{ "metadata": { "name": "", "signature": "sha256:f42944f5597b07b987f9572f10e4c9b04463b79fa1fecfbff1f6c9ad9b576c2b" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 11:Compressible flow" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 11.1 page no 617." ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "D=4.0 #in\n", "T1=540.0 #degree R\n", "p1=100.0 #psia\n", "T2=453.0 #degree R\n", "p2=18.4 #psia\n", "k=1.4\n", "R=1716/32.174 #ft*lb/(lbm*(degree R))\n", "cv=R/(k-1) #ft*lb/(lbm*(degree R))\n", "udiff=cv*(T2-T1) #ft*lb/lbm change in internal energy\n", "\n", "#Result\n", "print \"a)The change in internal energy between (1) and (2)=\",round(udiff,2),\"ft*lb/lbm\"\n", "cp=k*round(cv,0) #ft*lb/(lbm*(degree R))\n", "hdiff=cp*(T2-T1) #ft*lb/lbm change in enthalpy\n", "print \"b)The change in enthalpy between (1) and (2)=\",round(hdiff,0),\"ft*lb/lbm\"\n", "ddiff=(1/R)*((p2*144/T2)-(p1*144/T1)) #lbm/(ft**3) change in density\n", "\n", "#Result\n", "print \"The change in density betwenn (1) and (2)=\",round(ddiff,3),\"ft*lb/lbm\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "a)The change in internal energy between (1) and (2)= -11600.36 ft*lb/lbm\n", "b)The change in enthalpl energy between (1) and (2)= -16199.0 ft*lb/lbm\n", "The change in density betwenn (1) and (2)= -0.39 ft*lb/lbm\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 11.2 page no.619" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "D=4.0 #in\n", "T1=540.0 #degree R\n", "p1=100.0 #psia\n", "T2=453.0 #degree R\n", "p2=18.4 #psia\n", "\n", "#Calculation\n", "import math\n", "dratio=(p1/T1)*(T2/p2)\n", "sdif=(cv*(math.log(T2/T1)))+(R*(math.log(dratio)))#ft*lb/lbm*(degree R) change in entropy\n", "\n", "#Result\n", "print \"The change in entropy between (1) and (2)=\",round(sdif,1),\"ft*lb/lbm*(degree R)\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The change in entropy between (1) and (2)= 57.49 ft*lb/lbm*(degree R)\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 11.3 page no.623" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "T=0 #degree C\n", "R=286.9 #J/(kg*K)\n", "k=1.401\n", "c=(R*(T+273.15)*k)**0.5 #m/s\n", "\n", "#Result\n", "print \"The speed of sound for air at 0 degree C =\",round(c,1),\"m/s\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The speed of sound for air at 0 degree C = 331.35 m/s\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 11.4 page no.628" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib inline" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n", "For more information, type 'help(pylab)'.\n" ] } ], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "z=1000 #m\n", "Ma=1.5\n", "T=20 #degree C\n", "#alpha=atan(z/x), x=V*t,and Ma=(1/sin(alpha)) where alpha is the angle of the Mach cone\n", "#V=Ma*c\n", "#calculation\n", "import math\n", "c=343.3 #m/s found from the value of temperature\n", "V=Ma*c #m/sec\n", "t=z/(Ma*c*math.tan(math.asin(1/Ma))) #sec\n", "print\"The number of seconds to wait after the plane passes over-head before it is heard=\",round(t,2),\"s\"\n", "\n", "#Plot\n", "import matplotlib.pyplot as plt\n", "fig = plt.figure()\n", "ax = fig.add_subplot(111)\n", "\n", "Ma=[1,1.1,1.3,1.5,2,4]\n", "t=[0,1.5,2,2.17,2.3,2.75]\n", "xlabel(\"Ma\") \n", "ylabel(\"t (s)\") \n", "plt.xlim((0,4))\n", "plt.ylim((0,3))\n", "ax.plot([1.5], [2.17], 'o')\n", "ax.annotate('(1.5,2.17s)', xy=(1.7,2.1))\n", "a=plot(Ma,t)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The number of seconds to wait after the plane passes over-head before it is heard= 2.17 s\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEKCAYAAAAW8vJGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYlGX+P/D3cCgCFEQNdQYPCSmYzIAWuqCNWvkVEW21\ng5ZypRlf/SnWt6Nd7a5U67X+NjP9WWZbuetWoj/bVVTwp64OCsaSQGUeEktiQGBDQiRBDnP//jBH\nBmaYYeDhecZ5v66LK+aZm2c+1508b+77fg4qIYQAERHRrzzkLoCIiJSFwUBERBYYDEREZIHBQERE\nFhgMRERkgcFAREQWJAuGhoYGxMTEQKfTISIiAitXrrTaLiUlBWFhYdBqtSgsLJSqHCIicpCXVDv2\n8fHBkSNH4Ovri+bmZsTFxSE7OxtxcXHmNhkZGTh//jyKiorw73//G0uWLEFubq5UJRERkQMknUry\n9fUFADQ2NqKlpQVBQUEW76enpyMpKQkAEBMTg5qaGlRWVkpZEhER2SFpMJhMJuh0OgQHB2PSpEmI\niIiweL+srAwhISHm1xqNBqWlpVKWREREdkg2lQQAHh4e+Oqrr3D58mVMnToVBoMBer3eok3bO3Ko\nVKp2+7G2jYiI7HPmrkc9clZSQEAApk+fjhMnTlhsV6vVMBqN5telpaVQq9VW9yGEUPzXH/7wB9lr\nuFXqdIUaWSfrVPqXsyQLhqqqKtTU1AAA6uvrcfDgQURFRVm0SUxMxNatWwEAubm5CAwMRHBwsFQl\nERGRAySbSiovL0dSUhJMJhNMJhPmz5+PKVOmYPPmzQCA5ORkxMfHIyMjA6GhofDz88OWLVukKoeI\niBwkWTCMHj0aBQUF7bYnJydbvN64caNUJfS4tusnSuUKdbpCjQDr7G6sUxlUoisTUT1EpVJ1ab6M\niMgdOXvs5C0xiIjIAoOBiIgsMBiIiMgCg4GIiCwwGIiIyAKDgYiILDAYiIjIAoOBiIgsMBiIiMgC\ng4GIiCwwGIiIyIKkD+ohIqKeV1lXifzyfKd/nsFAROTCboRA/sV8nCg/gfyL+fil6RdED4x2ep+8\nuyoRkYuwFQJjBo7BmEFjrv934Bjc1ecuqFQqp4+dDAYiIgXqbAhYw2AgInJR3REC1jAYiIhcgFQh\nYA2DgYhIYXoyBKxhMBARyUjuELCGwUBE1EOUGALWMBiIiCTgKiFgDYOBiKiLXDkErGEwEBF1wq0W\nAtYwGIiIbGgdAvnl+Thx8cQtFwLWMBiIiOC+IWANg4GI3A5DoGMMBiK6pTEEOk9xwWA0GrFgwQL8\n5z//gUqlwjPPPIOUlBSLNgaDATNnzsRdd90FAJg9ezZee+219kUyGIjcCkOgeyguGCoqKlBRUQGd\nToe6ujqMGTMGu3btQnh4uLmNwWDA22+/jfT09I6LZDAQ3bIYAtJx9tgp2YN6BgwYgAEDBgAA/P39\nER4ejosXL1oEAwAe8InciL0QmDd6HtY+tJYhILMeWWMoLi7G/fffj1OnTsHf39+8PSsrC7/97W+h\n0WigVqvx1ltvISIion2RHDEQuRyOBOSnuBHDDXV1dZgzZw7Wr19vEQoAEB0dDaPRCF9fX2RmZmLW\nrFk4d+6c1f2sWrXK/L1er4der5ewaiLqDI4ElMFgMMBgMHR5P5KOGJqampCQkIBp06bh2Weftdt+\n2LBhyM/PR1BQkGWRHDEQKQZHAq5DcYvPQggkJSWhb9++WLdundU2lZWVuPPOO6FSqZCXl4dHH30U\nxcXF7YtkMBDJgiHg2hQXDNnZ2Zg4cSIiIyPN/2BWr16NkpISAEBycjLeffddbNq0CV5eXvD19cXb\nb7+NcePGtS+SwUAkubYhkF+ej7rGOosQGDtoLIYFDmMIuAjFBUN3YjAQdS+GgHtgMBCRVQwB98Vg\nICKGAFlgMBC5GYYA2cNgILqFMQTIGQwGolsEQ4C6C4OByAUxBEhKDAYihWMIUE9jMBApCEOAlIDB\nQCQThgApFYOBqAc0tTThq4qvkGPMQY4xB7mluQwBUiwGA5EELjdcxhelXyDHmIPskmycuHgCwwKH\nIXZwLGJDYjFeM543kCPFYjAQdZEQAsU1xebRQE5JDi7UXMDYQWMRG/JrEISMR6BPoNylEjmEwUDU\nSc2m5uvTQiU55jAwCZM5BOIGx0E3QAdvT2+5SyVyCoOByI7LDZeRW5qLbGM2ckpy8OXFLzEkYAji\nBsddD4PBsVwboFsKg4GoFSEEfrz8o8Vo4Pvq769PC7VaH+hzRx+5SyWSDIOB3FqzqRlfV3xtDoHs\nkmy0mFrMIRAbEouogVG4zfM2uUsl6jEMBrol7Nt3FBs2HMC1a164/fZmpKQ8hOnTJ7ZrV3ut9vq0\nUEk2cow5yCvLw+CAwea1gdiQWJ4tRG7P6WOncAEuUiZ10d69WWL48FcFIMxfw4e/KvbsMYjin4vF\np998KpbuWyq0m7TC749+YsLHE8TKQyvF3u/2iktXL1ndZ0NDg5g4caJoaWkRU6dOFYGBgSIhIcFm\nDVu2bBH9+vUTOp1O6HQ68dFHH7VrU1JSIvR6vYiIiBCjRo0S69evt7qvM2fOiHHjxonbb79dvPXW\nW+btZ8+eNe9fp9OJ3r1729yHEELs3r1bvP766zbfJ7LF2WMnRwykGFOnvoYDB968/iL4a2DIUWBw\nDm4Py0BA0B3mKaHYwbGIHhjt0LTQxx9/jEuXLuHFF1/E4cOHcfXqVWzevBl79uyx2v5vf/sb8vPz\nsWHDBpv7rKioQEVFBXQ6Herq6jBmzBjs2rUL4eHhFu1++ukn/Pjjj9i1axf69OmD559/vt2+TCYT\n1Go18vLyEBISYvXzhBCIiorCl19+CW9vniFFjnP22OkhQS1ETrl2zQvwvgrMXAjMmwEEfwOc/y9E\nFiah4vkK/OOxf+D53zyPcZpxDq8VbNu2DTNnzgQATJ48Gf7+/h22F0LY/UUaMGAAdDodAMDf3x/h\n4eG4ePFiu3b9+/fH2LFjOzyYHzp0CMOHDzeHwoYNGzBq1ChotVrMnTsXwPVf7vHjx+PAgQMd1kXU\nXbzkLoDohubACuDpGKBCB7x7Gmi8fhAPmvq9U2sFLS0t+Pbbb3H33Xc7/DMqlQqff/45srKyMGLE\nCKxbtw4ajcZm++LiYhQWFiImJqbT9QFAWloa5s2bZ369Zs0aFBcXw9vbG7W1tebt9913H44ePYrp\n06c79TlEncERAynCZyc/w8l709D/h8HAP7eaQ2H48FexfPmDTu2zqqoKvXr16tTPzJgxAz/++CO+\n+eYbPPjgg0hKSrLZtq6uDnPmzMH69evtjkSsaWxsxJ49e/DII4+Yt0VGRmLevHn49NNP4enpad4+\naNAgFBcXd/oziJzBEQPJqqG5ASv2r8DhC4eRtciAMl0t/g9+j4YGT/j4tGD58v+yelaSo9pOC9kb\neQQFBZm/X7RoEV566SWr7ZqamjB79mw8+eSTmDVrllO1ZWZmYsyYMejfv7952759+3D06FHs2bMH\nf/zjH/Htt9/Cw8MDJpOJZ1hRj2EwkGzOV5/HI//3Edzd927kP5OP3rf3hm46uhQErfXr1w91dXUW\n2+ytH1RUVGDAgAEAgPT0dERERJjfGzlyJM6ePQshBBYtWoSIiAg8++yzduuw9Znbtm0zryPcaFdS\nUgK9Xo/Y2FikpaWhrq4OvXv3Rnl5OYYMGWL3s4i6RTecESU5FymTOmHHtztEv//dT7yb964wmUyS\nfc4DDzwgzp49K4QQIi4uTvTv31/ccccdQqPRiAMHDgghhPj9738v0tPThRBCrFy5UowaNUpotVox\nefJk8d133wkhhPjpp5/EiBEjhBBCHDt2TKhUKqHVas2nnGZmZgohhHj//ffF+++/L4QQory8XGg0\nGtG7d28RGBgoQkJCxJUrV4QQQtTV1Ym+ffuK2tpac61NTU0iLi5OjB49Wtxzzz1izZo15veSk5PF\n3r17JesnujU5e+zk6arUo641X8MLB19ARlEGdszZgTGDxkj6eX/9619RWVmJl19+uUv72bdvHy5c\nuIBly5Z1U2WOM5lMiI6OxokTJ+DlxUE+OY5XPpPiXfj5Ah7d+ShCeofg45kf98jtqxsbG/HAAw8g\nKyvLZefo09PT8c033+C1116TuxRyMQwGUrTdZ3dj8Z7FeHXCq1gRs8JlD9JErsTZYyfHpSSpppYm\nvPKvV/D56c+RPjcd4zTj5C6JiOyQ7DoGo9GISZMmYdSoUbjnnnts3mIgJSUFYWFh0Gq1KCwslKoc\nkkHJ5RJM/OtEnLt0DgXJBQwFIhchWTB4e3tj3bp1OHXqFHJzc/Huu+/izJkzFm0yMjJw/vx5FBUV\n4YMPPsCSJUukKod62L5z+3DvX+7FwyMfxu7HdyPojiD7P0REiiDZVNKAAQPM54O3vp9M6xuNpaen\nm68sjYmJQU1NDSorKxEcHCxVWdQDXs96HX8p+As+f/RzxA2Ok7scIuqkHlljsHU/mbKyMos7Smo0\nGpSWlloNhlWrVpm/1+v10Ov1UpVLXfBd1XfYmLcRp5aeQn+//vZ/gIi6jcFggMFg6PJ+JA8Ge/eT\nabtibutsldbBQMq1Lncd/nvsfzMUiGTQ9o/m1NRUp/YjaTDYu5+MWq2G0Wg0vy4tLYVarZayJJLQ\nT7/8hO2ntuPs/zordylE1AWSLT4LB+4nk5iYiK1btwIAcnNzERgYyPUFF7bpxCbMDp+NYH/+PyRy\nZZJd4JadnY2JEyciMjLSPD20evVqlJSUAACSk5MBAMuWLcP+/fvh5+eHLVu2IDo6un2RvMBN8Rqa\nGzD0naE4nHQYEf0j7P8AEUmOVz6TrD4s+BD/PPtP7Ju3T+5SiOhXfLQnycYkTFj7xVo8P779M42J\nyPUwGKjLMosy4ePlg0lDJ8ldChF1AwYDddmN0QJvjEd0a2AwUJcUlheiqLoIj416TO5SiKibMBio\nS9Z+sRYp96XA29Nb7lKIqJvwrCRymvGyEdr3tfhhxQ898tAdIuocnpVEPW5D3gYk6ZIYCkS3GD6o\nh5xSe60WHxd+jPxn8uUuhYi6GUcM5JSPCj7Cg3c9iKGBQ+UuhYi6GUcM1GnNpma88+93sPORnXKX\nQkQS4IiBOm3n6Z0YEjAE96rvlbsUIpIAg4E6RQjB218Q3eIYDNQpx0qO4XLDZcwYMUPuUohIIgwG\n6pS1X6zF/4z/H3io+E+H6FbF325y2HdV3+EL4xdYoF0gdylEJCEGAznsxvOcfb195S6FiCTE01XJ\nIXyeM5H74IiBHMLnORO5D44YyK6G5ga89+V7OJx0WO5SiKgHcMRAdn3yzScYM2gMIvpHyF0KEfUA\nBgN1iM9zJnI/Dk0lnTlzBsXFxfDw8MCQIUMwcuRIqesiheDznIncj81guHDhAtatW4eMjAyo1WoM\nGjQIQgiUl5ejtLQUCQkJeO655zB06NAeLJd62tov1uKF8S/wec5EbsTmE9weffRRLF68GHq9Ht7e\nlo9tbGpqwpEjR/Dhhx9ix44d0hfJJ7jJoqC8ADPTZuKHlB/46E4iF+TssZOP9iSbnvjHE9AF6/Bi\n7Ityl0JETpDs0Z47duxAbW0tAOCNN97Aww8/jIKCgs5XSC7FeNmIzKJMLB6zWO5SiKiH2Q2GN954\nA71790Z2djb+9a9/YdGiRViyZElP1EYy4vOcidyX3WDw9PQEAOzduxeLFy9GQkICGhsbJS+M5HPj\nec4rYlbIXQoRycBuMKjVajzzzDPYvn07pk+fjoaGBphMJod2vnDhQgQHB2P06NFW3zcYDAgICEBU\nVBSioqLw5ptvdq56kgSf50zk3uwuPv/yyy/Yv38/IiMjERYWhvLycpw8eRIPPfSQ3Z0fO3YM/v7+\nWLBgAU6ePNnufYPBgLfffhvp6ekdF8nF5x7TbGrG8A3DsfORnXx0J5GLc/bYafM6hitXrqBXr17w\n8/PD7NmzzdsHDhyIgQMHWrSxZcKECSguLu6wAB7wlYXPcyYim8Hw8MMPY8SIEZg5cybGjh2LoKAg\nAEB1dTW+/PJL7Nq1C0VFRTh06JDTH65SqXD8+HFotVqo1Wq89dZbiIiwfj+eVatWmb/X6/XQ6/VO\nfy7ZllGUgfmR8+Uug4icYDAYYDAYuryfDqeSDh8+jM8++ww5OTm4ePEiAGDQoEGIi4vDE0884dDB\nubi4GDNmzLA6lXTlyhV4enrC19cXmZmZWLFiBc6dO9e+SE4l9Zj4T+Ox9N6lSLg7Qe5SiKiLun0q\nCQAmT56MyZMnO12UPa2noaZNm4alS5eiurraPDqhnnep/hL63tFX7jKISEay3l21srLSnGZ5eXkQ\nQjAUZHbp6iX09WUwELkzSR/UM3fuXGRlZaGqqgohISFITU1FU1MTACA5ORk7d+7Epk2b4OXlBV9f\nX6SlpUlZDjmAIwYi4r2SyKzZ1AyfN31w7bVr8PTwlLscIuoiye6VRO6jur4agT6BDAUiN8dgIDOu\nLxARwGCgVri+QESAA8Hw8ssvO7SNXB9HDEQEOBAMBw4caLctIyNDkmJIXhwxEBHQwemqmzZtwnvv\nvYfvv//e4u6oV65cQWxsbI8URz2r6moV+vn2k7sMIpKZzWCYN28epk2bhldeeQVr1qwxn/LUq1cv\n9O3LvypvRRwxEBHQQTAEBAQgICCAF525kUtXL2F4n+Fyl0FEMuNZSWTGEQMRAQwGaoVnJRERwGCg\nVrj4TEQAg4Fa4VQSEQEMBvqVEALV9dWcSiIiBgNdV3utFj5ePrjN8za5SyEimTEYCACnkYjoJgYD\nAeDCMxHdxGAgADxVlYhuYjAQAE4lEdFNDAYCwBEDEd3EYCAAHDEQ0U0MBgJwPRi4+ExEAIOBflV1\ntYojBiICwGCgX3GNgYhuYDAQAK4xENFNDAYCwBEDEd3EYCAAXHwmopsYDIT6pno0m5rh5+0ndylE\npAAMBjKvL6hUKrlLISIFkDQYFi5ciODgYIwePdpmm5SUFISFhUGr1aKwsFDKcsgGri8QUWuSBsNT\nTz2F/fv323w/IyMD58+fR1FRET744AMsWbJEynLIBp6RREStSRoMEyZMQJ8+fWy+n56ejqSkJABA\nTEwMampqUFlZKWVJZMWlq1x4JqKbvOT88LKyMoSEhJhfazQalJaWIjg4uF3bVatWmb/X6/XQ6/U9\nUKF7qLpaxakkoluAwWCAwWDo8n5kDQbg+rOGW7O1ANo6GKh7cSqJ6NbQ9o/m1NRUp/Yj61lJarUa\nRqPR/Lq0tBRqtVrGitwTg4GIWpM1GBITE7F161YAQG5uLgIDA61OI5G0eFYSEbUm6VTS3LlzkZWV\nhaqqKoSEhCA1NRVNTU0AgOTkZMTHxyMjIwOhoaHw8/PDli1bpCyHbOBVz0TUmkq0neRXIJVK1W4t\ngrpPzIcxeGfqOxgfMl7uUoioGzl77OSVz8SpJCKywGAgLj4TkQUGg5trNjXjyrUrCPQJlLsUIlII\nBoOb+7n+ZwT6BMLTw1PuUohIIRgMbo5XPRNRWwwGN8f1BSJqi8Hg5nhGEhG1xWBwcxwxEFFbDAY3\nx1tuE1FbDAY3V1VfxREDEVlgMLg5rjEQUVsMBjfHNQYiaovB4OY4YiCithgMbo633CaithgMbq7q\nKheficgSg8GNCSFQXV/NqSQissBgcGO112rh4+WD2zxvk7sUIlIQBoMb4xlJRGQNg8GN8apnIrKG\nweDGeMttIrKGweDGOJVERNYwGNwYL24jImsYDG6MIwYisobB4MZ41TMRWcNgcGO86pmIrGEwuDGu\nMRCRNQwGN8Y1BiKyhsHgxjhiICJrJA2G/fv3Y+TIkQgLC8OaNWvavW8wGBAQEICoqChERUXhzTff\nlLIcaoOLz0RkjZdUO25pacGyZctw6NAhqNVq3HvvvUhMTER4eLhFu/vvvx/p6elSlUE21DfVo9nU\nDD9vP7lLISKFkWzEkJeXh9DQUAwdOhTe3t54/PHHsXv37nbthBBSlUAduLG+oFKp5C6FiBRGsmAo\nKytDSEiI+bVGo0FZWZlFG5VKhePHj0Or1SI+Ph6nT5+Wqhxqg+sLRGSLZFNJjvwlGh0dDaPRCF9f\nX2RmZmLWrFk4d+6c1barVq0yf6/X66HX67upUvfEM5KIbj0GgwEGg6HL+5EsGNRqNYxGo/m10WiE\nRqOxaNOrVy/z99OmTcPSpUtRXV2NoKCgdvtrHQzUdbzlNtGtp+0fzampqU7tR7KppLFjx6KoqAjF\nxcVobGzE9u3bkZiYaNGmsrLSvMaQl5cHIYTVUKDux1tuE5Etko0YvLy8sHHjRkydOhUtLS1YtGgR\nwsPDsXnzZgBAcnIydu7ciU2bNsHLywu+vr5IS0uTqhxqg1NJRGSLSrjAaUEqlYpnL3Wz5/7fc9D0\n0uD53zwvdylEJBFnj5288tlN8awkIrKFweCmeNUzEdnCYHBTvOU2EdnCYHBTnEoiIlsYDG6KZyUR\nkS0MBjfUbGrGlWtXEOgTKHcpRKRADAY39HP9zwj0CYSnh6fcpRCRAjEY3BCveiaijjAY3BDXF4io\nIwwGN8QzkoioIwwGN8QRAxF1hMHghnjLbSLqCIPBDVXV86pnIrKNweCGuMZARB1hMLghrjEQUUcY\nDG6IIwYi6giDwQ3xlttE1BEGgxviLbeJqCMMBjcjhEB1fTWnkojIJgaDm6m9VgsfLx/c5nmb3KUQ\nkUIxGNwMz0giInsYDG6GVz0TkT0MBjfDW24TkT0MBjfDqSQisofB4GZ4cRsR2cNgcDMcMRCRPQwG\nN8OrnonIHgaDm+FVz0Rkj6TBsH//fowcORJhYWFYs2aN1TYpKSkICwuDVqtFYWGhlOVIzmAwyF2C\nXZeuXkLpyVK5y7DLFfoSYJ3djXUqg2TB0NLSgmXLlmH//v04ffo0tm3bhjNnzli0ycjIwPnz51FU\nVIQPPvgAS5YskaqcHuEK/1gu1V/C+fzzcpdhlyv0JcA6uxvrVAbJgiEvLw+hoaEYOnQovL298fjj\nj2P37t0WbdLT05GUlAQAiImJQU1NDSorK6UqiXB9xHCH9x1yl0FECiZZMJSVlSEkJMT8WqPRoKys\nzG6b0lLlT3O4skv1l+Dr7St3GUSkZEIiO3fuFE8//bT59d///nexbNkyizYJCQkiOzvb/HrKlCki\nPz+/3b4A8Itf/OIXv5z4coYXJKJWq2E0Gs2vjUYjNBpNh21KS0uhVqvb7et6NhARUU+QbCpp7Nix\nKCoqQnFxMRobG7F9+3YkJiZatElMTMTWrVsBALm5uQgMDERwcLBUJRERkQMkGzF4eXlh48aNmDp1\nKlpaWrBo0SKEh4dj8+bNAIDk5GTEx8cjIyMDoaGh8PPzw5YtW6Qqh4iIHOXUBJREMjMzxYgRI0Ro\naKj405/+ZLXN8uXLRWhoqIiMjBQFBQU9XKH9Go8cOSJ69+4tdDqd0Ol04o033ujxGp966ilx5513\ninvuucdmG7n7UQj7dSqhL4UQoqSkROj1ehERESFGjRol1q9fb7Wd3H3qSJ1K6NP6+npx3333Ca1W\nK8LDw8Urr7xitZ3c/elInUroTyGEaG5uFjqdTiQkJFh9v7N9qZhgaG5uFsOHDxcXLlwQjY2NQqvV\nitOnT1u02bdvn5g2bZoQQojc3FwRExOjuBqPHDkiZsyY0aN1tXX06FFRUFBg84Ardz/eYK9OJfSl\nEEKUl5eLwsJCIYQQV65cEXfffbfi/m06WqdS+vSXX34RQgjR1NQkYmJixLFjxyzeV0J/CmG/TqX0\n59q1a8W8efOs1uJMXyrmlhiucN2DIzUC8i+WT5gwAX369LH5vtz9eIO9OgH5+xIABgwYAJ1OBwDw\n9/dHeHg4Ll68aNFGCX3qSJ2AMvrU1/f6KdONjY1oaWlBUFCQxftK6E9H6gTk78/S0lJkZGTg6aef\ntlqLM32pmGBwheseHKlRpVLh+PHj0Gq1iI+Px+nTp3usPkfJ3Y+OUmJfFhcXo7CwEDExMRbbldan\ntupUSp+aTCbodDoEBwdj0qRJiIiIsHhfKf1pr04l9Odzzz2HP//5z/DwsH44d6YvFRMMKpXKoXZt\nE9HRn+sOjnxWdHQ0jEYjvv76ayxfvhyzZs3qgco6T85+dJTS+rKurg5z5szB+vXr4e/v3+59pfRp\nR3UqpU89PDzw1VdfobS0FEePHrV6iwkl9Ke9OuXuz7179+LOO+9EVFRUhyOXzvalYoKhO697kLPG\nXr16mYef06ZNQ1NTE6qrq3usRkfI3Y+OUlJfNjU1Yfbs2XjyySet/vIrpU/t1amkPgWAgIAATJ8+\nHSdOnLDYrpT+vMFWnXL35/Hjx5Geno5hw4Zh7ty5OHz4MBYsWGDRxpm+VEwwuMJ1D47UWFlZaU7n\nvLw8CCGszkvKSe5+dJRS+lIIgUWLFiEiIgLPPvus1TZK6FNH6lRCn1ZVVaGmpgYAUF9fj4MHDyIq\nKsqijRL605E65e7P1atXw2g04sKFC0hLS8PkyZPN/XaDM30p2XUMneUK1z04UuPOnTuxadMmeHl5\nwdfXF2lpaT1aIwDMnTsXWVlZqKqqQkhICFJTU9HU1GSuUe5+dLROJfQlAOTk5OCTTz5BZGSk+cCw\nevVqlJSUmGtVQp86UqcS+rS8vBxJSUkwmUwwmUyYP38+pkyZoqjfdUfrVEJ/tnZjiqirfakSci+p\nExGRoihmKomIiJSBwUBERBYYDEREZIHBQEREFhgMRA7w8PDA/Pnzza+bm5vRv39/zJgxQ8aqiKTB\nYCBygJ+fH06dOoWGhgYAwMGDB6HRaBR5xThRVzEYiBwUHx+Pffv2AQC2bduGuXPnWlzc9Jvf/AbR\n0dGIjY3FuXPn5CyVqEsYDEQOeuyxx5CWloZr167h5MmTFjeoCw8Px7Fjx1BQUIDU1FS8+uqrMlZK\n1DWKufKZSOlGjx6N4uJibNu2DdOnT7d4r6amBgsWLMD58+ehUqnMV3ATuSKOGIg6ITExES+88ILF\nNBIA/O53v8OUKVNw8uRJ7Nmzx7wWQeSKOGIg6oSFCxeiT58+GDVqlMUtmGtrazFo0CAA4LPLyeVx\nxEDkgBvxp8WAAAAATklEQVRnH6nVaixbtsy87cb2l156CStXrkR0dDRaWlp4thK5NN5Ej4iILHDE\nQEREFhgMRERkgcFAREQWGAxERGSBwUBERBYYDEREZOH/A5kK4I52RzdaAAAAAElFTkSuQmCC\n" } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 11.5 page no.635" ] }, { "cell_type": "code", "collapsed": false, "input": [ " \n", "A=1*(10**(-4)) #m**2\n", "p1=80.0 #kPa(abs)\n", "p2=40.0 #kPa(abs)\n", "p0=101.0 #kPa(abs)\n", "pcritical=0.528*p0 #kPa(abs)\n", "k=1.4\n", "#for (a) pth=p1>pcritical\n", "Math1=((((p0/p1)**((k-1)/k))-1)/((k-1)/2))**(0.5) #Math=Mach number at throat\n", "#dth/d0=p1/p0 dth=density at throat\n", "dth1=(1.23)*(1/(1+(((k-1)/2)*(Math1**2))))**(1/(k-1)) #kg/(m**3) density at throat\n", "Tth1=(288)*(1/(1+(((k-1)/2)*(Math1**2)))) #K temperature at throat\n", "Vth1=Math1*(286.9*269*k)**(0.5) #m/sec\n", "m1=dth1*A*Vth1 #kg/sec\n", "\n", "#Result\n", "print \"a) The mass flowrate through the duct=\",round(m1,4),\"kg/s\"\n", "#for (b) pth=p2" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 11.12 page no.655" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Given\n", "T0=288 #K\n", "p0=101 #kPa(abs)\n", "l=2 #m\n", "D=0.1 #m\n", "f=0.02\n", "k=1.4\n", "x=f*l/D\n", "Tratio=2/(k+1) #where Tratio is Tcritical/T0\n", "Tcritical=Tratio*T0 #K = T2\n", "Vcritical=(286.9*Tcritical*k)**0.5 #m/sec = V2\n", "#from value of x, the following are found\n", "Ma=0.63\n", "Trat=1.1 #where Trat=T1/Tcritical\n", "Vrat=0.66 #where Vrat=V1/Vcritical\n", "prat=1.7 #where prat=p1/pcritical\n", "pratio=1.16 #where pratio=p0,1/p0critical\n", "#from value of Ma, the following are found\n", "Tfraction=0.93 #whereTfraction=T1/T0\n", "pfraction=0.76 #where pfraction=p1/p0,1\n", "dfraction=0.83 #where dfraction=d1/d0,1\n", "\n", "#hence,\n", "#calculation\n", "import math\n", "V1=Vrat*Vcritical #m/sec\n", "d1=dfraction*(1.23) #kg/(m**3)\n", "m=d1*math.pi*(D**2)*V1/4 #kg/sec\n", "T1=Tfraction*T0 #K\n", "p1=pfraction*p0 #kPa(abs)\n", "T01=T0 #K and T01=T02\n", "p01=p0 #kPa(abs)\n", "p2=(1/prat)*(pfraction)*p01 #kpa(abs)\n", "p02=(1/pratio)*p01 #kPa(abs)\n", "\n", "#Result\n", "print \"Critical temperature=\",round(Tcritical,2),\"K\"\n", "print \"Critical velocity=\",round(Vcritical,0),\"m/s\"\n", "print \"Velocity at inlet=\",round(V1,0),\"m/s\"\n", "print \"Maximum mass flowrate=\",round(m,2),\"Kg/s\"\n", "print \"Temperature at inlet=\",round(T1,2),\"K\"\n", "print \"Pressure at inlet=\",round(p1,0),\"kPa(abs)\"\n", "print \"stagnation temperature at inlet and exit=\",round(T01,2),\"K\"\n", "print \"The stagnation pressure at inlet=\",round(p01,2),\"kPa(abs)\"\n", "print \"Pressure at exit=\",round(p2,2),\"kPa(abs)\"\n", "print \"The stagnation pressure at exit=\",round(p02,2),\"kPa(abs)\"\n", "\n", "#Plot\n", "#import numpy as np\n", "#import matplotlib.pyplot as plt\n", "#fig = plt.figure()\n", "#ax = fig.add_subplot(111)\n", "\n", "s=[-5,50]\n", "T=[288,288]\n", "s1=[0,0]\n", "T1=[288,268]\n", "s2=[40,40]\n", "T2=[288,240]\n", "s3=[0,10,20,30,40]\n", "T3=[268,265,261,252,240]\n", "s4=[30,50]\n", "T4=[240,240]\n", "s5=[-3,50]\n", "T5=[288,288]\n", "s6=[-2,8]\n", "T6=[284,294]\n", "s7=[35,45]\n", "T7=[281,295]\n", "s8=[-2,8]\n", "T8=[265,275]\n", "s9=[35,45]\n", "T9=[235,245]\n", "\n", "a=plot(s,T)\n", "a1=plot(s1,T1)\n", "a2=plot(s2,T2)\n", "a3=plot(s3,T3,linestyle='--')\n", "a4=plot(s4,T4)\n", "a5=plot(s5,T5)\n", "a6=plot(s6,T6)\n", "a7=plot(s7,T7)\n", "a8=plot(s8,T8)\n", "a9=plot(s9,T9)\n", "\n", "xlabel(\"s-s1 (J/kg K)\") \n", "ylabel(\"T (K)\") \n", "plt.xlim((-5, 70))\n", "plt.ylim((230,300))\n", "plt.text(50,240,'T2=240K')\n", "plt.text(50,288,'T0=288K')\n", "plt.text(15,255,'fanno line')\n", "plt.text(10,280,'p1=70kpa(abs)')\n", "plt.text(15,268,'T1=268K')\n", "plt.text(10,295,'p01=101kpa(abs)')\n", "plt.text(50,295,'p02=84kpa(abs)')\n", "plt.text(45,245,'p2=45kpa(abs)')\n", "\n", "show(a)\n", "show(a1)\n", "show(a2)\n", "show(a3)\n", "show(a4)\n", "show(a5)\n", "show(a6)\n", "show(a7)\n", "show(a8)\n", "show(a9)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Critical temperature= 240.0 K\n", "Critical velocity= 310.0 m/s\n", "Velocity at inlet= 205.0 m/s\n", "Maximum mass flowrate= 1.64 Kg/s\n", "Temperature at inlet= 267.84 K\n", "Pressure at inlet= 77.0 kPa(abs)\n", "stagnation temperature at inlet and exit= 288.0 K\n", "The stagnation pressure at inlet= 101.0 kPa(abs)\n", "Pressure at exit= 45.15 kPa(abs)\n", "The stagnation pressure at exit= 87.07 kPa(abs)\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEMCAYAAAAvaXplAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlclNX+wPHPoLigaGoKCAYiCA67LC6Jgss1953CME3s\n3jT1es3Mym567aqlZZh5NTP3tcylTFMTcknDBdTExAUUEDVxAdxQOL8/yOcHAirKMAN+368Xr+SZ\n85z5zjTzfDnnPOccnVJKIYQQQuRhZuwAhBBCmB5JDkIIIQqQ5CCEEKIASQ5CCCEKkOQghBCiAEkO\nQgghCjBYcrh16xbNmjXD29sbvV7PO++8A8Dly5fp0KEDjRs35m9/+xtXr17VzpkyZQrOzs64urqy\nZcsWQ4UmhBDiIXSGnOdw48YNLCwsuHv3Lq1atWL69Ols2LCBZ599lrFjx/LRRx9x5coVpk6dSlxc\nHP3792ffvn2kpKTQvn174uPjMTOTxo0QQpQ2g155LSwsAMjKyiI7O5tatWqxYcMGBg4cCMDAgQNZ\nt24dAOvXryc0NBRzc3McHBxwcnIiOjrakOEJIYQogkGTQ05ODt7e3lhZWREcHIybmxsXLlzAysoK\nACsrKy5cuADAuXPnsLOz0861s7MjJSXFkOEJIYQoQkVDVm5mZkZsbCzXrl2jY8eOREZG5ntcp9Oh\n0+mKPL+wxx5UXgghRNGKM4pQKh36NWvWpEuXLhw4cAArKyvOnz8PQGpqKvXq1QPA1taWpKQk7Zzk\n5GRsbW0LrU8pVeI/H3zwgUHqNeRPWYu5rMUrMUu85Snm4jJYcrh06ZJ2J9LNmzfZunUrPj4+dO/e\nnUWLFgGwaNEievbsCUD37t1ZuXIlWVlZJCQkcOLECQICAgwVnhBCiAcwWLdSamoqAwcOJCcnh5yc\nHAYMGEC7du3w8fEhJCSE+fPn4+DgwOrVqwHQ6/WEhISg1+upWLEis2fPli4kIYQwEoMlBw8PDw4e\nPFjgeO3atdm2bVuh57z77ru8++67hgrpgYKCgozyvE+irMVc1uIFibk0lLV4oWzGXFwGnedgCDqd\n7rH6z4QQ4mlW3GunzDATQghRgCQHIYQQBUhyKIcSEhJo1qwZzs7OvPTSS9y5cweAP/74gxYtWlCl\nShU++eSTYtX5zTff4ObmRoUKFQqMJRW1JtZ7773Hc889h6WlZb7ygwYNYs2aNY/56vL74YcfmDBh\nwgPLTJgwoVivt127dmRkZDxhZOJJFfU5XrZsGV5eXnh6evL8889z+PDhR64zOjqagIAAfHx88Pf3\nZ9++ffkeP3v2LNWrV8/3ealevXrJvCDgxRdf5NSpUw8s4+DgwOXLlx+pvsOHDxMeHl4SoRUgyaEc\nevvtt3nzzTc5ceIEtWrVYv78+QDUqVOHzz//nDFjxhS7Tg8PD9auXUvr1q3zHY+Li2PVqlXExcWx\nefNmhg0bpvVr9ujRo9AlUEryLrRPPvmEoUOHPrBMcZ/vpZdeYt68eU8SligBRX2OHR0d2bFjB4cP\nH+b999/n73//+yPXOXbsWCZNmkRMTAz/+c9/GDt2bL7HR48eTZcuXfIdK6nP68mTJ7l+/TqNGjV6\nYLnijA14enpy6tQpLl68WBIh5iPJoQxLTEzE1dWVsLAw9Ho9/fr14/r160RGRtK3b18g//pVdevW\nxc/PD3Nz82I/l6urK40bNy5wvLA1sX777TcAAgICsLa2LrS+e1+4999/n8GDB5OTk4ODgwNvv/02\nnp6eNGvWTPsL6/vvv6d58+Y0bdqUDh06aF+EpKQksrKytOVYiioHcOjQIVq2bEnjxo356quvgNzb\nrVu3bo2Pjw8eHh7s2rUL+P85N6J0FPdz3KJFC2rWrAlAs2bNSE5OfuTnsrGx4dq1awBcvXo130Tb\ndevW4ejoiF6vL/TcS5cu0bJlSzZt2kRUVBStW7ema9euuLq6MnToUO2CPmzYMPz9/XF3d8/Xql25\nciXdu3fXfi+qHMDHH39c4HvwzTff4OHhgbe3N23atNHKdurUiW+++eaR34NHJcmhjIuPj+eNN94g\nLi6OGjVq8L///Y9nnnlGW83W1tb2kdaouneRvP9n+/btDzzvcdfEUkrx1ltvkZaWxtdff42ZmRk6\nnY5nnnmGw4cPM3z4cEaNGgVAYGAge/fu5eDBg7z44ot8/PHHAOzevZumTZtqdRZVTinF4cOHiYyM\nZM+ePfznP/8hNTWV5cuX88ILLxATE8Phw4fx9vYGctf8unTpEtevX3/o6xAl43E/x/Pnz6dz587a\n7w/7HE+dOpU333yT5557jrfeeovJkycDkJmZyccff1xkF+XFixfp2rUrkyZNolOnTgDs27ePWbNm\nERcXx6lTp/juu+8A+O9//8u+ffs4dOgQv/zyC0eOHAFyP69+fn5anfeX+/3337XHCvseTJo0iS1b\nthAbG8v333+vlQ0ICGDHjh3Fe8MfgUHXVhKG16BBA1q0aAFAWFhYsccS7inJD9fDmuFKKSZNmkSz\nZs2YO3duvsdCQ0OB3K6df/3rX0BuCyEkJITz58+TlZWFo6MjAGfOnMHGxkY7t6hyOp2Onj17Urly\nZSpXrkxwcLDW9zx48GDu3LlDz5498fLy0uqysrIiKSkJV1fXJ39DxEM9zuc4MjKSr7/+mt27d2vH\nHvY5Dg8PZ+bMmfTq1YtvvvmG8PBwtm7dyoQJE/jXv/6FhYVFgS6drKws2rVrx+zZswkMDNSOBwQE\n4ODgAOR+bnft2kWfPn1YtWoV8+bN4+7du6SmpnLs2DE8PDwKfF7vLxcXF4e7u7tWH+T/Hjz//PMM\nHDiQkJAQevfurdVjY2NDYmLiQ9+v4pKWQxmX90KslKJSpUpcu3aN7Oxs4MFrVOUVGBhY6F9cP//8\n8wPPK86aWHlj9vf358CBA1y5cuWhr23EiBGMHDmSw4cPM3fuXG7evKk9nveLXFS5wpiZmREYGMjO\nnTuxtbVl0KBBLFmyRHtcKSUz9EtRcT/Hhw8f5rXXXmPDhg3UqlVLO17U5/heyyE6OppevXoB0Ldv\nX21MLDo6mrFjx9KwYUMiIiKYPHkys2fPBsDc3Bw/Pz82b978wJh1Oh2JiYl88sknbN++nUOHDtGl\nSxdu3bqVrxzkDrY/qFxhz/O///2PDz/8kKSkJHx9fbVBa0N9ViU5lHFnz55l7969ACxfvpxWrVoR\nFBTEt99+C+Rfv+qewga7du7cSUxMTIGfdu3aFSib9/zHXRPrhRdeYNy4cXTp0oXMzEzt+KpVq7T/\ntmzZEoD09HTq168PwMKFC7Wy9vb22iKODyqnlGL9+vXcvn2btLQ0oqKi8Pf35+zZs9StW5chQ4Yw\nZMiQfHdhXbhwIV932dMuJwf+ulnIIIrzOT579iy9e/dm6dKlODk55aunqM9x27ZtAXBycuKXX34B\nYPv27do42o4dO0hISCAhIYFRo0bx3nvvMWzYMCD34vz111/zxx9/aF2VkJtQEhMTycnJYfXq1QQG\nBpKenk61atWoUaMGFy5cYNOmTVp5e3t7UlNTAR5YTilV6Pfg1KlTBAQEMHHiROrWrauNtaSmpmJv\nb//E/w/uJ91KZZyLiwtffPEFgwcPxs3NjWHDhtGrVy9eeuklxo8fT9OmTbVb3c6fP4+/vz/p6emY\nmZkRERFBXFzcI92qt3btWkaOHMmlS5fo0qULPj4+bNq06YFrYo0dO5YVK1Zw8+ZNGjRowGuvvca/\n//1vIPcL16dPHzIyMujevTs//vgjAFeuXMHLy4sqVaqwYsUKIPdW1H79+lGrVi3atm3LmTNnAGjZ\nsiUzZ87UYiyqnE6nw9PTk+DgYC5dusS///1vrK2tWbx4MdOmTcPc3BxLS0sWL16svU916tShWrVq\nJfG/qMzLyYEhQ8DeHj74wDDPUZzP8aRJk7hy5Yp2l5q5ufkjbwz25Zdf8sYbb3D79m2qVq3Kl19+\n+dBz7m0tsGLFCrp3746lpSV6vR5/f3+GDx/OyZMnadu2rdYi8fHxwdXVlQYNGtCqVSutnlatWrF/\n/358fX3x8vIqspxOpyv0ezB27FhOnDiBUor27dvj6ekJ5Cap++8iLBGqjCmDIRtMQkKCcnd3N3YY\nJcbBwUGlpaUV65zg4GB17ty5Eo1j7ty56tNPPy3ROsuq7GylXn1VqTZtlMrMNMxzlMXPcWRkpOra\ntWuxzjl16pTq3LlzicfSpk0bdeHChYeWK+61U7qVyrjy1C/+OK9lzJgxzJkzp0TjWLVqFa+99lqJ\n1lkW3WsxnD4NGzeCIRtSZe1z/LCNygrj6OiIpaXlQyfBFcfhw4dxcnLS9sUpSbLwnonJyMhg5MiR\n9O7dm27duhk7HPGUKs3EIEqHLLxXhkVHR9O0aVPMzMwIDg42djjiKSWJQYAMSJuE7Oxspk6dysyZ\nM/niiy+0WaFClDZJDOIeSQ5GdvbsWQYMGICZmRn79++nQYMGxg5JPKUkMYi8pFvJiFavXo2fnx+d\nOnVi27ZtkhiE0UhiEPeTloMR3Bt03r17Nxs3bsTf39/YIYmnmCQGURhpOZSyvIPOBw8elMQgjEoS\ngyiKtBxKiQw6C1MjiUE8iCSHUiCDzsLUSGIQDyPdSgYmg87C1EhiEI/CYMkhKSmJ4OBg3NzccHd3\n1xZIO3ToEC1atMDT05Pu3bvn26u3qL2Iy6KMjAxeffVVxo8fz8aNGxk3bhwVKlQwdljiKSeJQTyy\nx1no6VGkpqaqmJgYpZRSGRkZqnHjxiouLk75+fmpHTt2KKWU+vrrr9X777+vlFLq6NGjysvLS2Vl\nZamEhATVqFEjlZ2dXaBeA4ZcYn777TfVqFEjNXjwYJWRkWHscIRQSpXOInrCdBX32mmwloO1tbW2\n7WL16tVp0qQJKSkpnDhxQttNqX379qxZswYofC/iR12G11RkZ2fz3//+l27dujF16lTmz5//SMth\nC2FoptxiSEtL0zblsbGxwc7OTvt9w4YNuLi44OzszEcfffTIdW7duhU/Pz88PT3x8/MjMjJSe2zB\nggV4eHjg5eVFp06dSEtLA+DkyZPaZkFeXl7aHguJiYl4eHho58+bNw8/Pz9tL+ryqlQGpBMTE4mJ\niaFZs2a4ubmxfv16evTowTfffKPtInbu3DmaN2+unfOgvYjz7vMaFBREUFCQIcN/JDLoLEyVKScG\ngDp16hATEwPAxIkTsbS0ZPTo0eTk5NC4cWO2bduGra0t/v7+dO/enSZNmjy0zrp16/LDDz9gbW3N\n0aNH6dixI8nJyWRlZTFmzBhOnDhB7dq1efvtt5k1axYffPABH374IWFhYfzjH//g2LFjdO7cmYSE\nhHz1LlmyhFmzZhEZGUnNmjUN8n6UlKioKKKioh77fIMnh8zMTPr27UtERASWlpZ8/fXXjBw5kkmT\nJtG9e3cqVapU5LlFLYlb1CbgxrJ69WqGDx/O6NGjeeutt2RsQZgMU08MhVF/rRz622+/4eTkpO3T\n/NJLL7F+/fpHSg73ei0A9Ho9N2/e5M6dO1SsWJFatWqRmZlJrVq1uHbtGs7OzkDuXsz3WgNXr14t\nsN3t6tWr+eijj9i+fTu1a9cuiZdqUPf/4Txx4sRinW/Q5HDnzh369OlDWFiYtsWfi4sLP/30EwDx\n8fFs3LgReLy9iI1NZjoLU1YWE0NeKSkp+VrgdnZ2/PbbbwBMnz6dZcuWFTinTZs2fPbZZ/mOrVmz\nBl9fX8zNzQGIiIjA3d2d6tWr07hxY22v6HfeeYcWLVrw+eefc/369Xz7pycmJjJixAhiY2MNsneC\nKTLYmINSivDwcPR6PaNGjdKO//nnnwDk5OTw4Ycfalv9Pe5exMYSHR2Nj4+PzHQWJqmsJwZ48AZA\nY8aMKXSv6PsTw9GjRxk3bhxz584FcvduHjlyJIcOHeLcuXN4eHgwZcoUAEaPHs2QIUNISkrixx9/\nJCwsTKunXr162Nvba3s7Pw0M1nLYvXs3S5cuxdPTEx8fHwAmT57MiRMn+OKLLwDo06cPgwYNAnjg\nXsSm5N5M54iICGbPni0znYXJKQ+JAQr2JiQlJWFnZwfAtGnTWL58eYFzWrduTUREBJDb+9C7d2+W\nLFlCw4YNATh27BgNGzbUfu/Xr5820P3rr79qXS/Nmzfn1q1bXLp0CQALCws2btxIYGAg9erVo3//\n/gZ61SbEIPdMGZAxQz5z5oxq3bq1CgoKUmfPnjVaHEIUpazfrjphwgQ1ffp0pZRSd+7cUY6Ojioh\nIUHdvn1beXl5qbi4uEeq58qVK8rT01OtXbs23/GLFy8qW1tb9eeffyqllBo/frwaM2aMUkqpXr16\nqYULFyqllIqLi1P169dXSuXf4zohIUHZ29urn3766clfbCkr7rVTZkg/IpnpLExdeWkx3OsxqFix\nIrNmzaJjx47o9XpefPHFRxqMBpg1axanTp1i4sSJ2m2xly5dom7dukyePJng4GC8vLw4fPgw7777\nLpDbGlmwYAHe3t7079+fRYsWFYjJwcGBDRs2MHjwYPbv31/Cr9y0lMk9pOHBIUdGllx31I0b8Pnn\n8Pvv8N574OpaYlULUWJycnRMn/4V5845MmVKF6pWvWHskIolKKhMXYbKpOLuIV0mF957+Osr/gdN\nN1GH+iD/edHR0QwZ0p82bdrwzTcRMqFNmKR7LYYbN2D3bqhW/cajfEmEeKAymRwMTQadRVlRXrqS\nhOmR5HCfvDOdDxw4IGMLwmRJYhCGJAPSecigsygrJDEIQyuTA9IlHXJGRgY1WtfAKdOJ5cuXy4Q2\nYdIemhh0OhlzEAUU99r51Lcc7s10RgcxMTGSGIRJkxaDKC1PbXK4t7x2165dmTp1KvRA7kYSJk0S\ngyhNT+WAdKGDzkeNHZUQRZPEIErbU9dykEFnUdZIYhDG8NS0HO4tr71r1y5ZXluUGZIYhLE8FS2H\nvMtry6CzKCskMQhjKvcthz179tCjRw+Z6SzKFEkMwtjKfXIICAjg0KFD2NjYGDsUIR6JJAZhCsp9\nt1KFChUkMYgyQxKDMBXlPjkIUVZIYhCmRJKDECZAEoMwNZIchDAySQzCFElyKIdmzZqFk5MTZmZm\nXL58+ZHPO378uLaloo+PDzVr1mTmzJkAXL58mQ4dOtC4cWP+9re/cfXqVQAWLlzIiBEjSiTuixcv\n0qVLlweWiYqKolu3bo9c5+jRo9m5c+eThmYwkhiEqZLkUA61atWKn3/+GXt7+2Kd5+LiQkxMDDEx\nMRw4cAALCwt69eoFwNSpU+nQoQPx8fG0a9cudz0q/n9v3ZIwa9YsBg0aVGL1AQwdOpRp06aVaJ0l\nRRKDMGWSHMqwxMREXF1dCQsLQ6/X069fP27evIm3t3exE8P9tm3bRqNGjbTlRTZs2MDAgQMBGDhw\nIOvWrQPItwTwxo0badmyJWlpaQwaNIjXX38df39/XFxc2LhxoxZz69at8fX1xdfXlz179mjnf/vt\nt1rL4UHl0tPT6dq1K66urgwdOhSlFNnZ2QwaNAgPDw88PT357LPPAHB2diYxMVFr6ZgKSQzC1JX7\neQ7lXXx8PAsWLKBFixaEh4cze/Zs3nzzzULLRkVF8a9//avA8WrVqrFr1658x1auXEn//v213y9c\nuICVlRUAVlZWXLhwIV/5tWvXMmPGDDZt2kTNmjXR6XScPXuWffv2cfLkSYKDgzl58iRWVlZs3bqV\nypUrc+LECfr378++ffs4f/48FSpUwMLCQnuOwspB7oz3Y8eO8dxzz/HCCy/w3Xff0bBhQ86dO8eR\nI0cAuHbtmhabj48Pe/bsoVOnTsV9ew1CEoMoCwzWckhKSiI4OBg3Nzfc3d21vuvo6GgCAgLw8fHB\n399f+8IDTJkyBWdnZ1xdXdmyZYuhQitXGjRoQIsWLQAICwsrcJHPKygoSOs2yvtz/zlZWVl8//33\n9OvXr9B6dDpdvu6k7du38/HHH/Pjjz9Ss2ZN7XhISAgATk5OODo6cvz4cbKyshgyZAienp6EhIRw\n7NgxAM6cOZNvPkpR5SB3YqODgwNmZmaEhoaya9cuHB0dOX36NCNHjuSnn36iRo0aWvn69euTmJj4\nsLey1Fy6BHfvSmIQps1gLQdzc3NmzJiBt7c3mZmZ+Pr60qFDB8aOHcukSZPo2LEjmzZtYuzYsURG\nRhIXF8eqVauIi4sjJSWF9u3bEx8fj5mZ9Hw9SN6LtFLqgWMAkZGRjB49usBxCwsLdu/erf2+adMm\nfH19qVu3rnbMysqK8+fPY21tTWpqKvXq1dOev1GjRiQkJHD8+HF8fX0fGO+MGTOwsbFhyZIlZGdn\nU6VKlXzxP0q5wl7zM888w6FDh/jpp5+YM2cOq1evZv78+Y/0vpS2evVg8WJjRyHEgxnsymttbY23\ntzeQu4lOkyZNSElJwcbGRmvyX716FVtbWwDWr19PaGgo5ubmODg44OTkRHR0tKHCKzfOnj3L3r17\nAVi+fDmBgYH5Hs97wQ0ODi605ZA3MQCsWLGC0NDQfMe6d+/OokWLAFi0aBE9e/bU6re3t+fbb7/l\nlVdeIS4uTjv+zTffoJTi5MmTnD59GhcXF9LT07G2tgZg8eLFZGdnA2Bvb8/58+e15yuqHOS2PhMT\nE8nJyWH16tUEBgaSlpZGdnY2vXv3ZtKkSRw8eFArn5qaioODQzHfWSGebqUy5pCYmEhMTAzNmzfH\n2dmZVq1aMWbMGHJycrSBxnPnztG8eXPtHDs7O1JSUgqtb8KECdq/g4KCCAoKMmT4Js3FxYUvvviC\nwYMH4+bmxuuvv87MmTOZNm0aFy5cwNPTky5duvDll18+Un3Xr19n27ZtzJs3L9/xcePGERISwvz5\n83FwcGD16tXA/3cxubi4sGzZMvr168f333+PTqfjueeeIyAggPT0dObOnUvlypUZNmwYffr0YfHi\nxbzwwgva7nvW1tbcvXuX69evU61atSLL6XQ6/P39GT58OCdPnqRt27b07NmTw4cPM3jwYHJycgC0\nu6kgd/vXe92aQjwtoqKiiIqKevwKlIFlZGQoX19ftXbtWqWUUu3atVPfffedUkqp1atXq/bt2yul\nlBo+fLhaunSpdl54eLhas2ZNgfoMFTITDP5WlLiEhATl7u5u7DAKNWjQoEL//z3IBx98oFauXFmi\ncRw/flx169atROs0eYb/WosyqLjXToN26N+5c4c+ffoQFhamdUNER0dr98737dtX6zqytbUlKSlJ\nOzc5OVnrchJFM6W+9Cf1xhtvaF1XJWXOnDmMHTu2ROsU4mmg+yujlDilFAMHDqROnTrMmDFDO960\naVNmzJhBmzZt+Pnnnxk3bhz79u0jLi6O/v37Ex0drQ1Inzx5ssDFT6fTYYiQdRN1qA8M8lYIUbp0\nOjDM11qUYcW9dhpszGH37t0sXboUT09PfHx8AJg8eTJffvklb7zxBrdv36Zq1apaX7heryckJAS9\nXk/FihWZPXt2ufqrWAghyhKDtRwMRVoOQjyEtBxEIYp77ZRJBEIIIQqQ5CCEEKIASQ5CCCEKkOQg\nhBCiAEkOQgghCpDkIIQQogBJDkIIIQqQ5CCEEKIASQ5CCCEKkORggpLTk8m4nWHsMIQQTzFJDiZm\nTdwafL/05Zczvxg7FCHEU6xUNvsRD5eZlcmozaOISozi+9DvCbANMHZIQoinmLQcTMD+c/tpOrcp\n2SqbmH/ESGIQQhidtByMKDsnm2m/TuPTPZ8yq/MsQtxCjB2SEEIAkhyMJjk9mQFrB5Cdk83+v+/n\nuZrPGTskIYTQSLeSEdwbdO7g2IHIgZGSGIQQJkdaDqVIBp2FEGWFtBxKiQw6CyHKEmk5GJgMOgsh\nyiJJDgYkg85CiLJKupUMRAadhRBlmbQcSpgMOgshygNpOZQgGXQWQpQXBksOSUlJBAcH4+bmhru7\nOzNnzgTgxRdfxMfHBx8fHxo2bIiPj492zpQpU3B2dsbV1ZUtW7YYKrQSl52TzdRdU+m8rDOTgiex\noMcCLCtbGjssIYR4bAbrVjI3N2fGjBl4e3uTmZmJr68vHTp0YNWqVVqZMWPG8MwzzwAQFxfHqlWr\niIuLIyUlhfbt2xMfH4+ZmWk3bmTQWQhRHhnsymttbY23tzcA1atXp0mTJpw7d057XCnF6tWrCQ0N\nBWD9+vWEhoZibm6Og4MDTk5OREdHGyq8ElFeB53T0tK01p2NjQ12dnba7+Hh4VhZWeHh4VGsOrdu\n3Yqfnx+enp74+fkRGRmpPZaVlcXf//53XFxcaNKkCd999x0AJ0+eJDAwEB8fH7y8vNi0aRMAiYmJ\n+Z5/3rx5+Pn5ce3atRJ49UIIKKUB6cTERGJiYmjWrJl2bOfOnVhZWdGoUSMAzp07R/PmzbXH7ezs\nSElJKbS+CRMmaP8OCgoiKCjIIHEXpbwPOtepU4eYmBgAJk6ciKWlJaNHjwZy/78NHz6cV155pVh1\n1q1blx9++AFra2uOHj1Kx44dSU5OBuC///0v1tbWHD9+HMhNTgAffvghYWFh/OMf/+DYsWN07tyZ\nhISEfPUuWbKEWbNmERkZSc2aNZ/odQtRnkRFRREVFfXY5xs8OWRmZtK3b18iIiKoXr26dnzFihX0\n79//gefqdLpCj+dNDqVt/7n99F/Tn+efe56Yf8Q8FWMLSint34GBgSQmJha7jnutSAC9Xs/Nmze5\nc+cO5ubmLFiwQEsMkJucAGxsbLTWwNWrV7G1tc1X5+rVq/noo4/Yvn07tWvXLnZMQpRn9//hPHHi\nxGKdb9DkcOfOHfr06UNYWBg9e/bUjt+9e5e1a9dy8OBB7ZitrS1JSUna78nJyQUuBsaUd6bz550+\n50X3F40dkkmZPn06y5YtK3C8TZs2fPbZZ/mOrVmzBl9fX8zNzbl69SoA48ePJyoqikaNGjFr1izq\n1avHO++8Q4sWLfj888+5fv06P//8s1ZHYmIiI0aMIDY2lnr16hn2xQnxNFIGkpOTowYMGKBGjRpV\n4LFNmzapoKCgfMeOHj2qvLy81O3bt9Xp06eVo6OjysnJKXCuoUJmQtH1Jl1LUkELg1Tg14HqzNUz\nBnl+UzWHSPpFAAAgAElEQVRhwgQ1ffr0fMcSEhKUu7v7Y9X3+++/q0aNGqnTp08rpZT6888/lU6n\nU2vWrFFKKfXpp5+qAQMGKKWUCg8PV59++qlSSqk9e/YovV6vPb+jo6Py9/dXM2bMeKw4yjXDfa1F\nGVbca6fBBqR3797N0qVLiYyM1AYzN2/eDMCqVau0geh79Ho9ISEh6PV6OnXqxOzZs4vsVipN9wad\n2zdsX64GnUvatGnTtP/PeX/++c9/amWSk5Pp3bs3S5YsoWHDhkBuF5KFhQW9e/cGoG/fvlqL8tdf\nfyUkJHctqubNm3Pr1i0uXboEgIWFBRs3bmTOnDksX768NF+qEE8HAyUpgzFUyPe3HDJuZ6jw9eGq\nUUQjtTdpr0GesywoqZbDlStXlKenp1q7dm2Bx1566SW1fft2pZRSCxYsUCEhIUoppXr16qUWLlyo\nlFIqLi5O1a9fv8DzJyQkKHt7e/XTTz8V74WVZ2Xvay1KQXGvnQ8dczh69Cg7duwgMTERnU6Hg4MD\ngYGBuLm5GT5zlaYm43k9Pp5mlpZUu3GS8T+GP1WDzg+StwUXGhrKL7/8QlpaGg0aNOA///kPr776\n6kPrmDVrFqdOnWLixInawNjWrVt59tln+eijjxgwYACjRo2iXr16LFiwAMhtjYSHhzNjxgx0Oh2L\nFi0qEJODgwMbNmygc+fOrFu3Dj8/v5J86UI8tXR/ZZQClixZwueff06dOnUICAigfv36KKVITU0l\nOjqaS5cu8c9//pOwsLDSDVino4iQn6zeT5vwad/NLNofwe/HF1LJ+Z+0cOrBBg8PqlWoUOLPJ4TB\n6HRggO+IKNuKe+0ssuVw5coVfv75ZywtC/+rOT09nYULFxY7QFOVNGQrA9YOoEZONqeHxWJhYcPB\njIxCE8Ndpdibnk7T6tWxkMQhhCiHimw5nD17lueeK3zw9YcffqBr164GDawohmg5rIlbw7AfhzEy\nYCTjWo2jgtmDL/ipt2/T4/ffOXr9Oo0tLGhWowbNLC1pWbMmLhYWJRqbEMUmLQdRiOJeO4tMDi4u\nLmzevFm7q+Ser7/+mg8//JDTp08/WaSPqSSTQ2ZWJv/c/E9+SfyFZb2X0cyu2cNPyuNWTg6xmZn8\nlp7Ob+npmOt0LGrSpERiE+KxSXIQhSixbqUZM2bwt7/9jY0bN9K4cWMgd9XUZcuWsWPHjieP1MhK\nYqZzFTMzmteoQfMaNR5Y7se0NBaeP5/bwqhRQ7qjhBAmr8jk0LlzZypXrkynTp1Yv349X331FdHR\n0ezcuZNatWqVZowlyhgznX2qVyetTh2iMzJYdfEiv1+/jouFBWMbNCDUysrgzy+EEMVVZLfSPTt2\n7KBXr148//zzrF69mipVqpRWbIV6km6lvMtrL+291GgT2u51R9WoUAF9tWoFHo+/cYMaFStiXamS\nEaITZZ50K4lClNiYQ/Xq1bV7yW/dukWlSpW0vRV0Oh3p6eklEG7xPW5yKO6gszH9OyGBWSkpWFao\noHVFBVha4l+jBlVMfH8LYQIkOYhClFhyMFXFfYFPOuhsLEopTty8SXRGhjbg/YWzM/4PGd8QQpKD\nKEyJDUhnZGQUOcehOGWM7eTlk+jQlbmZzjqdjsYWFjS2sCDsIeMSH545Q/MaNQisWZPK0rIQQpSA\nIlsO7du3x8XFhR49euDn56etl5+Wlsb+/ftZt24dJ06cYNu2baUbsIFmSJdVd5Vi8pkzbLp8mbjr\n12nzzDN0ql2bTnXq4GDk8SFhJNJyEIUo0W6l7du3s3z5cnbv3q1t8Vm/fn1atWrFyy+/XOo7sIEk\nhwdJu3OHLZcvs+nyZVJu3+bnPBvsiKeIJAdRCBlzEA907vZtspSSVkV5JslBFKLExhxE+bQnPZ2h\n8fHUMTen81/dTzJWIYS4X5Eth3v7+5oaaTk8uRylOJCRwaa/uqDirl9noasrverWNXZooiRIy0EU\nosS6lZo2bZpvj2dTIcmh5KXduYMZUKuQPwaUUiaxI58oBkkOohAl1q0kF+CnR50iWohKKTz278ex\nShW5A0qIp0yRLQc7OztGjx5daJLQ6XSMHj3a4MEVRloOpSvvHVCbL1/mWXNzutSpw8eOjtKiMFXS\nchCFKLGWQ3Z2NhkZGSUSlCi76pibE2plRaiVFTlKcTAzk4MZGZIYhCjnimw5+Pj4EBMTU9rxPJS0\nHEzX3vR0vrl4Ue6AMjZpOYhCyK2swmisK1WiZsWKvJ+QkG+2dvdnn8W2cmVjhyeEKIYiWw5paWnU\nqVOntON5KGk5lA15xyo61q7Ny7JvRemRloMoRHGvnUW2+580MSQlJREcHIybmxvu7u7MnDlTe+zz\nzz+nSZMmuLu78/bbb2vHp0yZgrOzM66urmzZsuWJnl8Y172xisVNmkhiEKIMMli3krm5OTNmzMDb\n25vMzEx8fX3p0KED58+fZ8OGDRw+fBhzc3P+/PNPAOLi4li1ahVxcXGkpKTQvn174uPjtT0kRPly\nIzuba3fvYiPdTUKYJINdea2trfH+a+G36tWr06RJE1JSUpgzZw7vvPOONvu67l+zctevX09oaCjm\n5uY4ODjg5OREdHS0ocITRrbz2jW89u/nq9RU6SYUwgSVyoB0YmIiMTExNGvWjLfeeosdO3bw7rvv\nUqVKFaZPn46fnx/nzp2jefPm2jl2dnakpKQUWt+ECRO0fwcFBRlldVjxZDrWrs1WLy+GHD/O8gsX\n+NLFBaeqVY0dlhDlRlRUFFFRUY99vsGTQ2ZmJn379iUiIgJLS0vu3r3LlStX2Lt3L/v27SMkJITT\np08Xem5R99LnTQ6i7PKqXp29TZsSkZxM84MHGdugAW81aCBzKIQoAff/4Txx4sRinW/QDv07d+7Q\np08fwsLC6NmzJ5DbIujduzcA/v7+mJmZcenSJWxtbUlKStLOTU5OxtbW1pDhCRNQQadjdIMGRDdt\nSras4ySEyTBYclBKER4ejl6vZ9SoUdrxnj17sn37dgDi4+PJysri2WefpXv37qxcuZKsrCwSEhI4\nceIEAQEBhgpPmBjHqlV5x97e2GEIIf5isG6l3bt3s3TpUjw9PfHx8QFyb1UdPHgwgwcPxsPDg0qV\nKrF48WIA9Ho9ISEh6PV6KlasyOzZs+WvSCGEMBLZCU6YtD9u3CAiOZkpjo48U1Em9D8SmQQnClFi\nk+CEMAU2lSqhA9z37WPtX3NihBCGJy0HUSbsvHqV1+LjcbOwYJazs0yeexBpOYhCSMtBlEuBzzxD\nrJ8fTapV4/mYGG7n5Bg7JCHKNUkOolAzZ85Er9czYMCAUn/uhQsXMmLECADmzp3LkiVLAKhiZsaH\nDRsS4+cny4ELYWAywicK9b///Y+ff/6Z+vXrl/pz571L7R//+EeBx2vKwLQQBid/fokCXn/9dU6f\nPs0LL7zAZ599xr59+2jZsiVNmzbl+eefJz4+Hsj9C79379506tSJxo0b51tht3r16owfPx5vb29a\ntGjBxYsXgdylVNq2bYuXlxft27fPN/GxMBMmTOCTTz4Bcmd8jhs3jmbNmuHi4sKuXbuA3F0L33rr\nLTz9/PDy8uLLL780xNsixFNFkoMoYM6cOdSvX5+oqChGjRqFq6srO3fu5ODBg0ycOJF3331XK3vo\n0CFWr17NkSNHWLVqlbYe1o0bN2jRogWxsbG0bt2aefPmATBixAheffVVDh06xMsvv8zIkSMfGItO\np9NaEjqdjuzsbH777Tc+++wzbTmA+fPnk1OtGhciIuiwciVz580jMTHRAO+MEE8PaZ+Lh7p69Sqv\nvPIKJ0+eRKfTcffuXe2xdu3aYWlpCeROZDxz5gy2trZUqlSJLl26AODr68vWrVsB2Lt3L+vWrQMg\nLCyMsWPHFiuWe0uvNG3aVEsAW7Zs4ciRI9Rbt475t2+TmZHBmthY3nRweJKXLcRTTVoO4qHef/99\n2rVrx5EjR/j++++5efOm9ljlPLeUVqhQQUsc95ZkBzAzM8uXUJ7kVuR7z5f3uQBmzZrFkdhYrhw7\nxprYWD6zsuK148fJzM5+7OcS4mkmyUE8VHp6ujYwvWDBgieqq2XLlqxcuRKAZcuW0bp16wJl8iYP\npdRDk0nHjh2ZPXu2lixcL18m2s2NBpUrU0mWYBHisUhyEIXKe8fQ2LFjeeedd2jatCnZ2dn5xgCK\nWv8q7/G85T7//HMWLFiAl5cXy5YtIyIiotBzi/McQ4YMQa/X07RpUzw8PBg6dCjVgH87OFBJbnkV\n4rHIDGkhyhuZIS0KITOkhXiAa3fvEhoXx8k84yZCiIIkOYinSvUKFfC3tKT5wYN8fPYsd+UvbCEK\nJd1K4ql0+uZN/hEfT9qdO8x3ccHnr9txywXpVhKFKO61U5KDeGoppVh04QJvnzrF3qZNaVi1qrFD\nKhmSHEQhJDkIUUwZd+9iWZ7Wa5LkIAohyUGIp50kB1EIuVtJiBJy9Pp1Y4cghNFIchCiELdzcgg5\nepRXjh3jlmwsJJ5CkhyEKERlMzP2+/pyMyeHDocOcenOHWOHJESpkuQgRBGqVqjAKr2eVjVr0uLg\nQeJv3DB2SEKUGhmQFuIRzE9NZWZyMgf9/Khg6ov5yYC0KITJDEgnJSURHByMm5sb7u7uzJw5E8jd\n2cvOzg4fHx98fHzYtGmTds6UKVNwdnbG1dWVLVu2GCo0IYot3MaGPU2bmn5iEKKEGKzlcP78ec6f\nP4+3tzeZmZn4+vqybt06Vq9ejaWlJaNHj85XPi4ujv79+7Nv3z5SUlJo37498fHxmN23qqa0HIR4\nCGk5iEKYTMvB2toab29vIHc/4SZNmmhbSBYW4Pr16wkNDcXc3BwHBwecnJyIjo42VHhCCCEeoFSm\nhSYmJhITE0Pz5s3ZvXs3n3/+OYsXL8bPz49PPvmEZ555hnPnztG8eXPtHDs7Oy2Z3G/ChAnav4OC\ngggKCjLwKxCicAvPn6drnTo8m2fnOyFMQVRUFFFRUY99vsEHpDMzMwkKCmL8+PH07NmTixcvUrdu\nXSB3+8nU1FTmz5/PiBEjaN68OS+//DKQu4FL586dtT2DtYClW0mYCKUU7yUk8M2ff7LRw4PGFhbG\nDimXdCuJQphMtxLAnTt36NOnD2FhYfTs2ROAevXqabt7DRkyROs6srW1JSkpSTs3OTkZW1tbQ4Yn\nxBPR6XRMdnRk3HPPERgTwy9Xrxo7JCFKjMGSg1KK8PBw9Ho9o0aN0o6npqZq/167di0eHh4AdO/e\nnZUrV5KVlUVCQgInTpwgICDAUOEJUWLCbWxYrtfT7+hRlpw/b+xwhCgRBhtz2L17N0uXLsXT0xMf\nHx8AJk+ezIoVK4iNjUWn09GwYUPmzp0LgF6vJyQkBL1eT8WKFZk9e3aRewcLYWra1apFlLc3w06c\noHfdulSrUMHYIQnxRGQSnBDljYw5iEKY1JiDEEKIskmSgxBCiAIkOQhhYJMSE+VOJlHmSHIQwsBa\n1qxJv6NHWVxO72R6+eWXcXV1xcPDg/DwcO7evVus87Ozs/Hx8aFbt27asfvXYNu8eTMACxcuZMSI\nESUS98WLF+nSpcsDy0RFReWL62FGjx7Nzp07nzQ0kyDJQQgDu3cn0weJifw7IaHc3VARFhbGH3/8\nwZEjR7h58yZfffVVsc6PiIhAr9fnuztRp9MxevRoYmJiiImJ4YUXXtCOl5RZs2YxaNCgEqsPYOjQ\noUybNq1E6zQWSQ5ClAJ9tWrsbdqULVeuEFZGd5dLTEzE1dWVsLAw9Ho9/fr14+bNm3Tq1Ekr4+/v\nT3Jy8iPXmZyczI8//siQIUMKJM2HJdGNGzfSsmVL0tLSGDRoEK+//jr+/v64uLiwceNGLebWrVvj\n6+uLr68ve/bs0c7/9ttvtZbDg8qlp6fTtWtXXF1dGTp0KEopsrOzGTRoEB4eHnh6evLZZ58B4Ozs\nTGJiIlfLQzeiKmPKYMhCaG7cvav+deKESsvKMtyTGOg7kpCQoHQ6nfr111+VUkoNHjxYTZ8+XXs8\nKytLNW3aVO3atUsppVRkZKTy9vYu8PP8889r5/Tt21cdPHhQRUVFqa5du2rHJ0yYoOzt7ZWnp6ca\nPHiwunLlilJKqYULF6rhw4er7777TgUGBqqrV68qpZQaNGiQ6tSpk1JKqRMnTig7Ozt169YtdePG\nDXXr1i2llFLx8fHKz89PKaVUamqqcnd3156vqHKRkZGqSpUqKiEhQWVnZ6sOHTqob7/9Vh04cEB1\n6NBBO/9eHEop9corr6gff/zxid5rQyjutVNaDkKUoqoVKvCpkxO1y+hCfQ0aNKBFixZAbnfSrl27\ntMeGDRtGmzZteP7554HcRTHvdQvl/bl3zg8//EC9evXw8fEp0EoYOnQoCQkJxMbGYmNjw5tvvgnk\ntia2b9/Oxx9/zI8//kjNmjW1c0JCQgBwcnLC0dGR48ePk5WVxZAhQ/D09CQkJIRjx44BcObMGWxs\nbLRziyoHEBAQgIODA2ZmZoSGhrJr1y4cHR05ffo0I0eO5KeffqJGjRpa+fr165OYmPjE77WxSXIQ\nQjyyvH3+Sint94kTJ5KWlsann36qPR4ZGakNKOf9adWqFQC//vorGzZsoGHDhoSGhrJ9+3ZeeeUV\noOg12HQ6HY0aNSIzM5Pjx48/NN4ZM2ZgY2PD4cOH2b9/P7dv384X/6OUK+w1P/PMMxw6dIigoCDm\nzJnDkCFDCn1fyjJJDkKYgPv/cjY5W7fCzz9z9uxZ9u7dC8Dy5csJDAzkq6++YsuWLSxfvjzfKcHB\nwQ9sOUyePJmkpCQSEhJYuXIlbdu2ZfHixUDRa7AppbC3t+fbb7/llVdeIS4uTjv+zTffoJTi5MmT\nnD59GhcXF9LT07G2tgZg8eLFZGdnA2Bvb8/5PHePFVUOIDo6msTERHJycli9ejWBgYGkpaWRnZ1N\n7969mTRpEgcPHtTKp6am4uDg8OTvuZFJchDCBIxPSOADU7yT6fZtGDMGXn0VqlbFxcWFL774Ar1e\nz7Vr13j99dcZOnQoFy9epEWLFvj4+PDhhx8+1lPl/Wv77bffxtPTEy8vL3755RdmzJihldHpdLi4\nuLBs2TL69evH6dOn0el0PPfccwQEBNClSxfmzp1L5cqVGTZsGIsWLcLb25vjx49TvXp1IHczsrt3\n73L9+nWAIsvpdDr8/f0ZPnw4er0eR0dHevbsSXJyMsHBwfj4+DBgwACmTp2qxR4TE6N1vZVlsraS\nECbgQlYWPX7/nUZVqvC1qyuVzZ7g77aSWlvp2DHo3x8cHOCrr0jMyKBbt24cOXLkyesuYa+++ird\nunUrsP/Lg0yYMIEmTZrw4osvllgc8fHxjBkzhg0bNpRYnSVF1lYSogyyqlSJSC8v7ihF+0OHuHTn\njvGCUQrmzIHWrWHoUPjuO6hTByjZeQbG9sYbb7Bo0aISrXPOnDmMHTu2ROs0Fmk5CGFCcv7aXe7b\nP/9ki6cnDatWLX4lT9JyuHQJhgyBs2dh+XJwdX28eoTJkZaDEGWYmU7HFEdH/tuwIXVK+3bXrVvB\n2xsaN4Y9eyQxPOWk5SBEeVPclsPt2/Dee7ByJSxaBO3aGS42YTTFvXYabCc4IUQZkHfQ+dAhbWxB\nCOlWEqKMuJWTU3JrMj1g0FkIkJaDEGXGvHPnWPXnn6xzd+fZJxmPyDvovHOnjC2IQknLQYgy4g1b\nWwJr1qT5wYMcv3Hj8Sq5N+js7Gwyg85paWna0ho2NjbaPg5OTk60bdsWNzc33N3dmTlz5iPXuXXr\nVvz8/PD09MTPz4/IyMgCZbp3767NvAa4ffs2L774Is7OzjRv3pwzZ84AuSu25i03b948/Pz8uHbt\n2hO8atMnLQchyoh7dzI5Va1K65gYVru50eaZZx7t5LyDzgsXQvv2Bo21OOrUqUNMTAyQu0aTpaUl\no0eP5vz585w/fx5vb28yMzPx9fWlQ4cONGnS5KF11q1blx9++AFra2uOHj1Kx44d8y0l/t1332Fp\naZlv3sb8+fOpU6cOJ06cYNWqVbz99tusXLkyX71Llixh1qxZREZG5lv0rzySloMQZUy4jQ3L9Hr6\nHT1K5JUrDz/hjz+geXM4dSp30NmEEkNh7t1RY21tjbe3NwDVq1enSZMmnDt37pHq8Pb21tZK0uv1\n3Lx5kzt/TSzMzMxkxowZjB8/Pt/dOxs2bGDgwIEA9OnTh59//jlfnatXr+ajjz5i69at1K5d+8le\nZBkgLQchyqD2tWqxy8eHBpUrF11IKfjySxg/Hv77X3jttdzbXMugxMREYmJiaNasGQDTp09n2bJl\nBcq1adNG23jnnjVr1uDr64v5X+M077//PmPGjMHCwiJfuZSUFBo0aABAxYoVqVmzJpcvX9aef8SI\nEcTGxlKvXr0Sf32myGAth6SkJIKDg4vsL/zkk08wMzPT3nyAKVOm4OzsjKurK1u2bDFUaEKUC40t\nLKhaoULhD166BL16wdy5uYPOf/97mU0MmZmZ9O3bl4iICG1BvDFjxhS64uv9ieHo0aOMGzeOuXPn\nAhAbG8vp06fp0aNHse75r1evHvb29qxatarkXpiJM1jLwdzcnBkzZhTaX5iUlMTWrVuxt7fXysfF\nxbFq1Sri4uJISUmhffv2xMfHY/YkC5AJ8bTy9obQUFi1Ch7UujBxd+7coU+fPoSFhdGzZ0/t+LRp\n0wosEQ7QunVrIiIigNwtSHv37s2SJUto2LAhAHv37mX//v00bNiQu3fvcvHiRdq2bcv27duxtbXl\n7Nmz1K9fn7t373Lt2jVq165Neno6FhYWbNy4kcDAQOrVq0f//v1L5w0wpifad64YevToobZt26aU\nyt0a8NChQ8rBwUGlpaUppZSaPHmymjp1qla+Y8eOas+ePQXqKcWQhShbbt1S6s03c7cJ3brV2NE8\nlgkTJmhbj+bk5KgBAwaoUaNGFbueK1euKE9PT7V27doiyyQmJubbKvSLL75Qr7/+ulJKqRUrVqgX\nX3xRKZW7Peq9cgkJCcre3l799NNPxY7J2Ip77SyVMYe8/YXr16/Hzs4OT0/PfGXOnTtH8+bNtd/t\n7OxISUkptL4JEyZo/w4KCiIoKMgQYQtBlC7K2CE8EgvO0oRJ3MKa46zjboeKQJSxw3pkQSpI+/e9\nO4h2797N0qVL8fT0xMfHB8jten7hhRceWt+sWbM4deoUEydOZOLEiUDu7a3PPvusVkbdt2NbeHg4\nAwYMwNnZmTp16uS7U+leOQcHBzZs2EDnzp1Zt24dfn5+j/+iDSwqKoqoqKjHr8AwOer/ZWRkKF9f\nX7V27Vp1/fp1FRAQoK5du6aUUsrBwUFdunRJKaXU8OHD1dKlS7XzwsPD1Zo1awrUVwohC1F25OQo\nNWeOUs8+q9Tcubm/C1GI4l47DdpyuL+/8MiRIyQmJuLl5QXk9gn6+vry22+/YWtrS1JSknZucnIy\ntra2hgxPiLJNZjoLAzLYqqxKKQYOHEidOnW0Lf7u17BhQw4cOEDt2rWJi4ujf//+REdHawPSJ0+e\nLLC5iKzKKgSwbRsMGpQ76Pzhh2V60FmUDpNZlbWw/sLJkyfTqVMnrUzeC79eryckJAS9Xk/FihWZ\nPXt2udp1SogSYcIznUX5Ivs5CFFW/PFHbkvhrz2dZRVVURyyE5wQ5Y1SuZPZAgNleW1RamT5DCFM\nmQw6CyORloMQpmrbNpNbXls8PaTlIISpkUFnYQIkOQhhSu4NOtvbQ2ws5JnRK0Rpkm4lIUzB/YPO\na9dKYhBGJS0HIYxNBp2FCZKWgxDGJIPOwkRJy0EIY5BBZ2HiJDkIUdouXoSOHWXQWZg0WT5DiNKW\nnQ0bNkDPnmV2605R9hT32inJQQghngKytpIQQognJslBCCFEAZIchBBCFCDJQQghRAGSHIQQQhQg\nyUEIIUQBkhyEEEIUIMlBCCFEAZIchBBCFCDJQQghRAEGSw5JSUkEBwfj5uaGu7s7M2fOBOD999/H\ny8sLb29v2rVrR1JSknbOlClTcHZ2xtXVlS1bthgqtEJFRUWV6vOVhLIWc1mLFyTm0lDW4oWyGXNx\nGSw5mJubM2PGDI4ePcrevXv54osvOHbsGGPHjuXQoUPExsbSs2dPJk6cCEBcXByrVq0iLi6OzZs3\nM2zYMHJycgwVXgFl8X92WYu5rMULEnNpKGvxQtmMubgMlhysra3x9vYGoHr16jRp0oRz585haWmp\nlcnMzOTZv5YrXr9+PaGhoZibm+Pg4ICTkxPR0dGGCk8IIcQDlMp+DomJicTExNCsWTMA3nvvPZYs\nWULVqlW1BHDu3DmaN2+unWNnZ0dKSkpphCeEEOJ+ysAyMjKUr6+vWrt2bYHHpkyZogYNGqSUUmr4\n8OFq6dKl2mPh4eFqzZo1Bc4B5Ed+5Ed+5OcxforDoC2HO3fu0KdPH8LCwujZs2eBx/v370/nzp0B\nsLW1zTc4nZycjK2tbYFzlOzlIIQQBmewMQelFOHh4ej1ekaNGqUdP3HihPbv9evX4+PjA0D37t1Z\nuXIlWVlZJCQkcOLECQICAgwVnhBCiAcwWMth9+7dLF26FE9PTy0BTJ48mfnz53P8+HEqVKhAo0aN\n+N///geAXq8nJCQEvV5PxYoVmT17NjrZQlEIIYyjWJ1Q5dSmTZuUi4uLcnJyUlOnTjV2OAW8+uqr\nql69esrd3V07lpaWptq3b6+cnZ1Vhw4d1JUrV4wYYUFnz55VQUFBSq/XKzc3NxUREaGUMt24b968\nqQICApSXl5dq0qSJGjdunFLKdOPN6+7du8rb21t17dpVKWX6Mdvb2ysPDw/l7e2t/P39lVKmHfOV\nK1dUnz59lKurq2rSpInau3evScf7xx9/KG9vb+2nRo0aKiIiotgxP/UzpLOzsxk+fDibN28mLi6O\nFStWcOzYMWOHlc+rr77K5s2b8x2bOnUqHTp0ID4+nnbt2jF16lQjRVe4oua5mGrcVapUITIyktjY\nWJHIyzMAAAgnSURBVA4fPkxkZCS7du0y2XjzioiIQK/Xay1tU49Zp9MRFRVFTEyMdreiKcf8z3/+\nk86dO3Ps2DEOHz6Mq6urScfr4uJCTEwMMTExHDhwAAsLC3r16lX8mEspmZmsX3/9VXXs2FH7fcqU\nKWrKlClGjKhwCQkJ+VoOLi4u6vz580oppVJTU5WLi4uxQnskPXr0UFu3bi0TcV+/fl35+fmp33//\n3eTjTUpKUu3atVPbt2/XWg6mHrODg4O6dOlSvmOmGvPVq1dVw4YNCxw31Xjv99NPP6lWrVoppYof\n81PfckhJSaFBgwba72VlfsWFCxewsrICwMrKigsXLhg5oqLlnediynHn5OTg7e2NlZWVtvSLKccL\n8K9//Ytp06ZhZvb/X2VTj1mn09G+fXv8/PyYN28eYLoxJyQkULduXV599VWaNm3Ka6+9xvXr1002\n3vutXLmS0NBQoPjv8VOfHMrDoLdOpzPZ15GZmUmfPn2IiIjINzseTC9uMzMzYmNjSU5OZseOHURG\nRuZ73NTi/eGHH6hXrx4+Pj5F3uJtajFD7s0qMTExbNq0iS+++IKdO3fme9yUYr579y4HDx5k2LBh\nHDx4kGrVqhXojjGlePPKysri+++/p1+/fgUee5SYn/rkcP/8iqSkJOzs7IwY0aOxsrLi/PnzAKSm\nplKvXj0jR1TQvXkuAwYM0Oa5lIW4a9asSZcuXThw4IBJx/vrr7+yYcMGGjZsSGhoKNu3b2fAgAEm\nHTOAjY0NAHXr1qVXr15ER0ebbMx2dnbY2dnh7+8PQN++fTl48CDW1tYmGW9emzZtwtfXl7p16wLF\n/+499cnBz8+PEydOkJiYSFZWFqtWraJ79+7GDuuhunfvzqJFiwBYtGhRoZMMjUkVMc/FVOO+dOkS\nV69eBeDmzZts3boVHx8fk40Xcm8NT0pKIiEhgZUrV9K2bVuWLFli0jHfuHGDjIwMAK5fv86WLVvw\n8PAw2Zitra1p0KAB8fHxAGzbtg03Nze6detmkvHmtWLFCq1LCR7ju2fg8ZAy4ccff1SNGzdWjRo1\nUpMnTzZ2OAW89NJLysbGRpmbmys7Ozv19ddfq7S0NNWuXTuTvJVOKaV27typdDqd8vLy0m6p27Rp\nk8nGffjwYeXj46O8vLyUh4eH+vjjj5VSymTjvV9UVJTq1q2bUsq0Yz59+rTy8vJSXl5eys3NTfu+\nmXLMsbGxys/PT3l6eqpevXqpq1evmnS8SimVmZmp6tSpo9LT07VjxY1Zp5SsRyGEECK/p75bSQgh\nREGSHIQQQhQgyUEIIUQBkhyEEEIUIMlBiL+89957PPfccwUm6z3IkSNHGDx4MAALFy5kxIgR2mOp\nqal07NiRX375hW7duj12XA4ODly+fBmAAwcO4OjoSGxsLBs2bGDSpEmPXa8QDyLJQYi/9OjRo9j7\nlk+bNo2hQ4fC/7V39yDJtWEcwP9mpNEHNRSWiFPYkKVWSkVOSkoFBRVBi4MR5hBBSIEh5txWODQ0\nFAVSDSJkBtGHfWloqFFCUAkh4dAUUZK9w8Pji1kitryvXL/tnPv2XPdx+Xs8nkukP23vdDqhUql+\nva6/xw0EAhgcHITNZoNIJEJvby82NzcRj8d/XYOQrygcSF55eXlBd3c3RCIRhEIhbDZb2pxoNAq5\nXA6xWAyhUAi32w0AkEql4HA4Wdd6e3vD2dlZ8unZr3Z2dqBWq1NaW3i9XkgkEtzd3SEWi0GpVKKh\noQGjo6MpVwhfXV1dob+/H6urq2hpaQHwJzTa2trgcrmyXjMh2aJwIHnF6XSCy+Xi8vISwWDw20/u\n6+vrUKlU8Pv9CAQCEIlEOdXy+/0QCATfjn18fCAcDqO+vj657+TkBDqdLtnywmw2Q6FQIBQKYWBg\nAJFI5NtjfX5+oq+vD4uLi2hvb08Zk0qlODw8zGn9hGRC4UDySmNjI3Z3dzE9PQ23243y8vK0Oa2t\nrVheXobZbEYgEEBpaWlOtR4eHpJ9gr46Pz+HTCZLbl9fX2NsbAwOhyPZu+v4+BjDw8MAgK6uLlRW\nVn57LAaDAaVSiaWlJSQSiZSx2tpa3N/f57R+QjKhcCB5pa6uDn6/H0KhEEajERaLBR6PB2KxGGKx\nGA6HA52dnTg6OgKXy4VGo8HKykpOtRgMxo/dULe3t6FWq5PzampqUFxcDJ/PlzIv2wYFCwsLAIDx\n8fGU/YlE4j/ZEZT8/1E4kLwSjUbBZrMxMjKCqakp+Hw+SKXS5D9j9fT0IBKJoKqqClqtFlqtFn6/\nP6dafD4/2eXyq729PSgUCgB/AqCiogIOhwMzMzM4ODgAAHR0dCTvibhcLjw/P/9Yq6CgAGtra7i5\nuYHJZEo5Xz6fn9P6CcmEwoHklWAwCJlMBrFYDIvFgtnZ2bQ5+/v7EIlEkEgksNlsmJiYAAAYDAbw\neDy8vr6Cx+Nhbm4uY62mpiaEw+HkdjweB4vFQiwWA5vNRklJCYB/e+dXV1fD4XBAr9fD6/XCZDIl\nu5JubGyAw+F8+zPav1cGLBYLdrsddrsdVqsVAODxeCCXy3N7swjJgBrvEfILGo0GOp0OMpkMk5OT\nEAgEKCsrw+PjIwwGQ8bXvr+/g8lkgslk4vT0FHq9Pu1rp0wSiQQkEgkuLi5QWFj421MhJAWFAyG/\nEAqFMD8/j6enJ8TjcWxtbWX9EN3t7S2GhoaQSCRQVFQEq9WK5ubmrGvb7XYEAgEYjcZcl0/Ijygc\nCCGEpKF7DoQQQtJQOBBCCElD4UAIISQNhQMhhJA0FA6EEELSUDgQQghJ8w92HfCDcvY+zwAAAABJ\nRU5ErkJggg==\n" } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 11.13 page no.657" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given\n", "T0=288 #K Temprature\n", "p0=101 #kPa(abs) pressure\n", "l=2 #m length of duct\n", "D=0.1 #m diameter\n", "f=0.02\n", "pd=45 #kPa(abs)\n", "f=0.02\n", "k=1.4\n", "lnew=(50/100)*l #m new length of duct\n", "x=lnew*f/D\n", "\n", "#Calculation\n", "#from this value of x, following are found\n", "Ma=0.7\n", "prat=1.5 #where prat=p1/pcritical\n", "#from this value of Ma, following are found\n", "pratio=0.72 #where pratio=p1/p0\n", "dratio=0.79 #where dratio=d1/d0,1\n", "Vratio=0.73 #where Vratio=V1/Vcritical\n", "#hence,\n", "p2=(1/prat)*pratio*p0 #kPa(abs)\n", "pcritical=p2 \n", "#we find that pd