{ "metadata": { "name": "", "signature": "sha256:00c918c136b4f9ed73225af6aeb1443af9f75c0c5580d833c175de43873af847" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 3 :Elementary fluid dynamics" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.1 Page No.99" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "v1=100 #mi/hr\n", "ht=10000 #ft\n", "#from standard table for static pressure at an altitude\n", "p1=1456 #lb/ft**2(abs)\n", "P1=1456*0.006947 #psi\n", "d=0.001756 #slugs/ft**3\n", "#1 mi/hr = 1.467 ft/s \n", "\n", "#calculation\n", "p2=p1+(d*(v1*1.467)**2/2) #lb/ft**3\n", "#in terms of gage pressure p2g\n", "p2g=p2-p1 #lb/ft**2\n", "#1lb/ft**2 = 0.006947 psi\n", "P2=p2*0.006947 #psi\n", "P2g=p2g*0.006947#psi\n", "#pressure difference indicated by the pitot tube = pdiff\n", "pdiff=P2-P1 #psi\n", "\n", "#Result\n", "print \"Pressure at point 1 =\",round(P1,2),\"psi\"\n", "print \"Pressure at point 2 in terms of gage pressure=\",round(P2g,2),\"psi\"\n", "print \"pressure difference indicated by the pitot static tube=\",round(pdiff,2),\"psi\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Pressure at point 1 = 10.11 psi\n", "Pressure at point 2 in terms of gage pressure= 0.13 psi\n", "pressure difference indicated by the pitot static tube= 0.13 psi\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.7 Page No.115" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%pylab inline" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n", "For more information, type 'help(pylab)'.\n" ] } ], "prompt_number": 3 }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "dia=0.1 #m\n", "dia1=1.0 #m\n", "h=2.0 #m\n", "\n", "#calculation\n", "#bernoulli's equation: p1+(0.5*d*V1**2)+(sw*z1)= p2+(0.5*d*V2**2)+(sw*z2)\n", "#assuming p1=p2=0, and z1=h and z2=0\n", "#(0.5*d*V1**2)+(g*h)= (0.5*d*V2**2)\n", "#assuming steady flow Q1=Q2, Q=A*V. hence, A1*V1=A2*V2\n", "#V1=((dia/dia1)**2)*V2\n", "#hence V2=((2*g*h)/(1-(dia/dia1)**4))**0.5\n", "import math\n", "V2=((2*9.81*h)/(1-(dia/dia1)**4))**0.5\n", "Q=(math.pi/4*(dia)**2)*V2\n", "\n", "#result\n", "print \"The flow rate needed is=\",round(Q,5),\"m**3/s\"\n", "\n", "#Plot\n", "h=[0,0.2,0.4,0.5,0.6,0.62]\n", "D=[1,1.001,1.01,1.03,1.08,1.10]\n", "xlabel(\"d/D \") \n", "ylabel(\"Q/Q0\") \n", "plt.xlim((0,0.8))\n", "plt.ylim((1,1.10))\n", "a=plot(h,D)\n", "show(a)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The flow rate needed is= 0.0492 m**3/s\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAELCAYAAAAoUKpTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH3lJREFUeJzt3XtU1GX+B/A3XvKSZkwQ1i/SQIuLIDcZTUAsLyhL5pHK\nqWQTd5e188vU2N/q5tngbHe1zeisZfs7PzNErSjXK6RtM+CqDJQpIWQhlHYxgY1UREd4fn/MzgjK\nOAPM9zbzfp3DCeY7jp8z6bz9Ps/zeR4fIYQAERHRNfRRugAiIlI/hgURETnFsCAiIqcYFkRE5BTD\ngoiInGJYEBGRU5KERWZmJgICAhAREdHl9ZqaGkyYMAEDBw7E6tWrO10rKSlBaGgoRo8ejby8PCnK\nIyKibvKRos+itLQUQ4YMQUZGBiorK6+6fvr0aXzzzTfYunUrfH198dRTT9mvRUdHY82aNRgxYgSm\nT5+Offv2wc/Pz90lEhFRN0hyZ5GYmAhfX1+H1/39/REXF4f+/ft3ery5uRkAkJSUhBEjRmDatGko\nKyuTokQiIuoGVc1ZlJeXIyQkxP5zWFgYDh48qGBFREQEAP2ULqCnfHx8lC6BiEiTejL7oKo7i3Hj\nxqGmpsb+c1VVFcaPH+/w+UII1X8988wzitfgKXVqoUbWKW+dTzwhsHq18jVq6f3sKUXD4srChw0b\nBsC6Iqq+vh579uyBXq9XojQi0oDPPweiopSuwjtIMgxlMBhgMpnQ0NCAwMBA5ObmwmKxAACysrLw\n448/Yty4cfjll1/Qp08frFmzBkePHsWQIUPw6quvIisrCxaLBYsWLeJKKCLqUns7cPgwMHas0pV4\nB0nCYtOmTde8Pnz4cJw4caLLa5MmTUJ1dbUUZSkiOTlZ6RJcooU6tVAjwDrdzVGd9fXAsGHATTfJ\nWo5DWnk/e0qSPgs5+Pj49Gr8jYi07YMPgPXrgW3blK5EW3r62amqCW4iIldxvkJeDAsi0iSGhbwY\nFkSkSQwLeTEsiEhzGhuB5mZg5EilK/EeDAsi0hzbktk+/ASTDd9qItIcDkHJj2FBRJrDsJAfw4KI\nNIdhIT825RGRprS2Ajod0NQEDByodDXaw6Y8IvIKR48Co0YxKOTGsCAiTeEQlDIYFkSkKQwLZTAs\niEhTGBbK4AQ3EWlGezvg6wscP66ercm1hhPcROTx1HaGhTdhWBCRZnAISjkMCyLSDIaFchgWRKQZ\nDAvlMCyISDMYFsphWBCRJvAMC2UxLIhIE3iGhbL4thORJnAISlkMCyLSBIaFshgWRKQJDAtlcbsP\nIlI9nmHhPtzug4g8Fs+wUB7DgohUj0NQymNYEJHqMSyUx7AgItVjWCiPE9xEpGo8w8K9OMFNRB6J\nZ1ioA8OCiFSNQ1DqwLAgIlVjWKgDw4KIVI1hoQ6ShEVmZiYCAgIQERHh8DnLly9HUFAQYmNjUVNT\nY3/8rbfewt13343Y2FgsXrxYivKISEMYFuogSVjMnz8fRUVFDq+bzWaUlpaioqIC2dnZyM7OBgA0\nNTXh+eefx549e1BeXo5jx46huLhYihKJSAN4hoV6SBIWiYmJ8PX1dXi9rKwM6enp0Ol0MBgMqK6u\nBgAMGjQIQgg0Nzfj/PnzaGlpuebrEJFn4xkW6qHI/wKz2YywsDD7z/7+/qitrcWgQYOwdu1ajBw5\nEsOHD8fEiRMRHx+vRIlEpAIcglKPfkr8pkKIq5pCfHx8cPr0aSxcuBBHjx6Fr68vHnjgAezcuROp\nqaldvk5OTo79++TkZCQnJ0tYNRHJbe9e4NFHla5C24xGI4xGY69fR7IO7vr6eqSlpaGysvKqa3l5\nebh06RKWLFkCAAgODkZtbS127tyJd955B5s3bwYArF27FvX19XjppZeuLpwd3EQe7YcfgLAw4ORJ\n4Prrla7Gc2iqg1uv16OwsBCNjY0oKChAaGgoACAhIQEVFRVoamrChQsXsHv3bkybNk2JEolIYfn5\nwJw5DAq1kGQYymAwwGQyoaGhAYGBgcjNzYXFYgEAZGVlIT4+HgkJCYiLi4NOp0N+fj4AYNiwYVix\nYgVmz56NlpYWpKSkYPLkyVKUSEQqJgSwfj3w5ptKV0I23EiQiFSnvBwwGICvvgJ8fJSuxrNoahiK\niOha1q8HHnuMQaEmvLMgIlVpbQVuuw347DPg9tuVrsbz8M6CiDzC9u3W3goGhbowLIhIVWxDUKQu\nHIYiItVgb4X0OAxFRJrH3gr1YlgQkSrYeis4BKVODAsiUoWKCuDCBWDiRKUroa4wLIhIFdhboW6c\n4CYixbG3Qj6c4CYizWJvhfoxLIhIcZzYVj8OQxGRothbIS8OQxGRJrG3QhsYFkSkGPZWaAfDgogU\nw94K7WBYEJFi2FuhHZzgJiJFsLdCGZzgJiJNYW+FtjAsiEgRnNjWFg5DEZHs2FuhHA5DEZFmsLdC\nexgWRCQr9lZoE8OCiGTF3gptYlgQkazYW6FNnOAmItmwt0J5nOAmItVjb4V2MSyISDac2NYuDkMR\nkSzYW6EOHIYiIlVjb4W2MSyISHLsrdA+hgURSY69FdrHsCAiyf3f/7G3Qus4wU1EkmptBf7rv4BD\nh7hkVg04wU1EqrRtGxAdzaDQOoYFEUmKE9ueQZKwyMzMREBAACIiIhw+Z/ny5QgKCkJsbCxqamrs\nj587dw6//vWvceeddyIsLAwHDx6UokQiksH33wMHDgCzZytdCfWWJGExf/58FBUVObxuNptRWlqK\niooKZGdnIzs7237tmWeewe23344jR47gyJEjCA0NlaJEIpIBeys8h2QT3PX19UhLS0NlZeVV1/Ly\n8tDW1obFixcDAIKDg1FbWwsAiIqKwoEDBzBo0KBrvj4nuInUTQggPBxYtw5ISFC6GrLR1AS32WxG\nWFiY/Wd/f38cP34cJ0+eRGtrKxYuXAi9Xo+XXnoJra2tSpRIRL1UXg5cvMjeCk/RT4nfVAjRZbK1\ntrbi2LFjWLlyJaZMmYKsrCy8++67yMjI6PJ1cnJy7N8nJycjOTlZooqJqLt4boU6GI1GGI3GXr+O\nYsNQly5dwpIlSwB0HoYKDQ1FdXU1AGD37t3YsGEDNm3adHXhHIYiUi32VqiXpoah9Ho9CgsL0djY\niIKCgk6T2KNHj0ZZWRna29uxc+dOTJkyRYkSiagX2FvheSQZhjIYDDCZTGhoaEBgYCByc3NhsVgA\nAFlZWYiPj0dCQgLi4uKg0+mQn59v/7WrVq1CRkYGWltbMWXKFMydO1eKEolIQuyt8Dzc7oOI3Or7\n762roHhuhTppahiKiDwXeys8E8OCiNyG51Z4LoYFEbkNeys8F8OCiNyGvRWeixPcROQW7K3QBk5w\nE5Gi2Fvh2Zz2WVRVVeHgwYPw8fGBXq9HeHi4HHURkcZwYtuzORyGev/997Fs2TKEhYXZN/07evQo\nqqqq8OKLL+KBBx6QtdArcRiKSD3YW6EdPf3sdBgWd911F9577z1ERkZ2evzIkSNIT0/HsWPHelap\nmzAsiNTj5ZeBY8eAv/9d6UrIGUnmLPr0ufqyD5c5EFEH7K3wDg7nLJ599lnMmjULY8aM6TQM9cUX\nX+CFF16QrUAiUjf2VniHay6dbW9vR1VVFcrKygBYd4sNCwtD3759ZSvQEQ5DEanD448Dt94KrFih\ndCXkip5+dl5zNVSfPn0QERGB8+fP4+zZswgODlZFUBCROrS2Alu2WHsryLM5nLM4f/48Fi1ahKCg\nIGRnZyMnJwd+fn7IzMyEEAKlpaVy1klEKsTeCu/h8M5i6dKluHTpEg4fPoyhQ4cCAM6cOYPs7Gzc\nd999qK+v7/IUPCLyHpzY9h4O5yxGjRqFffv2Yfjw4Z0eP3XqFIKCgnDo0CHceeedshTZFc5ZECmL\nvRXaJOvS2VtuuUXRoCAi5fHcCu/iMCymTp2KFStW4Ny5c/bHzp49iz//+c88F5vIy7G3wvs4DIvV\nq1fjuuuuw5gxY5CUlIRJkyYhIiIC/fr1wyuvvCJnjUSkMuyt8D4O5ywsFgv69+8PIQTMZjOEENDr\n9arp4OacBZFy2FuhXW7fGyouLg633XYbUlJSkJKSgpEjR/a2RrdiWBApg+dWaJvbwwIA6urqUFRU\nhOLiYpw8eRIJCQmYOXMmJk2ahAEDBvSq4N5iWBAp4913gXXrgL17la6EekKSsLA5deoUmpubcfLk\nSRQVFcFoNMLf3x87d+7sUbHuwLAgUsbMmcDDDwOPPqp0JdQTbt/uo62tDWvWrMEHH3yAkydPQgiB\nCxcu4PHHH4fZbEZJSUmvCiYi7fn+e+DAAeC995SuhOTm8M5ixYoV9h1mQ0NDAQDV1dV4+umnccst\nt6CkpETRDm7eWRDJj+dWaJ/bh6FGjx6N4uJiBAUFdXr8+PHjCAkJgclkwoQJE3pWrRswLIjkJYS1\nY3vdOiAhQelqqKfc3sEthIC/v/9Vj/v7+yMwMFDRoCAi+bG3wrs5DIu4uDi8/PLLVz2+evVqjBs3\nTtKiiEh9bB3bKmm1Ipk5HIZqaGjAY489hqqqKiQmJsLHxwclJSUIDw/H+vXr4efnJ3etnXAYikg+\n7K3wHJItnT1z5gx27doFAJg5c6Z9u3KlMSyI5MPeCs8haZ+FGjEsiOTD3grPwbAgIknw3ArPIsl5\nFkREPLeCAIYFEV0Dz60gG4YFETnE3gqyYVgQkUPsrSAbScIiMzMTAQEBiIiIcPic5cuXIygoCLGx\nsaipqel0ra2tDdHR0UhLS5OiPCJyQWsrsGULkJGhdCWkBpKExfz581FUVOTwutlsRmlpKSoqKpCd\nnY3s7OxO19esWYOwsDDVnMpH5I22bQOio9mER1aShEViYiJ8fX0dXi8rK0N6ejp0Oh0MBgOqq6vt\n106ePIldu3bhN7/5DZfGEimIE9vUkSJzFmazGWFhYfaf/f39cfz4cQDAkiVLsHLlSvTpw+kUIqXY\nzq2YPVvpSkgtHB5+JCUhRJd3DTt27MDNN9+M6OhoGI1Gp6+Tk5Nj/z45ORnJycnuK5LIi7G3wnMY\njUaXPk+dkayDu76+HmlpaV0ekJSXl4dLly5hyZIlAIDg4GDU1tbiT3/6E9555x3069cPra2t+OWX\nXzBnzhxs2LDh6sLZwU0kCZ5b4dk01cGt1+tRWFiIxsZGFBQU2E/ie/7553HixAnU1dVh8+bNuOee\ne7oMCiKSDnsrqCuSDEMZDAaYTCY0NDQgMDAQubm5sFgsAICsrCzEx8cjISEBcXFx0Ol0yM/P7/J1\nuBqKSH7sraCucCNBIrLjuRWeT1PDUESkTuytIEcYFkRkx94KcoTDUEQEgOdWeAsOQxFRr7C3gq6F\nYUFEPLeCnGJYEBF7K8gphgURsbeCnOIEN5GXY2+Fd+EENxH1CHsryBUMCyIvx4ltcgWHoYi8GHsr\nvA+HoYio29hbQa5iWBB5KfZWUHcwLIi8FHsrqDsYFkReir0V1B2c4CbyQuyt8F6c4CYil23cyN4K\n6h5JjlUlIvXauxdYtgwoLla6EtIS3lkQeZEDBwCDAXj/fSAmRulqSEsYFkRe4sgR4P77gbffBiZN\nUroa0hqGBZEX+OorYMYM4LXXgJkzla6GtIhhQeThTpwApk4FcnKAhx5SuhrSKoYFkQc7fdoaFP/9\n38Bvf6t0NaRl7LMg8lDNzcDkydZhp2efVboaUouefnYyLIg8UEsLMH06MHYskJfHLm26jGFBRACs\n+z3NmgX4+VlXPvXhYDN1wLAgIrS1WfsoLl609lL0Y9stXaGnn538o0TkIYQAsrKAxkZg504GBbkX\n/zgReQAhgOxs4IsvgD17gIEDla6IPA3DgsgDPPcc8NFHgMkEDB2qdDXkiRgWRBqXl2c9m6K0FNDp\nlK6GPBXDgkjDNmwAXn7ZGhS33KJ0NeTJGBZEGvXhh8D//A/wySfAyJFKV0OejmFBpEF791pXPu3e\nDYSGKl0NeQOGBZHG2M6kKCwEYmOVroa8hSS9nZmZmQgICEBERITD5yxfvhxBQUGIjY1FTU0NAODE\niROYPHkywsPDkZycjIKCAinKI9KsjmdSJCUpXQ15E0k6uEtLSzFkyBBkZGSgsrLyqutmsxlLly7F\ntm3bUFxcjI0bN2LHjh348ccf8eOPPyIqKgoNDQ2Ij4/H4cOHMbSLtYDs4CZv89VXQHIy8Mor3Gqc\neq6nn52S3FkkJibC19fX4fWysjKkp6dDp9PBYDCguroaADB8+HBERUUBAPz8/BAeHo6KigopSiTS\nFJ5JQUpTZIsxs9mMsLAw+8/+/v6ora3t9Jyvv/4aVVVViI+Pl7s8IlXhmRSkBopMcAshrroN8umw\nh/KZM2fw0EMP4a9//Suuv/56h6+Tk5Nj/z45ORnJycnuLpVIUc3N1q3G09Ot23kQdZfRaITRaOz1\n60i262x9fT3S0tK6nLPIy8vDpUuXsGTJEgBAcHCw/c7CYrEgNTUVM2fOxOLFix0XzjkL8nA8k4Kk\noKo5C2f0ej0KCwvR2NiIgoIChP5nobgQAgsWLMCYMWOuGRREnu7iRWDOHGuz3WuvMShIeZLcWRgM\nBphMJjQ0NCAgIAC5ubmwWCwAgKysLADAsmXLsGXLFuh0OuTn5yM0NBT79u1DUlISIiMj7cNSL7zw\nAlJSUq4unHcW5KF4JgVJiYcfEXkAIayT2HV11jMpuNU4uRsPPyLSOJ5JQWrGsCBSCZ5JQWrGsCBS\nAZ5JQWrHsCBSGM+kIC1gWBApiGdSkFYwLIgUwjMpSEsYFkQK4JkUpDWKdHATeTOeSUFaxLAgktFX\nXwEzZli38Jg5U+lqiFzHsCCSCc+kIC1jWBDJgGdSkNZxbygiiTU3A5MnW4ednn1W6WrI23EjQSIV\n4pkUpDYMCyKVuXgRmDUL8Pe3buXRh4O+pAIMCyIVsZ1JYbEA773HMylIPbhFOZFKCGHtzG5qAnbs\nYFCQZ+AfYyI36ngmxd69PJOCPAfDgqgXhAC+/hooKbHuGltaCtxwA/Dxx8CQIUpXR+Q+nLMg6oa2\nNutdgy0cSkqA/v2t23YkJlr/GxLCyWxSL05wE0ng4kWgouLyXcO//gUEBFwOhsREYMQILokl7WBY\nELnBuXPWHWFtdw3l5cCdd14Oh4QEa1gQaRXDgqgHmpqAffsuh0NVFRAVdfmu4e67gWHDlK6SyH0Y\nFkQu+O67y8FQWgp88w0wfvzlcIiPBwYNUrpKIukwLIiuYFup1DEcmputQ0m2cIiOZh8EeReGBXm9\nK1cqlZZag4ArlYguY1iQ17l4Efj008vh8K9/ATff3DkcuFKJqDOGBXm8jiuVSkutK5VGj7YGg+2L\nK5WIro1hQR7H0Uol210DVyoRdR/DgjTPtlLJFg5cqUTkfgwL0hSuVCJSBsOCVK29Hais7BwOHVcq\nJSYCoaFcqUQkNYYFqQpXKhGpE8OCFHXuHHDw4OVwKC8HRo3qfOfAlUpEymNYkKw6rlQqLbU2w3Gl\nEpH6MSxIUo5WKtnCgSuViLSBYUFu03Glki0crlypFBVlPfSHiLSlp5+dkqw9yczMREBAACIiIhw+\nZ/ny5QgKCkJsbCxqamrsj5eUlCA0NBSjR49GXl6eFOXJymg0Kl2CU+3twP/+rxGvvw48+CBw663A\nPfdYz5DW64Ft24CffgK2bgWWLgXGjVMmKLTwXgKs091YpzpIsop9/vz5eOKJJ5CRkdHldbPZjNLS\nUlRUVKC4uBjZ2dnYsWMHAODJJ5/Em2++iREjRmD69OkwGAzw8/OTokxZGI1GJCcnX/W4ENYVQxcu\nWL86ft/xS47Hz54FBg40YvbsZPzqV8DLL6tzpZKj91JtWKd7sU51kCQsEhMTUV9f7/B6WVkZ0tPT\nodPpYDAYsGLFCgBAc3MzACApKQkAMG3aNJSVlSE1NbVX9bS1KfdB/N13wIYNVz9usVj/dX7ddcCA\nAVd/dffxwYNdf/6Vjw0eDLzyCpCT06u3mYg8mCL9sWazGfPmzbP/7O/vj9raWtTV1SEkJMT+eFhY\nGA4ePOgwLCZPdu1DG+j5h3BXH6y+vq4//+9/tw7dXPn4ddep71/uREQOCYnU1dWJMWPGdHntkUce\nEUVFRfaf9Xq9qK2tFXv27BFz5861P7527VqxYsWKLl8DAL/4xS9+8asHXz2hyJ2FXq/H0aNHMX36\ndADA6dOnERQUBJ1Ohz/84Q/251VVVSElJaXL1xBcCUVEJBtFduLR6/UoLCxEY2MjCgoKEBoaCgC4\n8cYbAVhXRNXX12PPnj3Q6/VKlEhERB1IcmdhMBhgMpnQ0NCAwMBA5ObmwmKxAACysrIQHx+PhIQE\nxMXFQafTIT8/3/5rX331VWRlZcFisWDRokWaXglFROQxejR4JROTySRCQkLEqFGjxGuvvdblc5Yt\nWybuuOMOERMTI6qrq2Wu0MpZndXV1WL8+PFiwIABYtWqVQpUaOWszvz8fBEZGSkiIyOFwWAQX375\npQJVOq9z69atIjIyUowdO1bMnDlTmM1m1dVoYzabRd++fUVhYaGM1V3mrM5PPvlE3HDDDSIqKkpE\nRUWJv/zlLwpU6dr7aTabRVxcnAgJCRGTJk2St8D/cFbnypUr7e/lmDFjRN++fcW///1v1dXZ0tIi\nMjIyRFRUlEhKShJbt251+pqqDouoqChhMplEfX29uOuuu8Tp06c7XS8rKxMTJ04UjY2NoqCgQKSm\npqqyzp9++kmUl5eLp59+WtGwcFbn/v37xc8//yyEEGL9+vXi0UcfVaJMp3WePXvW/r3RaBSJiYly\nl+i0RiGEuHTpkpg8ebJITU0V77//vuw1CuG8zk8++USkpaUpUltHzupsb28XY8aMEXv27BFCiC7f\nbzm48v/dZvv27eLee++VsbrLnNW5du1asXDhQiGEEPX19SIoKEi0t7df8zVVe3pAx56LESNG2Hsu\nOrqyX6O6ulqVdfr7+yMuLg79Fdwfw5U6J0yYgGH/2f0vNTUVJpNJlXVef/31nZ4/cOBA1dUIAHl5\neUhPT4e/v7+s9dm4WqdQeLGIK3VWVFQgMjISU6ZMAQBFhqddfT9tCgoKYDAY5CrPzpU6hw0bhjNn\nzsBisaCpqQmDBw+Gj5O1/KoNi/Ly8i57Ljoym80ICwuz/2zr15CTK3WqQXfrXLduHdLS0uQorRNX\n6/zwww8xcuRIZGZm4q233pKzRJdq/O677/CPf/wDCxcuBACnfxGl4EqdPj4+2L9/P6KiorB06VLZ\n//4ArtVZXFwMHx8fJCYmIi0tDcXFxXKX2a2/Qy0tLSguLsacOXPkKs/OlToNBgPa2trg5+eHhIQE\nbNy40enravrQSmEdRuv0mBJ/KT3N3r17kZ+fj/379ytdikOzZ8/G7NmzsWXLFtx///04dOiQ0iV1\nsnjxYrz44ov2TduU/te7IzExMThx4gT69++Pt99+G08++aR96x01aW1txeeff469e/eipaUFU6dO\nxRdffIFBKt3qePv27UhISLCv8FSb119/Hf369cMPP/yAyspKpKam4ptvvkGfaxxVqdo7i3HjxnXa\nYLCqqgrjx4/v9Bxbv4aNrV9DTq7UqQau1nnkyBH8/ve/x7Zt2xT5g97d9/Ohhx7C999/j/Pnz8tR\nHgDXavz0008xd+5c3HHHHSgsLMTjjz+Obdu2yVajq3UOHToUgwcPRv/+/bFgwQKUl5fjgm3bAxXV\nOWHCBMyYMQPDhw9HUFAQ4uLiUFJSoro6bTZv3qzIEBTgWp0lJSV45JFHMHjwYOj1etx66604duzY\nNV9XtWFhGzu/Vs+Fo34NtdVpo+S/Ll2p89tvv8WcOXOwceNGjBo1SokyXaqztrbW/l7u2rULsbGx\nsv4L05Uajx8/jrq6OtTV1SE9PR1r167FfffdJ1uNrtZ56tQp+3u5fft2REZGYsCAAaqrc/z48TCZ\nTGhpaUFTUxMOHTqEiRMnqq5OwDpnUFJSglmzZslan40rdd57773Yvn072tvbcfz4cTQ1NXUauuqS\n26fh3choNIqQkBARHBws1qxZI4QQ4o033hBvvPGG/Tl//OMfxciRI0VMTIw4evSoKuv84YcfxG23\n3SZuuOEGceONN4rAwEBx5swZ1dW5YMECodPp7Ev/xo0bJ3uNrtT50ksvifDwcBEVFSXmz58vKisr\nVVdjR4899phiS2ed1fn666+L8PBwMXbsWDFv3jxx+PBhVdYphBB/+9vfRGhoqEhKShKbNm1SbZ3r\n168XBoNBkfpsnNX5888/i0WLFono6Ggxbdo0sXPnTqevqdnDj4iISD6qHYYiIiL1YFgQEZFTDAsi\nInKKYUFERE4xLIh6IScnB6tXr7b/fPDgQfzud7+DyWTCsGHDEBMTg+DgYEydOlX2vgAid2JYEPXC\nlTsG7N69GzNmzABg3Zvns88+w+HDh5GRkYGHH34Yn332mRJlEvUaw4KomzZt2oSYmBgkJCTg22+/\n7XTtn//8J6ZMmdKpAXPIkCGYN28e5syZg1WrVsldLpFbMCyIuqGhoQHPPPMMdu3ahYKCAvsGd7Zr\n/fv3x9ChQ7v8tWlpafjyyy/lLJfIbTS9kSCR3IqLi5GSkoLhw4cDgH3LbAD46KOP7OfKd6WtrY0b\nXZJm8c6CqBtsu8h2paioCCkpKQ5/7Y4dO5zvv0OkUgwLom6YPn06PvroI5w6dQonTpzAxx9/DMC6\nSeSRI0cwduzYq37N2bNnUVBQgK1bt+Kpp56Su2Qit+AwFFE33HTTTcjNzcWMGTMwePBg+7DTp59+\niujoaPvzfHx8UFpaipiYGDQ3NyMoKAgFBQWdnkOkJdxIkMgNnnvuOYwePRoPPvig0qUQSYJhQURE\nTnHOgoiInGJYEBGRUwwLIiJyimFBREROMSyIiMgphgURETn1//Mag5geBe7+AAAAAElFTkSuQmCC\n" } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.8 Page No.116" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "dia=0.03 #m\n", "dia1=0.01 #m\n", "p=3 #kPa(gage)\n", "\n", "#calculation\n", "#density of air d is found using standard temp and pressure conditions\n", "d=(p+101)*1000/((286.9)*(15+273))\n", "#applying Bernoulli's equation at points 1,2 and 3 p=p1\n", "import math\n", "v3=((2*p*1000)/d)**0.5\n", "Q=(math.pi)/4*(dia1**2)*v3\n", "#by continuity equation, A2*v2=A3*v3\n", "v2=((dia1/dia)**2)*v3\n", "p2=(p*1000)-(0.5*d*(v2**2))\n", "\n", "#Result\n", "print \"Flowrate =\",round(Q,5),\"m**3/s\"\n", "print \"Pressure in the hose=\",round(p2,1),\"N/m**2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Flowrate = 0.00542 m**3/s\n", "Pressure in the hose= 2963.0 N/m**2\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.10 Page No. 120" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "T=60 #degree farenheit\n", "z1=5 #ft\n", "atmp=14.7 #psia\n", "#applying bernoulli equation at points 1,2 and 3\n", "z3=-5 #ft\n", "v1=0 #large tank\n", "p1=0 #open tank\n", "p3=0 #open jet\n", "#applying continuity equation A2*v2=A3*v3 A2=A3 so v2=v3\n", "\n", "#calculation\n", "v3=(2*32.2*(z1-z3))**0.5\n", "#vapor pressure of water at 60 degree farenheit = p2=0.256 psia\n", "p2=0.256\n", "z2=z1-((((p2-atmp)*144)+(0.5*1.94*v3**2))/62.4)\n", "\n", "#result\n", "print \"The maximum height over which \\n the water can be siphoned without cavitation occuring=\",round(z2,3),\"ft\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum height over which \n", " the water can be siphoned without cavitation occuring= 28.321 ft\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.11 Page No.122" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "sg=0.85\n", "Q1=0.005 #m**3/s\n", "Q2=0.05 #m**3/s\n", "dia1=0.1 #m\n", "dia2=0.06 #m\n", "\n", "#calculation\n", "#A2/A1=dia2/dia1\n", "import math\n", "d=sg*1000\n", "Arat=(dia2/dia1)**2\n", "A2=math.pi/4*(dia2**2)\n", "pdiffs=(Q1**2)*d*(1-(Arat**2))/(2*1000*(A2**2))\n", "pdiffl=(Q2**2)*d*(1-(Arat**2))/(2*1000*(A2**2))\n", "print \"The pressure difference ranges from =\",round(pdiffs,3),\"kpa\" \"to\" ,round(pdiffl,0),\"kpa\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The pressure difference ranges from = 1.157 kpato 116.0 kpa\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.12 Page No.124" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "z1=5 #m\n", "a=0.8 #m\n", "b=6 #m\n", "Cc=0.61 #since a/z1=ratio=0.16<0.2 Cc= contracction coefficient\n", "z2=Cc*a\n", "\n", "#calculation\n", "#Q/b=flowrate\n", "flowrate=z2*((2*9.81*(z1-z2))/(1-((z2/z1)**2)))**0.5\n", "#considering z1>>z2 and neglecting kinetic energy of the upstream fluid\n", "flowrate1=z2*(2*9.81*z1)**0.5\n", "#result\n", "print \"The flowrate per unit width=\",round(flowrate,2),\"m**2/s\"\n", "print \"The flowrate per unit width when we consider z1>>z2=\",round(flowrate1,1),\"m**2/s\"\n", "\n", "#Plot\n", "import matplotlib.pyplot as plt\n", "fig = plt.figure()\n", "ax = fig.add_subplot(111)\n", "\n", "h=[5,10,15]\n", "D=[4.61,6.5,8]\n", "xlabel(\"z1 (m)\") \n", "ylabel(\"Q/b (m**2/s)\") \n", "plt.xlim((0,15))\n", "plt.ylim((0,9))\n", "\n", "ax.plot([5], [4.61], 'o')\n", "ax.annotate('(5 m,4.61 m**2/s)', xy=(5,4.5))\n", "a=plot(h,D)\n", "show(a)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The flowrate per unit width= 4.61 m**2/s\n", "The flowrate per unit width when we consider z1>>z2= 4.8 m**2/s\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAEMCAYAAAA70CbBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X1czvf+B/DXlZIQp7OQKYpqEuuGyl1cbheW+LVmmbmd\nYTmYsd/j0I5s53Dc2yFl5maGxvY7Z2xRq3EJk0ohiYoyWVhyk27R5/fH5lKnq0t3366ub6/n4+Hx\nuK5v3+v7frfx6vP4fD99PwohhAAREcmCga4bICKi+sNQJyKSEYY6EZGMMNSJiGSEoU5EJCMMdSIi\nGZE01Pft24fBgwfD0dERX3zxhZSliIgIgEKqdeoPHjyAu7s7YmNjYWRkhKFDhyIqKgpt27aVohwR\nEUHCkfrPP/8MV1dXmJmZoXXr1hgyZAhOnz4tVTkiIoKEoT5o0CDExcUhMzMTOTk5OHz4MH7++Wep\nyhEREQBDqS7cqlUrbNy4EQEBAXjw4AF69eqFFi1aVDhHoVBIVZ6ISNaqmjmX9Eapt7c3Dh8+jFOn\nTqGsrAxeXl4aG9OnP8uWLdN5D3LvWd/6Zc/st6F71kbSUL9z5w4AIDo6GsnJyXB1dZWyHBFRkyfZ\n9AsAvPHGG7hz5w5MTU2xc+dOKUsREREkDvWYmBgpL68TSqVS1y3UmL71rG/9Auy5Iehbv4BuepZs\nnXq1iisUL5wfIiKiirRlJx8TQEQkIwx1IiIZYagTEckIQ52ISEYY6kREMsJQJyKSEYY6EZGMMNSJ\niGSEoU5EJCMMdSIiGWGoExHJCEOdiEhGGOpERDLCUCcikhGGOhGRjEga6tu2bUP//v3Ru3dvLFiw\nQMpSREQECUM9Ly8PK1asQFRUFOLj45GWlobIyEipyhERESTczs7ExARCCDx48AAAUFhYCDMzM6nK\nERE1CS/aLU7SUA8JCYG1tTWMjY0xb948uLu7VzovKChI/VqpVOrlPoRERFI6duwYvg7/Gil3UnDp\nt0taz5Vsj9LffvsNbm5uiI6OhpmZGfz8/PDhhx9izJgxz4tzj1IiIo2EEEi6lYQDKQfwzaVvoIAC\nfo5+8Ovhh94v964yOyUbqcfFxaFv376wtbUFAPj5+SEmJqZCqBMR0XNVBfm3ft/C2cIZCoXihdeQ\nbKT+8OFDuLq6Ii4uDq1atYKfnx/mz5+PYcOGPS/OkToRNXFVBfmbPd6sMsi1ZadkI/U2bdogMDAQ\n48ePR2FhIby8vDBkyBCpyhER6Y36GJFXRbKRerWKc6RORE1EbUbkVdGWnQx1IiKJ1GeQl8dQJyJq\nIFIFeXkMdSIiCTVEkJfHUCciqmcNHeTlMdSJiOqBLoO8PIY6EVEtNZYgL4+hTkRUA40xyMtjqBMR\nvYCmIH/T8U349fBrFEFeHkOdiEgDfQry8hjqRER/0NcgL4+hTkRNmhyCvDyGOhE1OXIL8vIY6kTU\nJMg5yMtjqBORbDWVIC+PoU5EstIUg7w8nYT6lStX8NZbb6nfX7t2DZ9++inmzZtXrcaIiMpr6kFe\nns5H6mVlZejUqRPi4uJgZWVVrcaIiBjkmulkO7vyoqOj0a1btwqBTkSkSVVBXh9bvTUFDRLqX3/9\nNSZOnNgQpYhIDzHI64/koV5aWorvv/8eq1at0vj1oKAg9WulUgmlUil1S0TUCPx3kBsoDODXo342\nX5YblUoFlUpVrXMln1M/ePAgQkJCEBERUbk459SJmpSqgrypz5HXlE7n1MPCwuDv7y91GSJqpDgi\nb1iSjtQLCgrQpUsXZGZmwtTUtHJxjtSJZIkjcmnpfEljVRjqRPLBIG84DHUikgSDXDcY6kRUbxjk\nusdQJ6I6YZA3Lgx1IqoxBnnjxVAnomphkOsHhjoRVYlBrn8Y6kRUAYNcvzHUiQgAcK/oHnad24WQ\nhBAICAa5ntL5o3eJSLfO3zqP4PhgfHPpG4yxG4Mvx32JvpZ9GeQyxFAnkqnSp6X4d+q/ERwfjKz7\nWZjdezYuB1xGh9YddN0aSYihTiQzv+b/iq1nt2Lb2W1waOeAD/p+gLGvjIWhAf+5NwX8v0wkA0II\nnPjlBDbHbUb0tWj49/JH9ORo9GjXQ9etUQPjjVIiPfao9BH2XtiL4PhgPC57jAC3AEx2mow2xm10\n3RpJiKtfiGQm7W4atsRvwVcXvsLgLoMR4BaAoTZDeeOzieDqFyIZeFr2FOHp4QiOD8a5W+fwruu7\nSJqVhM5tO+u6NWpEOFInauRyC3OxPXE7Qs+GokOrDpjrPhd+PfxgbGis69ZIR7Rlp4GUhQsKCjBl\nyhTY29ujR48eiI2NlbIckawk/JqAqd9Nhd0mO1y+exnf+H2D2HdjMenVSQx0qpKkI/VFixbBxMQE\nS5cuhaGhIQoKCtC2bdvnxTlSJ6qg+Ekxvkn5BpvjN+NOwR3M6TMH012mw7ylua5bo0ZEZzdKnZ2d\ncfr0aZiYmNS4MaKm5JcHvyA0IRTbk7bDxcIFAW4BGG03Gs0Mmum6NWqEdDL9kp2djeLiYsyZMwce\nHh5YtWoViouLpSpHpHeEEIi+Fo3x+8fDZasLip4U4cS0E4iYFAHvV7wZ6FQrkq1+KS4uRlpaGtas\nWYPhw4dj1qxZOHDgACZPnlzhvKCgIPVrpVIJpVIpVUtEjcLDkofYfX43guODYWRghAC3AHw1/iu0\nbt5a161RI6VSqaBSqap1rqTTLw4ODkhNTQUAHDlyBLt370ZYWNjz4px+oSbk0m+XEBwfjLDkMIzo\nNgJz3eZiYOeBXFtONaazdep2dnY4c+YM3NzcEB4ejuHDh0tZjqjReVL2BAcvH0RwfDAu517Ge73f\nw8X3L+Jl05d13RrJlKQj9bS0NEyePBnFxcUYPnw4li9fjlatWj0vzpE6ydTtR7exLXEbtp7dCus/\nWWOu21yMdxiP5s2a67o1kgE+JoCoAQghEJsdi83xm3E4/TD8evghwC0AThZOum6NZIahTiShosdF\nCLsYhs1xm5Ffmo/3+7yPqc5TYWZipuvWSKbqJdSfPn0KhUIBA4P6WwXJUCd9du3eNYQkhGDXuV3o\na9kXAW4BGNltJAwUkv6iNlHtb5QeO3YM27ZtQ2JiIu7evQsAeOmll+Dq6oqZM2diyJAh9d8tUSNW\nJsoQmRGJ4PhgnLl5BtOcp+HMu2fQ1ayrrlsjAqBlpO7p6YlXX30VEydORPfu3fHSSy8BAO7evYvU\n1FTs27cPFy5cwMmTJ2tfnCN10hP3iu5h57mdCEkIQRvjNghwC8BbPd9CS6OWum6NmqBaTb8UFxej\nRYsWWi9cnXNq2xhRY3D+1nlsjt+Mby99izF2YzDXfS48OnlwbTnpVK2mX56F9dWrV9GpUye0aNEC\n586dw6VLl/Dmm2/C0NCwToFO1Fg927B5c9xmXH9wnRs2k1554Y1SJycnnD17Fnl5eRgwYACGDRuG\nwsJC7N69u+7FOVKnRuTZhs2fn/0cDuYOmOs+lxs2U6NUp98oVSgUMDQ0xM6dOzFr1iwsWrQIbm5u\n9d4kkS5o3LD5nWg4tnfUdWtEtfLCUO/YsSO2b9+OPXv2ICoqCgBQVFQkeWNEUnpU+gh7LuxBcHww\nnpQ9QYBbAL4Y+wU3bCa998JQ//zzz/HFF1/gn//8JywsLJCZmYl33nmnIXojqnf/vWHzxtc2csNm\nkpUq59Tfe+89jBo1CsOHD4epqak0xTmnTg1A04bNs3rP4obNpLdqtaQxNjYWR44cwdGjR2FkZITX\nXnsNXl5ecHKqv+dYMNRJSs82bA5JCIFFawsEuAXAz9EPLQy5aov0W50fE5Cbm4sff/wRERERuHDh\nAlxcXDBq1Ci8+eabkjVGVFsJvyZgc9xmHLxyEOO6j0OAWwD6vNxH120R1Zt6faCXEAJnz55FZGQk\nli5dKlljRDXBDZupKal1qOfn5yMhIQHu7u4VnoN+5MgRjBo1StLGiKqDGzZTU1Srjaf37dsHJycn\nrF+/Hr169cLBgwfVX1uyZEn9d0lUTdywmahqVS5p/PzzzxEXFwdzc3NkZGRgwoQJyMzMxIIFC6p9\ncWtra7Rp0wbNmjWDkZER4uLi6qVpapoeljzEl+e+xJaELdywmagKVYb6b7/9BnPz3+cjbW1toVKp\n4Ovri19++aXaUyYKhQIqlQp//vOf66dbapJS7qQgOD4YX1/8GiO6jcDnr3/ODZuJqlDl9Ev79u1x\n7tw59XtTU1OEh4cjNzcXFy5cqHYBzplTbTwpe4L/u/R/GPLlEIz4agTat2qPi+9fxP439sOziycD\nnagKVd4ovXHjBoyMjGBhYVHhuBACp06dwsCBA1948a5du8LU1BQ2NjaYPn06xo4dW7E4b5TSf3m2\nYXNoQihszGy4YTORBrV6oJeVlRX27t2Lt99+G2FhYfD391dfrDqBDgCnTp1Cx44dkZqaCm9vb7i7\nu1f6IREUFKR+rVQqoVQqq3Vtkg9NGzaHTwznhs1Ef1CpVFCpVNU6V+uSxjVr1qBLly64fv06Fi9e\nXKemFi5cCAcHB8ycOfN5cY7Um7TCx4UISw5DcHwwN2wmqoFaLWlcvnw58vLyMHHiROTl5WH58uU1\nKlpYWIj8/HwAv990jYyMhJeXV42uQfJ07d41LI5ajC4bu+C7K99hxbAVuDL3Cj7o9wEDnaiOtI7U\n165di06dOuHmzZtYtGhRjS6cmZmJ8ePHA/h9s+q3334b06dPr1icI/UmQ9OGzbP7zOaGzUS1oDU7\nhRZ79uwRQgixb98+bafV2gvKkx548uSJGDBggCgrKxNCCGFgYCCcnZ2Fs7Oz8PHxEXmFeWLdz+tE\nt8+6CdetrmJ74nZRUFpQ63re3t6iZ8+eVX49PT1dKJVKYW9vL3r16iVKSkqEEEIsWbJEWFlZidat\nW9e6dnlBQUFCCKH+vssfe2bixInilVdeEW5ubiIwMLDC10pLS4Wrq2uV1x87dqz49ddf66VXkh9t\n2Vnl9AtRdRw6dAhKpVK9xLBly5ZISkrCziM70W5GO3T9V1ck5iRiz//sQcLMBEx3mY6WRi1rVevf\n//43TE1NtS5nnDp1KgICAnDlyhUcP34choa/rwXw8fGpl19+O3fuHObPn4+8vDwcPHgQgYGBlY49\neybSpEmTcPnyZZw8eRIJCQn46aef1Nc5efKk1gUHkyZNQmhoaJ37pSZI20+D1atXi/3794vVq1fX\n+08aIThS11c//HBcjBy5VAwevEyYm3cTW7Z8KYQQouRJiWjRsoUYsH2AsFxvKf5+/O/iVv6tSp8f\nPHiwWLp0qXBychLOzs4iPT1d+Pr6CkdHRxESEqKxZn5+vhg4cKC4dOlSlSP127dvi4EDB2rtXdtI\nfdmyZeK9994Tnp6eomvXriIyMlIEBgYKR0dHMXv2bPWoPDU1VZiZmYn3339f/VlNx8pbu3at+Pjj\nj9XvP/roI3HkyBEhhBBTp04VLi4uomfPnmL//v1CCCGKi4uFra2t1u+Fmi5t2SnZjVKSp/DwGMyf\nH4kff/w7jh8PQm5uMf4ZHIeJn09Fl41dUFJSgl/X/ArPeE94whMdWneodA2FQoHbt28jMTER48aN\ng7u7O1atWoXY2FisWLFC41zhxx9/jEWLFqFly6pH+T/++CPMzMwwYsQIDB8+HGFhYTX+/s6cOYPw\n8HDs2LEDvr6+sLW1RXJyMtLT05GYmIjz588jNDQU77zzDkaOHImPP/5Y47HySkpKsHv3brz++uvq\nYyqVCkqlEseOHcOTJ0+QmJiI5ORk9WICY2NjmJiY4NatWzX+HqiJ0/bTYM2aNWLfvn1izZo19f2D\nRgjBkbo+GjlyqQCEAMoErMIFWrYU+F8zYTW7t7h4+6J6HjguLk507txZPaddnlKpFD/99JMQQojI\nyMgKo+v+/fuL5OTkCucnJSWJsWPHCiGEyMzMrHKkvm3bNtGuXTtx9epVkZOTI3r16iWysrIqnKNt\npB4UFKQeTZeUlAgjIyNRXFwshPh9Tn7Tpk0VztX0eU2mTZsmFi5cqH6fnZ0tvLy8hBBC5OTkCHt7\ne7Fw4UJx4cKFCp8bN26cUKlUVfZLTZe27NQ6p96xY0f4+/ujU6dODfMThhq9kpI/fl/NeRfgtQB4\nYgxszELX1Nfh2N4RHTt2BAC4ubmhd+/eiImJ0XidP/3pTwCA5s2bq18/e19aWlrh3NjYWCQkJMDG\nxgaenp5IS0vD0KFDK12zX79+GDx4MLp27QoLCwuMGjUKERERNfr+2rZtq+7D2NgYxsbG6vclJSXq\n85YtW1bps5qOLV++HA8ePMC6devUxyIiItQjcgsLC5w/fx5OTk6YOXMmtmzZoj5PCAEDA972oprR\n+jfm7bffBgBMmDABFy9eRGJiovoPNU3Gxk9+f3FhErDtClBqApS0RIsWT3H//n118F2/fh1JSUkY\nMGBArWsNGzYMOTk5mD17Nm7evInMzEycPHkS9vb2OHr0aKXzHRwccOnSJdy7dw8FBQU4duwYhg0b\nVuv6dfXFF18gKioKe/furXA8MjJSvR9BTk4OAGDy5MmYP38+kpKS1Oddu3YN9vb2DdcwyUKVjwl4\nJjQ0FCtWrICVlRWaN3/+/I1jx45J2hg1TvPmjcTVq0tx9eo//jjyKqys5uAvf3kHqampmDVrFgwM\nDNCpUyds2LABJiYmWq+nUCg0rmYpKyvD1atXKz3hUwhR4fzvv/8eCQkJWL58OQwMDPCPf/wDAwcO\nRJs2bTB58mTY2toCAD766COEhYWhqKgIVlZWmDlzJv72t79p7EfTa03vX2TOnDmwtrZGv379AAC+\nvr7461//ioyMDHVYJycnY/HixWjWrBlefvllbNy4EQBQWlqKwsJCdOhQ+Z4EkTYv3M6uZ8+eiI2N\nRevW9f/Mav7ykX4KD4/Bpk1RKC5uhgcPUmBv3wL7939VrzVSUlKwc+dOrF27tl6vq2unTp3C3r17\nK0yzaHLgwAGkpKRwgQJpVKc9St944w2sWrUK3bp1a9DGSD+UlZXB09MTJ0+e5ONw65GPjw9CQ0PV\n9yiIyqtTqGdkZMDd3R2Ojo7qG1oKhQKHDh2StDEiItKsVo/efcbPzw/z589Hv3791HPqHJERETVO\nLxypOzs7IzExUZKlVRypExHVXJ2mXwIDA3H79m34+/tXWE/s6uoqaWNERKRZnUK9/MOayquPJY0M\ndSKimqtTqEuJoU5EVHO12vkoJCREvXORJg8fPkRISEjduyMionpT5eqX5s2b47XXXkOnTp3g4OAA\na2trCCGQlZWFy5cvIzs7u8J+o1V5+vQp+vTpA0tLS3z//ff12jwREVX0wumXM2fOICkpCRkZGQAA\nOzs7ODs7w8PDo1oF1q9fj7NnzyI/P7/S2nZOvxAR1ZzO5tSzs7MxdepULF26FOvXr680UmeoExHV\nXK3m1OvDBx98gDVr1vDxoUREDeSFv1FaWz/88APat28PFxcXqFSqKs8LCgpSv1YqlVAqlVK1RESk\nl1QqldYcLU+y6ZclS5bgq6++gqGhIYqLi/Hw4UP4+vpi9+7dz4tz+oWIqMbqNKd+//59bN++Xb2D\nzKhRozBjxgz1DjHVcfz4caxdu5Zz6kRE9aBOc+pBQUG4fv06Vq5ciZUrV+L69esat+2qThNERCSt\nF47Uu3fvjpSUFDRr1gzA7+vOHR0dcfny5boX50idiKjG6jRS9/X1xb/+9S/k5eUhLy8Pmzdvhq+v\nb703SUREdVflSL1169bqKZOCggL1ayEEWrVqpfURAtUuzpE6EVGN1epGaWlpaYWNphu6MSIi0qxW\nof7seS1eXl7w8vKCtbV1gzZGRESa1XpJY2ZmJiIiIhAZGYns7GwMHDgQo0ePxuDBg2FsbCxpY0RE\npFm9PPultLQUJ06cQEREBI4fP4527dohPDxcssaIiEizOof6nTt3UFBQABsbG/Wx7OxsWFpaStYY\nERFpVqsljU+fPsX69esxcOBAuLu7Q6lUwsLCAp988gkA1MvqFyIiql9VjtQDAwNx8eJFrFy5Eg4O\nDgCA1NRULF26FBYWFoiJicHFixfrVpwjdSKiGqvV9IudnR0iIyPRtWvXCsevXbuG7t274/jx4+jX\nr59kjRERkWa1mn4RQqBdu3aVjrdr1w5WVlZ1DnQiIqp/VYZ6nz59sHr16krH161bBzc3N0mbIiKi\n2qly+iU3NxdTp05FSkoKPD09oVAoEBMTA0dHR+zatQvm5uZ1L87pFyKiGqvTksb8/HwcPnwYADB6\n9GiYmpo2SGNERKSZzjaefhGGOhFRzelk4+ni4mJ4eHjA2dkZffv2xYYNG6QqRUREf5B0pF5YWIiW\nLVuipKQEvXv3xnfffQdbW9vnxTlSJyKqMZ2M1AGgZcuWAIBHjx7hyZMn9fIQMCIiqpqkoV5WVgYn\nJyd06NABc+fOhZWVlZTliIiaPEMpL25gYIDz588jKysLo0ePxoABA+Di4lLhnKCgIPVrpVIJpVIp\nZUtERHpHpVJBpVJV69wGW/2yaNEi2NraYvbs2c+Lc06diKjGdDKnnpubi/v37wMA7t69ix9//BE+\nPj5SlSMiIkg4/ZKTk4MpU6bg6dOnsLCwwKJFi9CxY0epyhEREfjLR0REekdnSxqJiKhhMdSJiGSE\noU5EJCMMdSIiGWGoExHJCEOdiEhGGOpERDLCUCcikhGGOhGRjDDUiYhkhKFORCQjDHUiIhlhqBMR\nyQhDnYhIRhjqREQywlAnIpIRyUL9xo0bGDJkCBwdHaFUKrFv3z6pShER0R8k2/no1q1buHXrFpyd\nnZGbmwt3d3ecP38epqamz4tz5yMiohrTyc5HFhYWcHZ2BgCYm5vD0dERCQkJUpUjIiI00Jx6RkYG\nUlJS4O7u3hDliIiaLEOpC+Tn52PChAnYsGEDWrVqVenrQUFB6tdKpRJKpVLqloiI9IpKpYJKparW\nuZLNqQPA48ePMWbMGIwePRoLFiyoXJxz6kRENaYtOyULdSEEpkyZAnNzc6xfv77GjRERkWY6CfWT\nJ09i0KBBePXVV6FQKAAAK1euhJeXV7UaIyIizXQS6tXBUCciqjmdLGkkIqKGx1AnIpIRhjoRkYww\n1ImIZIShTkQkIwx1IiIZYagTEckIQ52ISEYY6kREMsJQJyKSEYY6EZGMMNSJiGSEoU5EJCMMdSIi\nGWGoExHJCEOdiEhGJA316dOno0OHDujVq5eUZYiI6A+Shvq0adMQEREhZQkiIipH0lD39PSEmZmZ\nlCWIiKgczqkTEcmIoa4bCAoKUr9WKpVQKpU664WIqDFSqVRQqVTVOlchqtqSup5kZWXB29sbycnJ\nlYtr2RGbiIg005adnH4hIpIRSUPd398f/fv3R1paGqysrLBz504pyxERNXmST79oLc7pFyKiGuP0\nCxFRE8FQJyKSEYY6EZGMMNSJiGSEoU5EJCMMdSIiGWGoExHJCEOdiEhGGOpERDLCUCcikhGGOhGR\njDDUiYhkhKFORCQjDHUiIhlhqBMRyQhDnYhIRiQN9ZiYGDg4OMDOzg6bNm2SslSDqe7mr42JvvWs\nb/0C7Lkh6Fu/gG56ljTU58+fj61btyI6OhrBwcHIzc2VslyD4F8s6elbvwB7bgj61i8gs1B/8OAB\nAGDQoEHo0qULRo4ciTNnzkhVjoiIIGGox8fHo3v37ur3PXr0QGxsrFTliIgIEm48HR0dje3btyMs\nLAwAEBoaips3b+LTTz99XlyhkKI0EZHsVRXdhlIVdHNzw+LFi9XvU1JS4OXlVa2miIiodiSbfmnb\nti2A31fAZGVlISoqCh4eHlKVIyIiSDhSB4CNGzdi1qxZePz4MebNmwdzc3MpyxERNXmSLmkcPHgw\nUlNTkZGRgXnz5qmP69v69Rs3bmDIkCFwdHSEUqnEvn37dN1StT19+hQuLi7w9vbWdSsvVFBQgClT\npsDe3l5vbqxv27YN/fv3R+/evbFgwQJdt6PR9OnT0aFDB/Tq1Ut9LD8/Hz4+PujcuTPGjRuHR48e\n6bDDyjT1vHjxYjg4OMDV1RULFixAUVGRDjusSFO/z6xbtw4GBgbIy8trkF508hul+rZ+3cjICBs2\nbEBKSgq+/fZbBAYGIj8/X9dtVctnn32GHj166MVN6WXLlqFz5864cOECLly4AAcHB123pFVeXh5W\nrFiBqKgoxMfHIy0tDZGRkbpuq5Jp06YhIiKiwrGQkBB07twZ6enpsLS0RGhoqI6600xTzyNHjkRK\nSgoSEhJQUFDQqAZXmvoFfh8QRkVFoUuXLg3WS4OHuj6uX7ewsICzszMAwNzcHI6OjkhISNBxVy+W\nnZ2Nw4cP491339WLm9LR0dFYsmQJWrRoAUNDQ/V9mcbKxMQEQgg8ePAARUVFKCwshJmZma7bqsTT\n07NSX3FxcZgxYwaMjY0xffr0RvdvUFPPI0aMgIGBAQwMDPDaa6/h+PHjOuquMk39AsDChQuxevXq\nBu2lwUNd39evZ2RkICUlBe7u7rpu5YU++OADrFmzBgYGjf8RP9nZ2SguLsacOXPg4eGBVatWobi4\nWNdtaWViYoKQkBBYW1vDwsICAwYM0Iu/F0DFf4fdu3dHXFycjjuqmW3btjX6KcWDBw/C0tISr776\naoPWbfz/2huR/Px8TJgwARs2bECrVq103Y5WP/zwA9q3bw8XFxe9GKUXFxcjLS0Nvr6+UKlUSElJ\nwYEDB3Tdlla//fYb5syZg0uXLiErKwunT59GeHi4rtuqFn34O1GVTz75BKampvDz89N1K1UqLCzE\nihUrsHz5cvWxhvpv3uCh7ubmhsuXL6vfp6SkoG/fvg3dRo09fvwYvr6+eOedd+Dj46Prdl7o559/\nxqFDh2BjYwN/f38cPXoUkydP1nVbVbK1tcUrr7wCb29vmJiYwN/fH0eOHNF1W1rFxcWhb9++sLW1\nxUsvvQQ/Pz/ExMTouq1qcXNzQ2pqKgAgNTUVbm5uOu6oenbt2oXIyEjs2bNH161odfXqVWRlZcHJ\nyQk2NjbIzs5G7969cefOHclrN3io6+P6dSEEZsyYgZ49ezbaFQ7/bcWKFbhx4wYyMzPx9ddfY+jQ\nodi9e7dOcGhjAAADk0lEQVSu29LKzs4OZ86cQVlZGcLDwzF8+HBdt6SVp6cnEhISkJeXh5KSEhw5\ncgQjR47UdVvV4uHhgR07dqCoqAg7duzQi4FVREQE1qxZg0OHDqFFixa6bkerXr164fbt28jMzERm\nZiYsLS2RmJiI9u3bS19c6IBKpRLdu3cX3bp1E5999pkuWqiREydOCIVCIZycnISzs7NwdnYWR44c\n0XVb1aZSqYS3t7eu23ihK1euCA8PD+Hk5CQ+/PBD8ejRI1239EI7d+4UgwYNEn369BGBgYHi6dOn\num6pkrfeekt07NhRNG/eXFhaWoodO3aIhw8firFjxworKyvh4+Mj8vPzdd1mBc96NjIyEpaWlmL7\n9u3C1tZWdO7cWf1vcM6cObpuU03Tf+PybGxsxN27dxukF8me/UJERA2PN0qJiGSEoU5EJCMMdSIi\nGWGoExHJCEOdmoylS5eic+fOMDU1rfZnMjIy4O/vX6M6Pj4+yMnJqWl7RPWCoU5Nho+PT41/HX7T\npk2YMWNGjT4zadKkRveALGo6uKSRZGfr1q3qUL1//z5sbGxw9OhR9ddNTU2r9ZTNx48fw9HREWlp\naQCAoKAg5OTkIDU1FTdv3kRISAhOnDiB//znP/D09MSWLVugUChQUlKCnj17Ij09XZpvkEgLjtRJ\ndmbNmoWkpCTEx8fDysoKH374Ya2uc/XqVVhYWFQ4dubMGYSHh2PHjh3w9fWFra0tkpOTkZ6ejsTE\nRACAsbExTExMcOvWrTp/L0Q1xVAn2Zo3bx6GDRuGMWPG1Orz6enpsLa2Vr9XKBQYO3YsTE1N0a9f\nP5SUlOCtt96CQqGAh4cHTp8+rT63W7duuHLlSl2/BaIak3Q7OyJd2bVrF27cuIEtW7bU+hoKhaLS\nk/WePbuoefPmMDY2hrGxsfp9SUmJ+jwhhF488pjkh6FOsnP27FmsW7cOJ06cqNN17OzskJWVVavP\nXrt2Dfb29nWqT1QbHEqQ7AQHB+PevXsYMmQIXFxc8N577wEAPvroI1hZWaGoqAhWVlb45JNPtF7H\nxsam0rx4+W0B/3uLwGfvS0tLUVhYiA4dOtTHt0NUI1z9QqTF/Pnz8frrr2PEiBHV/syBAweQkpJS\nYYMEoobCkTqRFn/5y1+wY8eOGn1m7969mD17tkQdEWnHkToRkYxwpE5EJCMMdSIiGWGoExHJCEOd\niEhGGOpERDLCUCcikpH/B3UDvsh3l9PbAAAAAElFTkSuQmCC\n" } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.13 Page No.125" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "Qrat=3**2.5\n", "\n", "#Result\n", "print(\"The flowrate is proportional to H**2.5\")\n", "print \"When depth is increased from H0 to 3H0 Q increases \",round(Qrat,1),\"times\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The flowrate is proportional to H**2.5\n", "When depth is increased from H0 to 3H0 Q increases 15.6 times\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.15 Page No.130" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "h=10 #Km\n", "#air is in a standard atmosphere\n", "p1=26.5 #kPa\n", "T1=-49.9 #degree celcius\n", "d=0.414 #Kg/m**3\n", "k=1.4\n", "Ma1=0.82 #Mach\n", "#for incompressible flow,\n", "pdiff=(k*Ma1**2)/2*p1\n", "#for compressible isentropic flow, \n", "pdiff1=((1+((k-1)/2)*(Ma1**2))**(k/(k-1))-1)*p1\n", "\n", "#result\n", "print(\"Stagnation pressure on leading edge on the wing of the Boeing:\")\n", "print \"when flow is imcompressible =\",round(pdiff,1),\"kpa\"\n", "print \"when flow is compressible and isentropic =\",round(pdiff1,1),\"kpa\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Stagnation pressure on leading edge on the wing of the Boeing:\n", "when flow is imcompressible = 12.5 kpa\n", "when flow is compressible and isentropic = 14.7 kpa\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.17 Page No.132" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "V=5 #m/s\n", "sg=1.03\n", "h=50 #m\n", "#since static pressure is greater than stagnation pressure, Bernoulli's equation is incorrect\n", "#calculation\n", "#p2=(d*(V1**2)/2)+(d*g*h) V1=V\n", "#result\n", "p2=(((sg*1000)*(V**2)/2) + (sg*1000*9.81*h))/1000 #kPa\n", "print \"The pressure at stagnation point 2 =\",round(p2,1),\"kpa\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The pressure at stagnation point 2 = 518.1 kpa\n" ] } ], "prompt_number": 11 } ], "metadata": {} } ] }