB2mVksQB+fDaPfNT1fyzP\nnTvXrfMl/V87ISEBxcXFKCsrQ3V1NXJzc5GSkuKwLWciky/r1g3o3Bk4eFDuJETSkfQOISgoCNnZ\n2UhOTobFYkF6ejp0Oh1ycnIAABkZGSgvL0dCQgIqKirg5+eHt99+Gz/88ANCQkKkjEbktrpxhD59\n5E5CJA2uZUTkojffBEpLgSVL5E5C5BquZUQkET5pRC0d7xCIXHTpEhAaCpw5A7RtK3caIud4h0Ak\nkXbtgN69gaIiuZMQSYMFgcgN7DailowFgcgNLAjUkrEgELmBBYFaMg4qE7mhpsa6pabZDHTsKHca\noqZxUJlIQv7+gFYL7NoldxIiz2NBIHITu42opWJBIHITCwK1VCwIRG5iQaCWigWByE133AFUVwNl\nZXInIfIsFgQiN9Vtqcm7BGppWBCIbgALArVELAhEN4AFgVoiSQtCfn4+1Go1YmJikJWV5bDN9OnT\noVKpoNPpsHfvXinjEHlMQoJ1LoLFIncSIs+RrCBUVVVh2rRpyM/PR1FREdauXdvgBf/jjz/G0aNH\nceDAAbz33nuYPHmyVHG84mY2t/Ym5rx5XbpYt9VcscIodxSX+PLPsj7mlJdkBaGwsBAqlQrh4eHw\n9/dHWlrZjAnvAAAQSUlEQVQa8vLy7Np88cUXSE9PBwBotVrU1NTAbDZLFUlyzeV/Eub0DL0e+OQT\no9wxXOLrP8s6zCkvyQqC2WxGRESE7VipVDZ4sXelDZGv0uv56Cm1LP5SXVihULjU7vqFl1w9j0hu\nej3w5z8DqalyJ3GupATYvVvuFM4xp8yERLZs2SJGjhxpO16wYIGYN2+eXZspU6aIjz76yHasUqmE\n2WxucK2oqCgBgG984xvf+ObGW1RUlFuv25LdISQkJKC4uBhlZWUIDQ1Fbm4ucnJy7Nrcf//9+OCD\nD/Dwww9jz549aNOmDcLDwxtc65dffpEqJhERXSNZQQgKCkJ2djaSk5NhsViQnp4OnU5nKwoZGRl4\n6KGHsGnTJqhUKrRt2xbvv/++VHGIiMiJZrFBDhERSc+nZyq7MrFNbiaTCffccw/UajX69OmDBQsW\nyB2pSbW1tdBqtUj14ZHQc+fOYezYsdBoNOjbty927NghdySH5syZgzvvvBPR0dF4+OGHUVlZKXck\nAMCUKVMQFhYGtVpt+9iZM2cwYsQI9O/fH8nJyTh37pyMCa0c5fzTn/6EmJgYxMTEYNSoUTh9+rSM\nCR1nrLNo0SL4+fnhzJkzMiSz11jOJUuWQKPRQK1WY9asWc4v5NaIgxdduXJFREZGCrPZLKqrq0V8\nfLzYs2eP3LEaKC8vF99//70QQogLFy6I3r17i3379smcqnGLFi0Sv//970VqaqrcURr18MMPi1Wr\nVgkhhKitrRXnz5+XOVFDBw8eFD179hRVVVVCCCHGjRsnli1bJnMqqy1btog9e/aIfv362T729NNP\ni8WLFwshhFi8eLGYPn26XPFsHOXcuHGjqK2tFUIIMXv2bDFjxgy54gkhHGcUQoijR4+K5ORkERkZ\nKU6fPi1Tuv9wlPPzzz8XI0eOFNXV1UIIIU6dOuX0Oj57h+DKxDZfEBYWhn79+gEAQkJC0L9/fxw7\ndkzmVI6ZzWZ88cUXmDp1qs/uUX369Gns27cPjzzyCADAz88PHTp0kDlVQ507d0ZAQAAuXbqEmpoa\nVFZW4o477pA7FgBg8ODBuPXWW+0+Vn8S6IQJE3zi35KjnEOHDoWfn/Vl6e6770aZzBM9HGUErHcy\nvtQb4CjnsmXLMHv2bPj7W4eKu3Tp4vQ6PlsQmuOktcOHD2Pnzp0YNGiQ3FEc+uMf/4g33njD9g/O\nFx08eBDdunXDuHHj0K9fP0ycOBEXL16UO1YDnTt3xsyZM3H77bejR48e6NSpE5KSkuSO1ajffvvN\n9oLQtWtXnDx5UuZEzi1duhRjxoyRO0YDn332GZRKJfr37y93lCb99NNP+OqrrxAbG4vExERs377d\n6Tk++8rQ3CaoXbx4EWPHjsXbb7+N9u3byx2ngc8//xyhoaHQarU+e3cAABaLBTt37sSsWbNQXFyM\nzp0749VXX5U7VgOHDh3CW2+9hcOHD+PYsWO4ePEiVq5cKXesFuO1115DYGAgHn30Ubmj2KmsrMT8\n+fMxd+5c28d89d+TxWLBhQsXsG/fPrzzzjsYP36806w+WxCUSiVMJpPt2GQy2d0x+JLq6mo89NBD\n+P3vf48HHnhA7jgObd++HevWrUPPnj3xyCOPYOPGjZg4caLcsRqIiIhAeHg4EhISAAAPP/ww9u3b\nJ3Oqhr777jsMHDgQXbp0gb+/Px588EEUFBTIHatR3bp1w6lTpwBY7xZCQ0NlTtS4//u//0NeXp5P\nFthDhw7h8OHD0Gg06NmzJ8xmM+Li4nzyjisiIgIPPvggAOu8sMDAQJw4caLJc3y2INSf2FZdXY3c\n3FykpKTIHasBIQQef/xxxMTE4I9//KPccRo1f/58mEwmlJaWYvXq1Rg2bBj++c9/yh2rgYiICHTt\n2hU///wzAGDDhg3o27evzKka6tWrF/7973/j8uXLEEJgw4YN6NWrl9yxGlU3CRQAPvjgA9x///0y\nJ3IsPz8fCxYswLp16xAUFCR3nAbUajVOnDiB0tJSlJaWQqlUYs+ePT5ZYEeOHImNGzcCAH7++WdU\nVlY6zynBgLfHfPHFF0KlUom+ffuK+fPnyx3Hoa1btwqFQiE0Go2IjY0VsbGx4ssvv5Q7VpOMRqNP\nP2W0b98+ER8fL2JiYkRKSoo4c+aM3JEcmjNnjujVq5e48847RVpamrh8+bLckYQQQowfP150795d\nBAQECKVSKf7xj3+I06dPi6SkJKFWq8WIESPE2bNn5Y7ZIOd7770nevXqJW6//Xbbv6Vp06b5RMbA\nwEDbz7K+nj17+sRTRo5yXr16VUyYMEGoVCqhUqnEV1995fQ6nJhGREQAfLjLiIiIvIsFgYiIALAg\nEBHRNSwIREQEgAWBiIiuYUEgIiIALAityl/+8hf06dMHGo0GGo0GhYWFHr3+/Pnzb+g8g8GA3Q42\nqDUYDIiOjkZcXBw0Gg2eeeYZnD9/3vb5u++++6byjBw5EhUVFTh8+LDD5Y2bsnnzZrtluXNycrBi\nxQq3ruGumTNnom/fvpg9e/YNnX/16lUYDAbExsYiNzcXQ4cOdfhzd2b//v348ssvbcfr1693ujz9\nnDlzbJOk3nrrLVy+fNntr0teIPmMCfIJmzZtEomJieLq1atCCCHOnz8vjh8/7tGvERIS4vDjFotF\nWCyWRs8zGAxi9+7dTX68pqZGzJkzRwwZMsTjeUpLSxssb+zMnDlzxMKFC90652Z17NixyZ+jENaf\nU2N27NghkpKSbMeN/dydef/998XTTz/t9nl1IiMjXVqKmbyPdwitxG+//YZu3bohICAAANChQwfc\ndtttAIDIyEjMnj0b8fHx0Gg0KCkpAQCUl5dj1KhR0Gg0iI2NxebNmwEAFy5cwPjx46FSqaDRaLB2\n7Vq88MILuHz5MrRaLdLT03HkyBH06dMHkyZNQmxsLMxmM5588kkkJCTgzjvvxPPPP+9SbnFt3mSb\nNm2QmZmJ48eP4/vvvwdgXW4csK6Me88990Cr1UKtVmPr1q14/vnnneaJjIy0bW5SU1ODiRMnol+/\nfhg1apRts5v6bXbt2oWhQ4fiyJEjyMnJweLFi6HValFQUIDMzEwsWrQIgHWdo7osKSkptvMNBgOe\nf/55DBw4ED179rT9xVyfxWLBM888Y9skpm55kdGjR+PixYvQ6XTIzc21OyczMxPp6ekwGAyYNGkS\nTpw4gZEjR9r93n777TdMmDABO3fuhE6nw6+//mp3jXXr1iEuLg5qtRpjxozBhQsXAADbtm1DfHw8\nYmNjodfrUVFRgZdffhlr1qyBVqtFbm4uli9fjmeeeQYVFRWIjIy0XfPSpUu4/fbbUVNTg0mTJuHj\njz/GkiVLcOzYMQwdOhTDhg3D+++/b7fky9///nf86U9/cun/DZKA3BWJvOP8+fOiX79+Ijo6Wjz5\n5JNiw4YNts9FRkaKrKwsIYQQK1euFPfee68QQoj/+q//EgUFBUIIIY4cOSKioqKEEEJMnz5dPPvs\ns3bXFsL+L/LS0lLh5+cndu3a1aBdTU2NMBgMts+5codQZ/z48SI3N9fu62VlZdnyCyHExYsXXcpT\nt7lJaWmpUCgUorCwUAghxBNPPGFbKqX+Big7d+4UBoNBCCFEZmamWLRoke1a9Y/vvPNOsW3bNiGE\nEHPnzhVPPvmk7fuZPXu2EMK6LIuju52VK1eK5ORkIYQQp0+fFj169BBlZWUNvp/65syZI+Lj420b\noTT2ezMajWLUqFG28+p+vuXl5SIxMVFUVlYKIYT461//Kl588UVRVVUlwsPDbRs+VVZWipqaGrF8\n+XLxzDPP2K6zfPly2x3DmDFjxKZNm4QQQqxevVo88cQTQgghJk2aJD7++OMGP9OLFy+KqKgo253N\nwIEDRXFxscPvk6TnL3dBIu/o0KED9u3bh82bN2PLli2YMGECXn31VUydOhUAMG7cOADA2LFj8eST\nTwKwLixXWlpqu0ZVVRUqKirw7bff4rPPPrO7tiN33HEH4uLibMfvvfceli9fDoVCgWPHjqGkpMTu\n864QDlZaSUxMxOOPP47Lly8jNTUVOp3OpTz1RUREQK/XAwAeeeQRLFy40O0sQgicPHkSV65cwcCB\nAwFYN6MZPXq0rU3d+v46nc5uNd8627Ztw/jx4wFY91wYPnw4duzYgYceeqjRHAqFAqNHj7ZthNLY\n783Rz04Iga1bt+LgwYO2zFevXsWAAQNQVFSEyMhIaDQaAEBwcLDtHEfXAoC0tDSsWbMGBoMBq1ev\nxtNPP91obgBo164dhg0bhvXr1yM6OhrV1dVQqVRNnkPSYUFoRdq0aYNhw4Zh2LBhUKvVWLZsma0g\nOKJQKLBz507bC019jb0g1NeuXTvb+yUlJfif//kf7Nu3DyEhIZg8eTJqamrc/h727duHl156ye5j\ngwcPxpYtW5CXl4epU6dixowZDpf2rp/nevX33xBC2I79/PxgsVgAAFeuXGkym0KhaLCPx/U/p7Zt\n2wKw/i7qrnu9+ue48nMGgFtuucUuR2O/t8akpKQ0WP12165dDts2tVdJamoq/vznP+Ps2bPYs2cP\nhg0b5vRrT506Fa+99hr69u2LKVOmuJyZPI9jCK3EwYMHcfjwYdvx3r177faXWLt2re2/dX8pJiUl\n4d1337W1OXDgAABgxIgRyMnJsX28oqICgPVFrra21uHXv3LlCkJCQtCuXTucOnXK7imVptS9INbU\n1OCVV15B9+7dbVuW1jGbzQgNDcXjjz+OKVOm2F7ImspzvaNHj2Lnzp0AgDVr1th2vVMqlbbrffLJ\nJ7b2wcHBtnGG+lm7deuG4OBg2xNIq1atwpAhQ1zKAFiL20cffQQhBM6cOYNNmzYhMTHR5fOBhr+3\n4uLiRtsqFAoMHjwYmzZtwtGjRwFYf1eHDh1C//79cfjwYdt+FJcuXUJtbW2D771+0QoJCUFCQgKm\nT5+O1NRUh8UjODgYly5dsh3r9XqYzWasWrXKtnUqyYMFoZWoGwhWq9Xo27cv9u/fb7cT2alTpxAf\nH4+srCy88847AIB3330X33zzDdRqNfr164e3334bAPDqq6/i6NGjiImJQWxsLL799lsAwKRJk9C3\nb1+kp6c3+GtZo9FArVajd+/eePTRR13eZvTRRx+FTqeDTqfDb7/9ZtdVVXf9DRs2QKPRQKfT4aOP\nPsJ///d/O81T/3wA6NOnD5YsWYJ+/fqhrKzMdo05c+Zg2rRpuOuuu+Dn52c7JzU1FatWrbINKte/\n3ooVK/DUU0+hf//+2L59O+bNm+fwe3P0YpmWloaoqCjExMRg0KBBeP3119GjR49G2zu61vW/t7rf\np6OfAWDdF3zp0qUYPXq0bfD4hx9+QGBgINasWYMpU6YgNjYWw4cPR1VVle1xVY1Gg9zc3AbXTUtL\nw6pVq5CWluYw6+OPP46hQ4di+PDhto+NGzcOgwYNQseOHRv9Hkl6XP6a0LNnT+zevRudO3eWOwq1\nUmPGjMH06dPtigR5H+8QqNntX00tx7lz56BSqRAYGMhi4AN4h0BERAB4h0BERNewIBAREQAWBCIi\nuoYFgYiIALAgEBHRNSwIREQEAPh/X35awWPS9asAAAAASUVORK5CYII=\n", "text": [ "<matplotlib.figure.Figure at 0x2fec390>" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", " Total, hemispherical absorptivity 0.76\n", "\n", " Nature of surface temperature change = 965.00 W/m^2 \n", " Since qnet > 0, the sirface temperature will increase with the time\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.8 Page 761" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "\n", "T = 5800.\t\t\t\t\t\t\t\t;#[K] temperature of surface\n", "e = .8;\n", "stfncnstt = 5.67*math.pow(10,-8);\t\t#[W/m^2.K^4] Stefan-Boltzmann constant\n", "#calculations and results\n", "\n", "#From Table 12.1\n", "#For wl1 = .3 micro-m and T = 5800 K, At wl1*T = 1740 micro-m.K\n", "F0wl1 = .0335;\n", "#For wl1 = .3 micro-m and T = 5800 K, At wl2*T = 14500 micro-m.K\n", "F0wl2 = .9664;\n", "\n", "#Hence from equation 12.29\n", "t = .90*(F0wl2 - F0wl1);\n", "\n", "print '%s %.2f' %('\\n Total emissivity of cover glass to solar radiation =',t);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " Total emissivity of cover glass to solar radiation = 0.84\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.9 Page 766" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math\n", "\n", "Ts = 500.\t\t\t\t\t\t\t;#[K] temperature of brick surface\n", "Tc = 2000. \t\t\t\t;#[K] Temperature of coal exposed\n", "stfncnstt = 5.67*math.pow(10,-8)\t;#[W/m^2.K^4] Stefan-Boltzmann constant\n", "# From the given graph of emissivities\n", "e1 = .1; \t\t\t\t\t\t#between wavelength 0 micro-m- 1.5 micro-m\n", "e2 = .5; \t\t\t\t\t\t#between wavelength 1.5 micro-m- 10 micro-m\n", "e3 = .8; \t\t\t\t\t\t#greater than wavelength 10 micro-m\n", "#calculations\n", "\n", "#From Table 12.1\n", "#For wl1 = 1.5 micro-m and T = 500 K, At wl1*T = 750 micro-m.K\n", "F0wl1 = 0;\n", "#For wl2 = 10 micro-m and T = 500 K, At wl2*T = 5000 micro-m.K\n", "F0wl2 = .634;\n", "#From equation 12.36\n", "e = e1*F0wl1 + e2*F0wl2 + e3*(1-F0wl1-F0wl2);\n", "\n", "#Equation 12.26 and 12.35\n", "E = e*stfncnstt*Ts*Ts*Ts*Ts;\n", "\n", "#From Table 12.1\n", "#For wl1 = 1.5 micro-m and T = 2000 K, At wl1*T = 3000 micro-m.K\n", "F0wl1c = 0.273;\n", "#For wl2 = 10 micro-m and T = 2000 K, At wl2*T = 20000 micro-m.K\n", "F0wl2c = .986;\n", "ac = e1*F0wl1c + e2*(F0wl2c-F0wl1c) + e3*(1-F0wl2c);\n", "#results\n", "\n", "print '%s %.3f' %('\\n Total hemispherical emissivity of fire brick wall =',e)\n", "print '%s %d %s' %('\\n Total emissive power of brick wall =',E,'W/m^2.')\n", "print '%s %.3f' %('\\n Absorptivity of the wall to irradiation from coals =',ac);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " Total hemispherical emissivity of fire brick wall = 0.610\n", "\n", " Total emissive power of brick wall = 2160 W/m^2.\n", "\n", " Absorptivity of the wall to irradiation from coals = 0.395\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.10 Page 768" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "\n", "Ts = 300.;\t\t\t\t\t\t\t#[K] temperature of surface\n", "Tf = 1200; \t\t\t\t#[K] Temperature of Furnace\n", "stfncnstt = 5.67*math.pow(10,-8);\t#[W/m^2.K^4] Stefan-Boltzmann constant\n", "# From the given graph of absorptivities\n", "a1 = .8; \t\t\t\t\t\t#between wavelength 0 micro-m- 5 micro-m\n", "a2 = .1; \t\t\t\t\t\t#greater than wavelength 5 micro-m\n", "#calculations\n", "\n", "#From Table 12.1\n", "#For wl1 = 5 micro-m and T = 1200 K, At wl1*T = 6000 micro-m.K\n", "F0wl1 = 0.738;\n", "#From equation 12.44\n", "a = a1*F0wl1 + a2*(1-F0wl1);\n", "#From Table 12.1\n", "#For wl1 = 5 micro-m and T = 300 K, At wl1*T = 1500 micro-m.K\n", "F0wl1s = 0.014;\n", "#From equation 12.36\n", "e = a1*F0wl1s + a2*(1-F0wl1s);\n", "#results\n", "\n", "print' %s %.2f' %('\\n For Initial Condition \\n Total hemispherical absorptivity = ',a)\n", "print '%s %.2f' %('Emissivity of sphere =',e)\n", "print '%s' %('\\n\\n Beacuase the spectral characteristics of the coating and the furnace temeprature remain fixed, there is no change in the value of absorptivity with increasing time.')\n", "print '%s %d %s %.2f' %('\\n Hence, After a sufficiently long time, Ts = Tf = ',Tf,' K and emissivity equals absorptivity e = a = ',a);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " \n", " For Initial Condition \n", " Total hemispherical absorptivity = 0.62\n", "Emissivity of sphere = 0.11\n", "\n", "\n", " Beacuase the spectral characteristics of the coating and the furnace temeprature remain fixed, there is no change in the value of absorptivity with increasing time.\n", "\n", " Hence, After a sufficiently long time, Ts = Tf = 1200 K and emissivity equals absorptivity e = a = 0.62\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.11 Page 774" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math\n", "\n", "Ts = 120+273.;\t\t\t\t\t\t\t#[K] temperature of surface\n", "Gs = 750; \t\t\t\t#[W/m^2] Solar irradiation\n", "Tsky = -10+273.; \t\t\t\t#[K] Temperature of Sky\n", "Tsurr = 30+273.; \t \t\t\t#[K] Temperature os surrounding Air\n", "e = .1 \t\t \t\t\t;# emissivity \n", "ast = .95 \t\t\t\t;# Absorptivity of Surface\n", "asky = e \t\t\t\t;# Absorptivity of Sky\n", "stfncnstt = 5.67*math.pow(10,-8);\t\t#[W/m^2.K^4] Stefan-Boltzmann constant\n", "#calculations\n", "\n", "h = 0.22*math.pow((Ts - Tsurr),.3334);\t#[W/m^2.K] Convective Heat transfer Coeff\n", "#From equation 12.67\n", "Gsky = stfncnstt*Tsky*Tsky*Tsky*Tsky; \t#[W/m^2] Irradiadtion from sky\n", "qconv = h*(Ts-Tsurr); \t\t\t#[W/m^2] Convective Heat transfer\n", "E = e*stfncnstt*Ts*Ts*Ts*Ts; \t\t#[W/m^2] Irradiadtion from Surface\n", "\n", "#From energy Balance\n", "q = ast*Gs + asky*Gsky - qconv - E;\n", "\n", "#Collector efficiency\n", "eff = q/Gs;\n", "#results\n", "\n", "print '%s %d %s' %('\\n Useful heat removal rate per unit area by Energy Conservation = ',q,'W/m^2')\n", "print '%s %.2f' %('\\n Collector efficiency defined as the fraction of solar irradiation extracted as useful energy is',eff);" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " Useful heat removal rate per unit area by Energy Conservation = 515 W/m^2\n", "\n", " Collector efficiency defined as the fraction of solar irradiation extracted as useful energy is 0.69\n" ] } ], "prompt_number": 11 } ], "metadata": {} } ] }