{ "metadata": { "name": "", "signature": "sha256:2c766184265d0fbac418d28bb9bf90901876d6391c17795f3832fa9524c975b3" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 9:Flow over immersed bodies" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.1 Page no.487" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "U=25.0 #ft/sec\n", "p=0 #gage\n", "b=10.0 #ft\n", "t=1.24*(10**-3) #where t=stress*(x**0.5)\n", "a=0.744 #where a=p/(1-((y**2)/4))\n", "p1=-0.893 #lb/(ft**2)\n", "from scipy import integrate\n", "def f(x):\n", " return(2*t*b/(x**0.5))\n", "drag1=integrate.quad(f,0.0,4.0)\n", "print \"The drag when plate is parallel to the upstream flow=\",drag1[0],\"lb\"\n", "\n", "def f1(y):\n", " return((((a*(1-((y**2)/4))))-p1)*b)\n", "drag2=integrate.quad(f1,-2.0,2.0)\n", "\n", "#result\n", "print \"The drag when plate is perpendicular to the upstream flow=\",drag2[0],\"lb\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The drag when plate is parallel to the upstream flow= 0.0992 lb\n", "The drag when plate is perpendicular to the upstream flow= 55.56 lb\n" ] } ], "prompt_number": 28 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.5 Page no.508" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "U=10.0 #ft/sec\n", "Twater=60.0 #degree F\n", "Tglycerin=68.0 #degree F\n", "kviswater=1.21*(10**-5) #(ft**2)/sec\n", "kvisair=1.57*(10**-4) #(ft**2)/sec\n", "kvisglycerin=1.28*(10**-2) #(ft**2)/sec\n", "Re=5*(10**5) #assumption\n", "\n", "#calculation\n", "xcrwater=kviswater*Re/U #ft\n", "xcrair=kvisair*Re/U #ft\n", "xcrglycerin=kvisglycerin*Re/U #ft\n", "btwater=5*(kviswater*xcrwater/U)**0.5 #ft where bt=thickness of boundary layer\n", "btair=5*(kvisair*xcrair/U)**0.5 #ft\n", "btglycerin=5*(kvisglycerin*xcrglycerin/U)**0.5 #ft\n", "\n", "#result\n", "print \"a)WATER\"\n", "print \"location at which boundary layer becomes turbulent=\",round(xcrwater,2),\"ft\"\n", "print \"Thickness of the boundary layer=\",round(btwater,5),\"ft\"\n", "print \"b)AIR\"\n", "print \"location at which boundary layer becomes turbulent=\",round(xcrair,2),\"ft\"\n", "print \"Thickness of the boundary layer=\",round(btair,3),\"ft\"\n", "print \"c)GLYCERIN\"\n", "print \"location at which boundary layer becomes turbulent=\",round(xcrglycerin,2),\"ft\"\n", "print \"Thickness of the boundary layer=\",round(btglycerin,2),\"ft\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "a)WATER\n", "location at which boundary layer becomes turbulent= 0.61 ft\n", "Thickness of the boundary layer= 0.00428 ft\n", "b)AIR\n", "location at which boundary layer becomes turbulent= 7.85 ft\n", "Thickness of the boundary layer= 0.056 ft\n", "c)GLYCERIN\n", "location at which boundary layer becomes turbulent= 640.0 ft\n", "Thickness of the boundary layer= 4.53 ft\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.7 Page no.512" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib inline" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n", "For more information, type 'help(pylab)'.\n" ] } ], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "T=70.0 #degree F\n", "U1=0.0 #ft/sec\n", "U2=30.0 #ft/sec\n", "l=4.0 #ft\n", "b=0.5 #ft\n", "d=1.94\n", "vis=2.04*(10**(-5))\n", "x=d*l/vis\n", "U=10.0 #ft/s U1 < U < U2\n", "\n", "#calculation\n", "import math\n", "Re=d*l*U/(vis) #Reynold no.\n", "#but we take Re approximately =3800000\n", "Re_=3.8*10**6\n", "Cd=0.455/((math.log10(Re_))**2.58)-(1700.0/Re_)\n", "D=d*U**2*Cd\n", "print \"The Drag is \",round(D,3),\"lb\"\n", "\n", "#Plot\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "fig = plt.figure()\n", "ax = fig.add_subplot(111)\n", "\n", "U=[0,3,8,20,30]\n", "Df=[0,0.1,0.598,2.4,5]\n", "xlabel(\"U (ft/s)\") \n", "ylabel(\"Df (lb)\") \n", "plt.xlim((0,30))\n", "plt.ylim((0,5))\n", "a=plot(U,Df)\n", "\n", "U1=[0,1,1.5,3,5,8,15,30]\n", "Df1=[4,4,3,1.5,1,0.598,0.4,0.3]\n", "ax.annotate('Entire boundary layer laminar', xy=(0.5, 4), xytext=(3,4.2),\n", " arrowprops=dict(facecolor='black', shrink=0.001),\n", " )\n", "xlabel(\"U (ft/s)\") \n", "ylabel(\"Df (lb)\") \n", "plt.xlim((0,30))\n", "plt.ylim((0,5))\n", "\n", "a=plot(U1,Df1,linestyle='--')\n", "plt.text(20,2.8,'Df')\n", "plt.text(3,2.5,'Xcf')\n", "\n", "show(a)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Drag is 0.597 lb\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEMCAYAAAAlGRZyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4Ttfa+PHvk0GCqKnELFSRSCIhEmoKSVR+gkM5paVq\nqFKdqB46nJ7Qnr5FHScOfV9VbVXpYKy5hibUVBpTK2KOpgQhyCySrN8fu3mONAkZnif7Ge7PdeUS\nyd573Tube6/ce+21DEophRBCCJvmoHcAQgghzE+SvRBC2AFJ9kIIYQck2QshhB2QZC+EEHZAkr0Q\nQtgBJ3M34OHhwUMPPYSjoyPOzs4cPHjQ3E0KIYT4E7Mne4PBQExMDHXq1DF3U0IIIUpQKWUceW9L\nCCH0ZfZkbzAYCA0NJSAggMWLF5u7OSGEEMUwexln7969NGzYkOTkZMLCwmjbti3du3cHtBuBEEKI\nsitrxcTsPfuGDRsCUK9ePQYNGlTkAa1SymY//vGPf+geg5yfnJ89np8tntuOHYp69RQHDpSvLG7W\nZJ+ZmUlaWhoAGRkZbNu2DR8fH3M2KYQQNmfPHhg2DFatgqCg8h3DrGWcq1evMmjQIAByc3N5+umn\n6dOnjzmbFEIIm3LoEAweDCtWQI8e5T+OWZN9ixYtOHr0qDmbsGjBwcF6h2BWcn7WzZbPz1bO7dgx\niIiAJUsgLKxixzIopXQbF2kwGNCxeSGEsFgnT0JICERFwdChhb9Xntwp0yUIIYSFOXtW68nPnl00\n0ZeXJHshhLAgFy9CaCi88w6MGGG640qyF0IIC3H5sla6mTwZxo837bEl2QshhAW4dk1L9OPGwSuv\nmP74kuyFEEJnKSnQp49Wn58+3TxtyGgcIYTQUWqqVqPv0QPmzIHSzCJTntwpyV4IIXSSkQF9+4Kv\nLyxYULpED5LshRDCamRlQf/+0KwZfPIJOJShqC7JXgghrEBODgwaBA89BF9+CY6OZdtfkr0QQli4\n3Fx48knIz4dvvwVn57Ifozy50+zz2QshhNDk5cGoUZCZCevWlS/Rl5ckeyGEqAT5+TBhAiQlwaZN\n4OJSue1LshdCCDNTCl59FU6cgG3boGrVyo9Bkr0QQpiRUtqLUvv2wc6d4OamTxyS7IUQwoxmzoQt\nWyA6GmrW1C8OSfZCCGEms2fDV1/Brl1Qt66+sUiyF0IIM1iwABYtgt27wd1d72gk2QshhMktWaLN\nc7NrFzRurHc0Gkn2QghhQitWaAuPxMSAh4fe0fyXJHshhDCRNWvgtddgxw549FG9oylMkr0QQpjA\n5s0wcSJs3Qrt2ukdTVGS7IUQooJ27oRnn4UNG8DfX+9oiicrVf3B0dERf39/48fs2bPvu/2uXbvY\nv3+/8e+LFi1i2bJl5W7/2WefZfXq1eXevzzczPR2h4eHBykpKWY5dnFM+bPr2rWrSY4j7MeePTBs\nGKxaBUFBekdTMunZ/6FatWocOXKk1NtHR0dTo0YNunTpAsDzzz9f7HZ5eXk4lmL+UkNpVy0wobK0\nWTDDXmn2Mfe55Ofn43DP5N8Gg8Fkbe7du9ckxyntdRfW7dAhGDxYeyjbo4fe0dyf9OwfwMPDg8jI\nSDp27Iivry+nTp0iISGBRYsWMW/ePPz9/dmzZw+RkZHMnTsXgODgYCZPnkynTp2YP38+sbGxBAcH\nExAQQN++fbly5Uqxbe3YsYNOnTrRpk0bNm3aBEB2djajR4/G19eXDh06EBMTA8Dnn3/OSy+9ZNw3\nIiKC3bt3A1qP/e2338bPz48uXbpw7do1AC5cuECXLl3w9fXl7bffNu6bnp5OaGio8RzXr18PQEJC\nAm3atGHUqFH4+Pjw7rvvMnnyZON+ixcvZsqUKff9+Q0aNIiAgAC8vb1ZvHgxAJ9++mmJx/nyyy8J\nCgrC39+fCRMmkJ+fbzynqVOn4ufnx4EDB0psb+bMmQQGBuLj41PoBhwcHMyUKVPo1KkTnp6eHDp0\niEGDBtG6dWv+/ve/G7cr+G0nJiaG4OBghg4diqenJyNGjDBu8+6775bYxr3XXdi2Y8cgIkIbZhkW\npnc0paB0pHPzhTg6Oio/Pz/jx7fffquUUsrDw0MtWLBAKaXURx99pMaNG6eUUioyMlLNnTvXuP+9\nfw8ODlaTJk1SSil19+5d1aVLF3X9+nWllFJff/21GjNmTJH2R40apcLDw5VSSp05c0Y1adJEZWdn\nqw8//FCNHTtWKaVUfHy8atasmcrOzlaff/65evHFF437R0REqF27dimllDIYDGrjxo1KKaX+9re/\nqffee08ppVT//v3VsmXLlFJKLVy4ULm5uSmllMrNzVWpqalKKaWSk5NVq1atlFJKXbhwQTk4OKif\nfvpJKaVUenq6euSRR1Rubq5SSqnHHntM/frrr0XOxcPDQ924cUMppVRKSopSSqnMzEzl7e2tUlJS\nSjxOXFyc6t+/v/HrEydOVF988YXxnFauXFncpVPPPvusWrVqVaH2lFJq5MiRasOGDcZrMn36dKWU\nUlFRUaphw4bqypUr6s6dO6pJkybG/Qp+JtHR0apmzZrq0qVLKj8/X3Xp0kXt2bPngW0UXHdh2+Li\nlGrQQKk/0kSlK0/ulDLOH6pWrVpiGWfw4MEAdOjQgTVr1hi/ru6zeMCTTz4JQHx8PCdOnCA0NBTQ\nfr1v1KhRke0NBgN//etfAWjVqhUtW7YkPj6evXv38vLLLwPQpk0bmjdvzunTp+97LlWqVKFfv34A\ndOzYke3btwOwb98+1q5dC8CIESOYNm0aoJVF3njjDX788UccHBy4fPmy8beB5s2bExgYCED16tXp\n3bs3GzZsoG3btty9e5d2Dxh2EBUVxbp16wBITEzkzJkzBAYGFnucBQsWEBsbS0BAAABZWVk0aNAA\n0J6pPPHEEyW2U1DG+eGHH5gzZw6ZmZmkpKTg7e1NREQEAAMGDADA29sbb29v3P94rbFly5YkJiZS\nu3btQscMDAw0Xis/Pz8SEhLo2rXrfdsouO7Cdp09q/XkZ8+GoUP1jqb0JNmXgssfE087OjqSm5tb\nqn2qV68OaDeEdu3asW/fvjK3W5DA/nxTMRgMODk5GUscoJV7CjjfsyKCg4PDA2Nevnw5169f5/Dh\nwzg6OtKiRQvj8QrOo8C4ceP45z//iaenJ2PGjLnvcWNiYti5cycHDhzA1dWVXr16GY9b0nFGjRrF\n+++/X+RYrq6uD6zLZ2dnM2nSJGJjY2ncuDEzZswo9HMpuI4ODg7Gzwv+XtzP6N5tHB0dycvLe2Ab\nf/55Cdty8SKEhmovTY0cqXc0ZWPXNXulFKmpqeXat0aNGqSlpRU53p8/b9OmDcnJycY68927d4mL\niys2lpUrV6KU4ty5c5w/f562bdvSvXt3li9fDsDp06f57bffaNOmDR4eHhw9ehSlFImJiRw8ePCB\nMXft2pWvv/4awHhMgNTUVOrXr4+joyPR0dFcvHixxGMEBgby+++/s2LFCoYPH37f9lJTU6lduzau\nrq7Ex8cXqrUXd5yQkBBWrVpFcnIyACkpKfz2228PPK8CBUm3bt26pKens3LlylLva0ltCMt0+TKE\nhMDkyTB+vN7RlJ1d9eyVUpw+fZro6Gg2b97M7t27ycrK4ubNm2RlZeF/zwDZ8PDwIj3Me0d99O/f\nnyFDhrB+/Xrjw7h7e54Fn1epUoVVq1bx8ssvc/v2bXJzc5k8eTJeXl5Fjt2sWTMCAwNJTU1l0aJF\nVKlShRdeeIGJEyfi6+uLk5MTS5cuxdnZma5du9KiRQu8vLzw9PSkY8eORdr+c8xRUVE89dRTzJo1\ni4EDBxq//vTTT9O/f398fX0JCAjA09Oz2GMV+Otf/8qxY8eoWcJ8rQX79O3bl//7v//Dy8uLNm3a\nGEculXQcT09P3nvvPfr06UN+fj7Ozs589NFHNGvWrFSjbWrVqsVzzz2Ht7c3DRo0IKiEcXD3G71T\n3DUsTxvCtly7piX6cePglVf0jqZ8bHrBcaUU8fHxxuS+Z88ecnNzUUqRmZkJwEMPPcSaNWsICQkx\nWxy2pn///kyZMoVevXpZxHGEMKeUFOjdGwYM0OamtwTlyZ0WWcbJyspi1KhRZT4ZpRQnTpxg4cKF\nhIeHU7NmTTp16sTUqVPZtGkTt2/fJiMjw5joATIyMti5c6epT8Em3bp1izZt2lCtWrUKJWhTHUcI\nc0tNhb59tTr9jBl6R1MxFtmz37t3L926dSM+Pp42bdqUuH9+fj5xcXFER0ezceNG40PQvLw8srKy\nSh2Hr68vx44dK/sJCCFsVkaGluh9fGDhQtDhvccSladnb5E1+4KHjdHR0YWSfX5+Pr/++ivR0dFs\n2rSJffv2YTAYyM3NLTQiojQcHR2pXr062dnZNG3a1KTxCyGsW1YWDByozVy5YIFlJfrysshkX/CW\n6MaNG+ncuTMxMTFs3LiR/fv3G4fJlTW5Ozk5Ua1aNbKzs/Hy8qJfv36EhITQuXNnquqx1LsQwiLl\n5MCQIVCvHixeDA4WWewuO7OXcfLy8ggICKBJkyZs2LChcOMl/CrSqFEjkpKSMBgMVK9evcLJ3dvb\n25jcg4KCcHV1rdA5CSFsU24uPPkk5OfDt9/CPa+sWBSLLONERUXh5eVVZEx6SW7dusX169cB7YFr\nenp6qfa7N7n7+PgQERFB7969CQwMlOQuhHigvDwYNQoyM2HdOstN9OVl1mT/+++/s3nzZt566y3+\n9a9/FbvNzvOFR8Ic3ncY16qu3L17977HdnZ2xtXVlTt37tC+fXtjcu/UqVOhNx+FEOJB8vNhwgRI\nSoJNm8AWU4hZk/3kyZOZM2fOfd9Sfe6154yf12pbC4ODgTs5d4psV5Dcc3Jy8PPzMyb3gIAAqlSp\nYpb4hRC2Tyl49VU4cQK2bQNLfIQXExNjfJZZXmZL9hs3bqR+/fr4+/vfN8jza88X+dqb6k2ioqLI\nzMzEYDDQuXNnsltm82TEk0x5YkqhuV+EEKK8lILp02HfPm21KTOt51NhwcHBBAcHG/8+oxyD/s32\nnHnfvn2sX7+eFi1aMHz4cH744QeeeeaZUu373nvv0bNnT1xcXKhatSrLli2j+4juVGleRRK9EMJk\nZs6ELVvg+++hhNk/bEalvFS1a9cuPvzww1KPxgHtzVY/Pz/OnTvH4sWLSfVKJeF2AlF9o8wdrhDC\nDsyeDZ9+Crt2wR+zXVsNi54uoazLxlWvXp0dO3bg5ubG5s2b8ajlQcKtBPMEJ4SwKwsWwKJFWunG\n2hJ9eVVKsu/Zs6dxqbuyaN68OVu2bKFmzZqS7IUQJrFkCcyZoyX6xo31jqbyWOTcOMW5mXWTFlEt\nuDX9lpmjEkLYqhUr4PXXISZGmwrBWpWnjGM1yV4pRXZuNlWdLXBclBDC4q1ZA5MmwY4d8IDVNC2e\nTSd7IYQor82bYfRo2LoV7lmjyGpZ5HQJQgihp5074dlnYf1620j05SXJXghhs/bsgWHDYPVq6NxZ\n72j0ZSOTdwohRGGHDsHgwdpD2R499I5Gf1aX7O/kFp03Rwgh7nXsGEREaMMsw8L0jsYyWFWyP3bl\nGIGfBOodhhDCgp08qS0nuGAB9O+vdzSWw6qSfbOazUi4lSAjeIQQxTp7VuvJz54NQ4fqHY1lsapk\nX8u1FgC3suXFKiFEYRcvQmgovPMOjBypdzSWx6qSvcFgkGkThBBFXL4MISEweTKMH693NJbJqpI9\nIMleCFHItWtaoh83Dl55Re9oLJfVJftWdVpxPfO63mEIISxASgr06aPV56dP1zsayybTJQghrFJq\nqlaj79FDm8WyjLOoWzWZG0cIYRcyMrThlT4+sHChfSV6kGQvhLADWVna+PmmTbWXphysrhhdcZLs\nhRA2LScHBg2CGjVg+XJwdNQ7In1IshdC2KzcXHjyScjPh2+/BWdnvSPSj0WvQWtK1zOvk5GToXcY\nQohKkpcHo0ZBZiZ8/bV9J/rysspkP3b9WLad26Z3GEKISpCfDxMmQFKSttqUi4veEVknq5zPXl6s\nEsI+KAWvvgonTsC2bVBVViUtN+tM9jU9SLidoHcYQggzUkp7UWrfPm21KTc3vSOyblZZxpGevRC2\nb+ZMbe3Y77+HmjX1jsb6WWfPXpK9EDZt9mxthandu6FuXb2jsQ1Wm+xdnVz1DkMIYQYLFsCiRbBr\nF7i76x2N7ZBx9kIIi7FkiVa+2bULPDz0jsZylSd3WmXPXghhe1as0BYeiYmRRG8OkuyFELpbswZe\new127IBHH9U7GtskyV4IoavNm2HiRNi6Fdq10zsa2yXJXgihm507tWkQNmwAf3+9o7FtVjnOHiAj\nJ4O45Di9wxBClNOePTBsGKxeDZ076x2N7bPaZH/6xmmGrx6udxhCiHI4dAgGD9YeyvbooXc09sFq\nk33Bi1UydFMI63LsGEREaMMsw8L0jsZ+WG2yr+VaC4Bb2bd0jkQIUVonT2rLCS5YoK02JSqP1SZ7\ng8Eg0yYIYUXOntV68rNnw9Chekdjf8ya7LOzswkKCsLPzw8vLy/eeOMNkx5fkr0Q1uHiRQgN1V6a\nGjlS72jsk1mHXrq6uhIdHU21atXIzc2lW7du7Nmzh27dupnk+N2bdcfRwU4XoRTCSly+DCEh2rz0\n48frHY39Mvs4+2rVqgGQk5NDXl4ederUMdmxpz421WTHEkKY3rVrWqIfO1ZL9kI/Zq/Z5+fn4+fn\nh7u7O7169cLLy8vcTQohLEBKCvTpo9XnTVzBFeVg9p69g4MDR48e5fbt2zz++OPExMQQHBxs/H5k\nZKTx8+Dg4ELfE0JYp9RUbdRNaCjMmKF3NNYvJiaGmJiYCh2jUqc4fvfdd6latSpTp2rlF5niWAj9\nODo64uvry927d3FycuKZZ55h8uTJGAwGAIYPH05cXBxjxozhlVdeKfVxMzK0RO/jAwsXwh+HEyZk\ncVMcX79+HScnJ2rVqkVWVhbbt2/nH//4hzmbFEKUUrVq1Thy5AgAycnJPPXUU6SmphIZGcmVK1f4\n+eefOXPmTJmOmZUFAwdCq1baWHpJ9JbDrDX7pKQkevfujZ+fH0FBQfTv35+QkBCTtnEt4xrfxX9n\n0mMKYW/q1avHxx9/zIIFCwDo06cPly5dwt/fnz179pTqGDk5MGQIPPwwfPIJOFjtWzy2yepXqkq4\nlUDnTzqT9FqS8ddPIcSD1ahRg7S0tEJfq127NqdPnyYzM5OIiAh++eWXUh0rNxeefBLy8mDlSnB2\nNkfEokB5cqfV33sL1qM9deOU3qEIYTPKkkjy8rRpijMz4ZtvJNFbKqtP9gDBHsHEJMToHYYQVu38\n+fM4OjpSr169Uu+Tnw8TJkBSkrbalIuLGQMUFXLfB7R3795l27Zt7N69m4SEBAwGA82bN6dHjx48\n/vjjODlZxtonwR7BbD27lQkBE/QORQirlJyczIQJE3jppZdKvY9S2otSJ07Atm1QtaoZAxQVVmK2\nfvfdd1m9ejVdunQhMDCQ3r17k5+fT1JSEhs2bOCtt95iyJAhvP3225UZb7GCPYKZvmM6Simp2wtR\nSllZWfj7+xcZelngfv+XlILp02HfPm21KTe3yohYVESJD2jXr19P//79S7zg+fn5bNy4kQEDBpS/\ncROOs5//03ye7/g8Lk7ye6QQ5jZjBqxaBTExULeu3tHYn/LkzlKPxklNTcVgMFCjRo1yBVds4/JS\nlRBWZ/ZsbeGR3bvB3V3vaOyTWUbjHDp0CB8fH3x8fPD29qZ9+/b8/PPP5Q5SCGG9FiyARYu00o0k\neuvywJ69j48PH330Ed27dwdgz549vPDCCxw/frzijUvPXgirsWQJzJwJu3aBh4fe0dg3s0yX4OTk\nZEz0AN26dbOYUThCiMqxYoW28EhMjCR6a1Vizz42NhaAZcuWkZWVxfDhwwH45ptvcHV1Zd68eRVv\nXHr2Qli8NWtg0iTYsQPatdM7GgEmfkAbHBxsHIlz75DGgs+jo6MrGK7pk/2+xH2sjV/LnLA5Zdov\nMTGRnj17EhsbS+3atbl58yYdO3YkJiaGZs2aFdk+Pj6eYcOG4ejoyKpVq2jRooWpTkEIi7J5M4we\nDVu3gr+/3tGIAmYdjWMOpk72FZknZ86cOZw9e5ZFixbx/PPP07JlS6ZNm1bsth988AF5eXm89dZb\npghbCIu0cycMGwYbNkDnznpHI+5l0mQ/d+7cYhNmQc9+ypQp5Yvy3sbNUMbx+LcHW0dspe3Dbcu0\nX25uLh07dmT06NEsWbKEo0eP4ujoyKxZs1i+fDkODg6Eh4fTo0cPxowZg6OjI61bt+aHH34wafxC\nWII9e2DQIG0sfc+eekcj/sykD2jT0tKs8m3UgnlyyprsnZycmD17NuHh4Wzfvh1HR0e2bNnC+vXr\nOXjwIK6urty8eZPatWszYcIEatSoYZIbnhCW5tAhGDwYli+XRG9LSkz29y4XaE0qMk/Oli1baNSo\nEb/88gshISHs2LGDMWPG4OrqCmjTvxaQB8vCFh07BhER2jDLPn30jkaYUokvVUVGRnL16tUSd0xK\nSrLIVacKevZlTcZHjx5lx44d7N+/n3nz5nHlyhUZLSTsysmT2nKCCxZA//56RyNMrcSefUBAAMOG\nDSMnJ4cOHTrQsGFDlFJcuXKFw4cP4+LiYlxL1pJ41PLg2IRjZSpBKaWYOHEiUVFRNG3alNdff52p\nU6cycuRIZs6cydNPP03VqlWNZRwhbM3ZsxAWpk2FMHSo3tEIcygx2UdERBAREUFiYiJ79+7lt99+\nA7SXqqZNm0aTJk0qLciycncr23vcixcvxsPDw7hk4gsvvMBnn31GtWrVGDBgAAEBAVSpUoV+/frx\n3nvvAfefEVAIa3LxIoSGai9NjRypdzTCXGxq6KUQomwuX4YePeDFF7W56YV1sMtlCYUQ5XPtGoSE\nwNixkujtgSR7IexQSoo22mbIEHjjDb2jEZXBZpN9Tl4O1zKu6R2GEBbn4EEIDtZ69TNn6h2NqCw2\nm+xX/LKCl7e8rHcYQliM69dh/Hj4y19g6lT48EOQcQb2w2aTfXnH2wtha/LytAVHvLygWjVtPP0z\nz0iitzclJvuoqChAW6zEGnnU8sDVyZVTN07pHYoQujl0SJvEbNky2L4d/v1vqFlT76iEHkpM9p9+\n+ikAL730UqUFY2oFvXsh7E1ByWbAAHjpJfjxR2jfXu+ohJ5KTPZeXl48+uijnDp1yrgGbcGHr69v\nZcZYbpLshb3Jy4OPP9YWGXF1lZKN+K8S36D96quvuHLlCn369GHDhg1WWfuWZC/syaFD2opSVarA\n99+Dn5/eEQlLUqo3aJOTkwGoV6+eaRuXN2iFqLAbN+DNN2H9evjgA23KAwebHXohwMRv0CqliIyM\n5OGHH6Z169a0bt2ahx9+mBkzZkiCFsIC5OfD4sXaKBsXF61kM2qUJHpRvBL/WcybN4+9e/dy6NAh\nbt68yc2bNzl48CB79+41yWLjQojy+/ln6NIFPv9cK9nMnw+1aukdlbBkJZZx/Pz82L59e5HSTXJy\nMmFhYRw9erTijUsZR4gyuXED3noL1q3TSjbPPCM9eXtk0jJObm5usTX6evXqkZubW/bohBDllp8P\nn3yilWycnbWSzbPPSqIXpVfiaBxnZ+cSd7rf9yzRvsR95OTlEOwRrHcoQpRZbCy88AI4OsooG1F+\nJSb748ePU6NGjWK/l5WVZbaAzOH0jdNsPbtVkr2wKikpWslm7Vop2YiKK/GfTl5eHmlpacV+WFsZ\nR+bJEdYkP19b8NvLS+vNS8lGmIJZ//kkJibSq1cv2rVrh7e3N/PnzzdncyWSeXKEtYiNhcce0+rz\nmzdri3/LssfCFMya7J2dnZk3bx4nTpzgwIEDLFy4kJMnT5qzyRLJ27TCkqWkaHX5fv3g+edh717o\n0EHvqIQtMWuyb9CgAX5/PE1yc3PD09OTy5cvm7PJEkmyF5bo3pKNwaCVbEaPlpKNML0SH9CaWkJC\nAkeOHCEoKKiymiwkvFU47tXddWlbiOIcPqz15g0GrWQjPXlhTpWS7NPT0xkyZAhRUVG4ubkV+l5k\nZKTx8+DgYIKDg80Sg7ubO+GPhpvl2EKUxc2b8PbbsHo1vP++PHwVDxYTE0NMTEyFjlGqidAq4u7d\nu0RERBAeHs6rf1rCXt6gFfYkP1+b3uDNN2HwYHjvPahTR++ohDUqT+40a89eKcXYsWPx8vIqkuiF\nsCeHD2vTDysFmzZBx456RyTsjVl/edy7dy9ffvkl0dHR+Pv74+/vz9atW83ZpBAW5eZNePFFCA+H\nceNg3z5J9EIfZi/j3LdxKeMIG5WfD0uXwhtvSMlGmJ7FlXEs0aw9s6hfvT6j/UfrHYqwUUeOaCWb\nvDzYuBECAvSOSAgzl3EskbubO9+f+17vMIQNKijZ9O0LY8bA/v2S6IXlsLtkL/PkCFMrGGXj6Qm5\nuRAXp9XnZTilsCR2V8a5d56ctg+31TscYeWOHtVKNnfvSslGWDa77HvI1Amiom7dgpdegscf116K\nOnBAEr2wbHab7Pf/vl/vMIQVKhhl4+mp9ebj4uC556RkIyyfXQ69zMnLwdHgiKODY6W3LazXsWNa\nyebOHfjoI+jUSe+IhL0y6Rq0tqyKYxVJ9KLUbt2Cl1+GsDBttagDByTRC+tjl8leiNJQCr74QivZ\n3LmjTT88fry2epQQ1sbuRuMIURrHjmlj5rOz4bvvIDBQ74iEqBjp2Qtxj9u34ZVXtJLNyJFayUYS\nvbAFdp3sE28nkpKVoncYwgIoBcuWaSWbrCxtlI2UbIQtsesyzt+j/07nJp2ZEDBB71CEjo4f10bZ\nZGXB2rWg02JqQpiVXffs5eUq+3b7Nrz6KoSGwtNPw08/SaIXtkuSvcyTY3fuLdlkZGglmwkTpGQj\nbJtdl3Fknhz788svWskmM1NKNsK+2HXPHrTe/dqTa/UOQ5jZ7dsweTKEhMBTT0nJRtgfu0/207tN\nx8XJRe8whJkoBV9+qZVs0tLgxAkp2Qj7ZJdz4wj7UFCySU/X5rLp3FnviIQwDZkbRwggNRWmTNFK\nNsOHw6EtdlSQAAATfElEQVRDkuiFkGQvbIZSsHy5VrJJTdVKNhMnSslGCLDz0TglOZtyliNJRxja\nbqjeoYhS+vVXrWSTlgarVkGXLnpHJIRlkZ59MXLycnhl6yt8efxLvUMRD1BQsundG558UivZSKIX\noihJ9sXwqufFjmd28Lftf5OEb6GUghUrtJLNrVtaz/6FF6RkI0RJpIxTgoKEH/pFKAAjfEfoHJEo\ncOKEVrK5fVtKNkKUlvTs7+PeHn5ccpze4di91FR47TUIDoahQ+HnnyXRC1FaMs6+FG5k3qButbp6\nh2G3lIKvv4apU+Hxx+GDD6B+fb2jEkI/5cmdUsYpBUn0+jlxQlsx6tYtWLkSHntM74iEsE5SxhEW\nKS1N68kHB8MTT2ijbCTRC1F+kuzLKSMnQ+8QbFJBycbTE27c0EbZvPgiOMnvoEJUiCT7clBK0fPz\nnjIs08Ti4rQpDj74AL75Bj77DNzd9Y5KCNsgyb4cDAYDXwz6Qsbhm0haGrz+OvTsCYMHa6NsunbV\nOyohbIv8clxOMg6/4pSCb7/VhlOGhmolG+nJC2EekuwrQBJ++cXFwUsvwfXrWo2+Wze9IxLCtkkZ\np4IKEn56TrreoViFtDT429+0ks3AgRAbK4leiMogL1WJSlFQspk6VZu0bNYsaNBA76iEsE4W91LV\nmDFj2LRpE/Xr1+eXX34xZ1PCgp08qQ2fvH4dvvpKevJC6MGsZZzRo0ezdetWczYhLFh6OkybBj16\nSMlGCL2ZNdl3796d2rVrm7MJi3Xi2gm+OPaFXZapCko2np6QlKStBfvyy/JilBB60v2/X2RkpPHz\n4OBggoODdYvFlAwGA7P3zubj2I+ZFTqLrs3sY+B4fLxWsrl2TVsisEcPvSMSwvrFxMQQExNToWOY\n/QFtQkIC/fv3L7Zmb+sPaPPy8/jy+Je8E/MO7d3b837I+3jX99Y7LLNIT4f33oNPPoG//12bb156\n8kKYR3lypwy9NCNHB0dG+Y3i1IunCPYIZtA3g8i8m6l3WCallDYbpacnXLqklWxeeUUSvRCWRnr2\nlSgvPw9HB9tZNy8+Xnsx6soVWLhQSjZCVBaL69kPHz6cxx57jNOnT9O0aVM+++wzczZn8Wwl0aen\nw/Tp2siafv3g8GFJ9EJYOnmpSmdKKYasHEJYyzDG+o/F2dFZ75BKpBSsXg1TpmjJfc4caNhQ76iE\nsD/lyZ2S7C1A7OVYpu+czsVbF/ln738yxGsIBoNB77AKOXVKK9lcvqyVbHr21DsiIeyXJHsrt/3c\ndqbvnI6DwYG5febSo7n+tZGMDG2UzeLF8NZb2rBKZ8v95UMIuyDJ3gbkq3xWnliJQjHMe5hucSgF\na9bA5MlSshHC0kiyFyZx+rRWsrl0SUo2QlgiixuNI0wrNz+Xq+lXzXb8jAx4801tYe/HH4cjRyTR\nC2ErJNlbkdjLsXh95MU70e+QeifVZMctKNl4ecHFi3D8uDbiRmrzQtgOSfZWJKhJELHjY7l4+yKP\n/udRog5EcSf3ToWOefo0hIdrUxwsXarNZ9OokYkCFkJYDEn2VsajlgdL/7KUHSN3sOPCDtoubEvC\nrYQyHycjQxtd89hjEBYGR4+CjcxBJ4QohjygtXI//f4TnRp3wsFQuvu2UrBuHbz6KnTtCh9+KD15\nIayNjMYR93XmjDbK5rfftFE2vXrpHZEQojxkNI4wWn9qPXHJcQBkZsLbb0OXLhAaCseOSaIXwt7I\nRLQ2KiktiXHrx9HOuT8n1kTg90gTtu9vil8rd4ubikEIYX5SxrFB585pi4gsWX6Lar2iaBxwmKwq\niSSmJnLx1YtUc65WZJ/NZzbTqEYjmj7UlDpV68gNQQgLJjV7O5aTA999Bx9/rJVpnnkGxo2Dtm0f\nvO/dvLv85Zu/kHhbuyHk5OXQ5KEmtKjVgi1Pb5HEL4SFkWRvh86c0Xrxn38O7drB+PEwaBC4uJT/\nmGl30vg99XeuZlwl2CO4yPevZ16nZVRLmtZsStOHmhr/bFWnFU/5PFX+hoUQpSLJ3k7cuaMNn/z4\nY/j1Vxg1SuvFt25dOe0rpbiVfYvE1ETjbwMFvxHMCZtTZPur6VeZsWtGoRtD05pNaVyjMS5OFbgr\nCWGnJNnbuNOntamGly4FX1+tFz9wYMV68ZUhJSuF5ceXG28KBTcI9+ruHHzuYJHtb2ff5kTyCZo+\n1JSGNRri5CDjCIS4lyR7G5SdDWvXwqJF2pqvzz6r9eJbtdI7sopTShX7POCXq7/w3IbnSExNJDkj\nGXc3d5o+1JTQlqHM7DVTh0iFsCyS7G1IfLzWi//iC/D313rxAwZAlSp6R1a57ubd5XLaZRJTEzFg\noGuzrkW22XxmM5M2TypcJnqoKR0adqBL0y46RC2EeUmyt3LZ2doar4sWaQ9eR4+GsWPhkUf0jsyy\n5eTl8Nvt30i8ncjvqb8by0Vt6rbh1c6vFtn+4KWDbDi9wXhTaPJQE5rWbEpNl5oy8khYBUn2Viou\nTuvFL1sGAQFaL75/f5li2Fx+ufoLa06uKfIMYYz/GKL6RhXZ/uClg0RfiMbFyQUXRxfjn+3qt8Ov\ngV+R7VOyUriReaPI9i5OLqWew0iI+ylP7pQnXzrJyoKVK7URNefPw5gxcOgQtGihd2S2z8fdBx93\nn0JfU0qRm59b7PZ3cu9wI+sGd/LucCf3jvHP3PzcYpP9uvh1vP/j+0W2fzHwRT7s82GR7T878hn/\nOvCvIjeGoV5DGeM/psj2e37bw/bz27XtHF2o4lgFFycX/Bv406lxpyLbX0m/wtX0q8btCo7vVsUN\nVyfX0v7YhJWTnn0l+/VXLcEvXw5BQVovvl8/6cXbs+uZ17mUeomcvJxCN4jmNZvTrn67ItvvT9zP\n9+e+L7J9WMsw/trur0W2X3p0KXP3zy2y/aROk4p94P2/h/6XD/d/qN0c7rkBjfQdyXMdnyuy/c7z\nO9l6but/t/9jn6DGQcU+Mykot/355lPbtTY1XGqU86doX6SMY6EyM+Hbb7Ukf/GiVocfOxaaN9c7\nMiGKup19m+TMZO3mcM9vJo0fakyrOkWHgR28dJCYhJgiN5PeHr0Z2HZgke2XHVvGwkMLi2w/MWAi\nb3Z/s8j2/z7wb2btnVXk5jOuwzgmBEwosv3mM5vZdGZTod96XBxd6N6sO92bdy+y/bmUcyTcSsDF\nyaVQG/Wr16dO1Trl/CmalyR7C3P8uJbgv/pKm3Fy/Hj4f/8PnKR4JkSpZeRkcPvObe7k3il0g3B3\nc6dZzWZFto+9HMv+3/cX3j7vDj2b96Rvq75Ftl9+fDlLjizhTt6dQje45zs+z5QuU4ps/z8//g8f\n7P2gyM1kUqdJTAqcVGT7tSfXsv70+iLbh7QIoVeLotPPnkw+yZmUM0W2b/xQYxq4NQAk2VuEjAz4\n5hstyV+6pPXgx4yBZkX/TQohrFBOXg6ZdzOL3HzqVqtrTMb3OnblGIeTDhe5mXRt2rXYZP/1r1+z\n/JflRY4/rsM4Xuj0AiDJXldHj2oJ/uuvoVs3rRfft6/04oUQpiejcSpZerqW3D/+GK5c0d5sPX4c\nmjTROzIhhChMevblcPiwluC/+QZ69tR68Y8/Do6OekcmhLAH0rM3o7Q07UHrxx/D9etaL/7XX6Fx\nY70jE0KIB5Oe/X0oBbGxWoJfuVJbt3X8eAgLk168EEI/0rM3kdRUWLFCS/I3b8Jzz2lTGjRsqHdk\nQghRPtKz/4NS2nQFH3+sTUYWEqL14kNDwUGmMxFCWBDp2ZdRfr42Fn7DBi3Jp6VpvfiTJ6FB0eGy\nQghhtWy+Z5+eDhcuaJON/fkjIQFq1YLu3bVefO/e0osXQli+8uROs6a2rVu30rZtWx599FFmzZpl\nljby8+H332H3bm3R7XfegREj4LHHtN55vXrw5JPaFMIXLmhzw0+YAKtWaaNqkpK0eWvMUa6JiYkx\n7QEtjJyfdbPl87Plcysvs5Vx8vLyePHFF9mxYweNGzemU6dODBgwAE9PzzIfKyNDS9TnzpXcO2/Z\n8r8fYWFaUm/ZUkv4evXWY2JiCA4O1qfxSiDnZ91s+fxs+dzKy2zJ/uDBg7Rq1QoPDw8Ahg0bxnff\nfVdsss/P13rYBQn8z0n99m1tnveCZP7II9Cnj/a5hwdUr26usxBCCNtgtmR/6dIlmjZtavx7kyZN\n+Omnn4ps5+lp2b1zIYSwBWZ7QLt69Wq2bt3K4sWLAfjyyy/56aef+M9//vPfxmW9TyGEKBeLGXrZ\nuHFjEhMTjX9PTEykyZ9mCLOUMfZCCGHrzFYcCQgI4MyZMyQkJJCTk8M333zDgAEDzNWcEEKI+zBb\nz97JyYkFCxbw+OOPk5eXx9ixY8s1EkcIIUTFmfWxZ3h4OKdOneLs2bO88cYbhb5XGWPw9eTh4YGv\nry/+/v4EBgbqHU6FjRkzBnd3d3x8fIxfS0lJISwsjNatW9OnTx9u3bqlY4QVU9z5RUZG0qRJE/z9\n/fH392fr1q06Rlh+iYmJ9OrVi3bt2uHt7c38+fMB27l+JZ2frVy/7OxsgoKC8PPzw8vLy5hLy3z9\nlA5yc3PVI488oi5cuKBycnJU+/btVVxcnB6hmI2Hh4e6ceOG3mGYzO7du9Xhw4eVt7e38Wuvv/66\nmjVrllJKqQ8++EBNmzZNr/AqrLjzi4yMVHPnztUxKtNISkpSR44cUUoplZaWplq3bq3i4uJs5vqV\ndH62cv2UUiojI0MppdTdu3dVUFCQ+vHHH8t8/XQZ0HjvGHxnZ2fjGHxbo2zoAXT37t2pXbt2oa+t\nX7+eUaNGATBq1CjWrVunR2gmUdz5gW1cwwYNGuDn5weAm5sbnp6eXLp0yWauX0nnB7Zx/QCqVasG\nQE5ODnl5edSuXbvM10+XZF/cGPyCi2MrDAYDoaGhBAQEGIef2pqrV6/i7u4OgLu7O1evXtU5ItP7\nz3/+Q/v27Rk7dqzVljnulZCQwJEjRwgKCrLJ61dwfp07dwZs5/rl5+fj5+eHu7u7sWRV1uunS7K3\nh/H1e/fu5ciRI2zZsoWFCxfy448/6h2SWRkMBpu7rhMnTuTChQscPXqUhg0b8tprr+kdUoWkp6fz\nxBNPEBUVRY0aNQp9zxauX3p6OkOGDCEqKgo3Nzebun4ODg4cPXqU33//nd27dxMdHV3o+6W5frok\n+9KMwbd2Df9Y6aRevXoMGjSIgwcP6hyR6bm7u3PlyhUAkpKSqF+/vs4RmVb9+vWN/4nGjRtn1dfw\n7t27PPHEE4wcOZK//OUvgG1dv4LzGzFihPH8bOn6FahZsyb9+vUjNja2zNdPl2Rv62PwMzMzSUtL\nAyAjI4Nt27YVGuVhKwYMGMDSpUsBWLp0qfE/ma1ISkoyfr527VqrvYZKKcaOHYuXlxevvvqq8eu2\ncv1KOj9buX7Xr183lqCysrLYvn07/v7+Zb9+5nyCfD+bN29WrVu3Vo888oh6//339QrDLM6fP6/a\nt2+v2rdvr9q1a2cT5zds2DDVsGFD5ezsrJo0aaI+/fRTdePGDRUSEqIeffRRFRYWpm7evKl3mOX2\n5/NbsmSJGjlypPLx8VG+vr5q4MCB6sqVK3qHWS4//vijMhgMqn379srPz0/5+fmpLVu22Mz1K+78\nNm/ebDPX7/jx48rf31+1b99e+fj4qNmzZyulVJmvn66LlwghhKgcMpekEELYAUn2QghhByTZCyGE\nHZBkL4QQdkCSvbA5CQkJRYbZRUZGMnfu3Afuu3HjRiIjIwFITk4mKCiIjh07smfPHv73f/+3yPbh\n4eFcvny52GPNnz+fZcuWlf0EhDADSfbCLpT27dC5c+cyceJEAHbu3Imvry+xsbE0adKEjz76qNC2\nWVlZpKSk0KhRo2KPNXr06EIrswmhJ0n2QvwhMTGRnJwc3N3dOXr0KNOmTeO7777D39+f6dOnc+7c\nOfz9/Zk2bRoAMTEx9OrVC4Dp06fTrl072rdvz+uvvw5AjRo1qFu3LidOnNDtnIQoYLbFS4SwNnv3\n7qVDhw4A+Pn5MXPmTGJjY5k/fz4XL17kxIkTHDlyxLj9li1bGDx4MDdu3GDdunXEx8cDcPv2beM2\ngYGB7N69m3bt2lXuyQjxJ9KzFzanpJLNg0o5v/32m3FOI9Bewy9457C4dw/37dtHt27dqFmzJq6u\nrowdO5a1a9cap6MFaNSoEQkJCeU4CyFMS5K9sDl169bl5s2bhb5248YN6tWr98B9703q97s5nD9/\nnqZNm+Lk5ISTkxMHDx5kyJAhbNy4kb59+xY6nrXPJilsgyR7YXPc3Nxo2LChcRrYlJQUvv/+e7p1\n63bf/Zo3b26cRRAKJ/4aNWoYJ7cDrYQTHh4OaJPd3bp1i/DwcP71r39x7Ngx43ZJSUl4eHiY4rSE\nqBCp2Qub9MUXXzBp0iSmTJkCaEMvW7Rocd99unbtaly/FArPEV63bl26du2Kj48P4eHhxMfHs2DB\nAgDS0tIYOHAg2dnZKKWYN2+e8RgHDx7kww8/NPXpCVFmMhGaEPfo3bs3y5cvL1S7/7OcnBy6dev2\nwPnRU1NTCQkJ4dChQ6YOU4gyk2QvxD02b97MTz/9xIwZMyp8rPnz51OnTh1GjBhhgsiEqBhJ9kII\nYQfkAa0QQtgBSfZCCGEHJNkLIYQdkGQvhBB2QJK9EELYAUn2QghhB/4/X5n9xhZ8YLYAAAAASUVO\nRK5CYII=\n" } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.10 Page no.525" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "D=0.1 #mm\n", "sg=2.3\n", "vis=1.12*(10**(-3)) #N*s/(m**2)\n", "#by free body diagram and assuming CD=24/Re\n", "U=(sg-1)*999*9.81*((D/1000)**2)/(18*vis)\n", "\n", "#Result\n", "print \"The velocity of the particle through still water =\",round(U,3),\"m/s\"\n", "\n", "#Plot\n", "import matplotlib.pyplot as plt\n", "fig = plt.figure()\n", "ax = fig.add_subplot(111)\n", "\n", "D=[0,0.01,0.02,0.04,0.06,0.1]\n", "U=[0,0,0.0002,0.001,0.0024,0.00632]\n", "xlabel(\"D (mm)\") \n", "ylabel(\"U (m/s)\") \n", "plt.xlim((0,0.1))\n", "plt.ylim((0,0.007))\n", "\n", "ax.plot([0.1], [0.00632], 'o')\n", "ax.annotate('(0.1mm,0.00632m/s)', xy=(0.06,0.006))\n", "a=plot(D,U)\n", "show(a)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The velocity of the particle through still water = 0.006 m/s\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEMCAYAAADnBZCzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYlGXeB/DvIEhFGnnCZFhBBmIAHTBY1u1NaT2QpKN5\nCr1SVCyzVXrdSmvdEq/SlcqtXnlTKsV0k1W3DIwRla3x8CbgARUPuWhQAwh5GvOQDgz3+4frJArD\nwMwzJ76f6/K6GLjvZ+77jp4fv+d+nt/IhBACRERENuLh6AEQEZF7YWAhIiKbYmAhIiKbYmAhIiKb\nYmAhIiKbYmAhIiKbkjSw5OfnIywsDCEhIUhPT2+yTWpqKkJCQqBSqVBSUtJi36SkJERHRyM6OhpB\nQUGIjo6WcgpERNRKnlId2Gg0Yvbs2SgoKIC/vz9iY2OhVquhVCpNbTQaDU6dOoWysjIUFRVh1qxZ\nKCwsNNv3H//4h6n/yy+/DF9fX6mmQEREbSBZxlJcXAyFQoHAwEB4eXkhKSkJOTk5jdrk5uYiOTkZ\nABAXFwe9Xo+amhqL+gohsHHjRkycOFGqKRARURtIFliqqqoQEBBgei2Xy1FVVWVRm+rq6hb77t69\nG35+fggODpZoBkRE1BaSXQqTyWQWtWtrRZns7GxMmjTJ6vcnIqLGrK30JVnG4u/vD51OZ3qt0+kg\nl8vNtqmsrIRcLm+xb319PTZv3oynn37a7BiEEPwnBBYuXOjwMTjLP64F14JrYf6fLUgWWGJiYlBW\nVoaKigoYDAZs2LABarW6URu1Wo21a9cCAAoLC+Hr6ws/P78W+xYUFECpVKJXr15SDZ+IiNpIskth\nnp6eyMjIQEJCAoxGI1JSUqBUKpGZmQkAmDlzJhITE6HRaKBQKODj44OsrCyzfW/ZsGEDN+2JiJyU\nTNgq93EyMpnMZmmdq9NqtYiPj3f0MJwC1+JXXItfcS1+ZYtzJwMLERGZ2OLcyZIuRERkUwwsRERk\nUwwsRERkUwwsRERkUwwsRERkUwwsRERkUwwsRERkUwwsRERkUwwsRERkUwwsRERkUwwsRERkUwws\nRERkUwwsRESEvLxdSEj4i02OxerGRETtXF7eLrz44jacPr0YAKsbExGRlf7nf7bfDCp+h21yPAYW\nIqJ27vqNDsBjS4Cnx9jkeJJ9NDERETk/IQR+CN0OeF0GsnYD8Lf6mMxYiIjaKWODEc999Ry8Qy8h\n8JuhwOVeNjkuAwtRO3bjxg0MGjQIDQ0N+PTTTxEaGorQ0FCsXbu2yfa7du1C//794eXlhc8//9wu\nYywvL0dcXBxCQkKQlJSEurq6Jts1N35z/bVaLaKjoxEZGWn6zPvr168jLi4OUVFRCA8Px2uvvWZq\n/8orr0CpVEKlUmHMmDG4dOlSq+dTWFiI5557rsmf3bhxAwMHDkRDQ0Orj9taBqMBEz+fiO8vfo/9\nc4qQ8c5TSEh43TYHF27KjadGZDOrVq0Sb7/9tjh//rzo06ePuHjxorh48aLp6ztVVFSII0eOiClT\npoh//vOfdhnj+PHjxYYNG4QQQjz//PNixYoVd7Vpavx6vd5s/4sXL4rw8HCh0+mEEEKcPXvWdLyr\nV68KIYSoq6sTcXFxYvfu3UIIIbZv3y6MRqMQQoj58+eL+fPnt3o+b7zxhvjiiy+a/fmf//xn8fnn\nn7f6uK1x5cYVkbAuQYz+x2jxS90vjX5mi3MnMxaidiw7OxujRo3Ctm3bMGzYMPj6+sLX1xdDhw5F\nfn7+Xe179+6Nvn37wsOj8alDq9Vi0KBBGD16NIKDg/Hqq69i3bp1+O1vf4t+/frh+++/BwBMnToV\nL7zwAgYMGIDg4GBotVokJycjPDwc06ZNu+v9hBD45ptvMG7cOABAcnIyvvzyy7vaNTX+rVu3mu2/\nfv16jB07FnK5HADQrVs30/Huu+8+AIDBYIDRaESXLl0AAEOHDjXNPS4uDpWVlQCANWvWYPTo0Rg2\nbBiCgoKQkZGBd999F/3798eAAQNw8eJF07G//vprDBkyBMeOHUNcXByio6OhUqlw6tQpAIBarUZ2\ndrb5/3BW0F/XY9jfh8Hvfj9sGr8J93jeY/P3YGAhaqeMRiOOHj2K0NBQVFVVmU6wACCXy1FVVdWq\n4x05cgSZmZk4ceIE1q1bh9OnT6O4uBgzZszA8uXLTe30ej327t2L9957D2q1GvPmzcOxY8dQWlqK\nw4cb3+56/vx5+Pr6mk7m/v7+TY6rurq6yfFfuHCh2f5lZWW4cOECHn/8ccTExGDdunWm/g0NDYiK\nioKfnx8ef/xxhIeH3/Weq1evRmJioun1sWPHsHnzZuzbtw8LFixA586dcfDgQQwYMMB0ae7cuXPw\n8vJCp06dsHLlSrz44osoKSnBgQMHTOOPiorCt99+26q1t1TtlVrEr4lHTK8YZI3KgqeHNPdvSRpY\n8vPzERYWhpCQEKSnpzfZJjU1FSEhIVCpVCgpKbGo7/Lly6FUKhEZGYn58+dLOQUit3Xu3Dl06tQJ\nwM0Hiq0VGxsLPz8/dOzYEQqFAgkJCQCAyMhIVFRUmN5n5MiRpu/37NkTERERkMlkiIiIMLWzhZbm\nVFdXh4MHD0Kj0WDbtm148803UVZWBgDw8PDAoUOHUFlZiV27dkGr1Tbqu3jxYnTs2BGTJk0yvdfj\njz8OHx8fdOvWDb6+vqZ59u3b1zSv7du3m9bl97//PZYsWYK3334bFRUVuOeem5mDt7c3GhoacP36\ndVstBQDgB/0PeCzrMTwV9hTeT3gfHjLpTv+SHdloNGL27NnIz8/H8ePHkZ2djRMnTjRqo9FocOrU\nKZSVleGjjz7CrFmzWuz7zTffIDc3F0eOHMHRo0fx8ssvSzUFIrcn/vOEtb+/P3Q6nen7Op2uUQbQ\nlDtP3N7e3qavPTw8TK89PDxQX19v+lnHjh3vatNUOwDo2rUr9Hq9aTO7srIS/v533w7b1Pj9/f3R\npUuXZvsHBARg2LBhuPfee9G1a1cMHDjwrozpgQcewJNPPon9+/ebvrdmzRpoNBp89tlnrZ5/fn4+\nnnjiCQDAxIkTsWXLFtx7771ITEzEN998Y+ovhLBJsL/lu3Pf4bGsx/DH2D9iYfxCmx67KZIFluLi\nYigUCgQGBsLLywtJSUnIyclp1CY3NxfJyckAbl6v1Ov1qKmpMdt3xYoVeO211+Dl5QUA6N69u1RT\nIHJr3bp1w5UrVwAAw4YNw/bt26HX63Hx4kXs2LHD9Jd1U4QQkpRMunXCmzJlCvbv32/KBDZt2gTg\n5p1fo0ePvqtfQkJCk+M313/UqFHYs2cPjEYjrl27hqKiIoSHh+PcuXPQ6/UAgF9++QU7duxAdHQ0\ngJuB4Z133kFOTo4pw7i1Hs25/WdHjhyBSqUCcPNutaCgIMyZMwejRo1CaWkpgJt3hnXo0KFRoLLG\ngeoDiF8TjzcffxMv/u5FmxyzJZI9IFlVVYWAgADTa7lcjqKiohbbVFVVobq6utm+ZWVl2LVrF/78\n5z/jnnvuwbvvvouYmJgmx5CWlmb6Oj4+3nQ7IREBHTp0QGRkJE6ePImHH34Yr7/+OmJjYwEACxcu\nhK+vr+nrmJgYjBw5Evv27cOYMWNw8eJFfPXVV0hLSzOdEJv7K1gmkzX6WXNf3660tBS9et18piI9\nPR1JSUn4y1/+gv79+yMlJQUAcODAAaxcuRIff/wxHnzwwWbH31z/sLAwPPHEE+jXrx88PDzw7LPP\nIjw8HEeOHMHUqVPR0NCAhoYGTJ48GYMHDwYAzJkzBwaDAUOHDgUADBgwAB9++GGLc5TJZNi/f78p\nQAHAxo0bsW7dOnh5eeGhhx7CggULAAAlJSUYMGBAc//ZWmXXD7swbuM4ZI7IxFPKp5pso9Vq77rU\nZzWr7ytrxj//+U8xY8YM0+t169aJ2bNnN2ozYsQIsWfPHtPrwYMHi/3795vtGxkZKVJTU4UQQhQX\nF4ugoKAm31/CqRG5jaysLLF06VJHD6ORS5cuiQkTJjh6GDb31ltvmW57Nue1114zezuypb46+ZXo\n/nZ3UXC6oFX9bHHulOxSmCXXbO9sU1lZCblcbravXC7HmDE369nExsbCw8MD58+fl2oaRG5t0qRJ\nyMvLc6pK4J07d8aGDRscPQybW7BgASZMmGC2zY0bN7Bnz54mL/e1xvrS9ZieOx1bJm7B4D6DrTpW\nW0gWWGJiYlBWVoaKigoYDAZs2LABarW6URu1Wm26Da+wsBC+vr7w8/Mz23f06NH4+uuvAQD//ve/\nYTAY0LVrV6mmQeTWOnbsiF27dkm+mUuW8fb2tvq/x4p9KzBvxzz8a8q/ECePs+HoLCfZHounpycy\nMjKQkJAAo9GIlJQUKJVKZGZmAgBmzpyJxMREaDQaKBQK+Pj4ICsry2xfAJg+fTqmT5+Ovn37omPH\njs2WniAiak+EEFi6Zyk+KfkEu6btQp8H+zhsLPygLyIiFyeEwPyC+dCUabB98nb06tT2YpK2OHey\nbD4RkQszNhjxfN7zOFJ7BDun7kTX+xy/NcDAQkTkogxGA5754hmc/+U8CiYXoJN3J0cPCQBrhRER\nuaSrhqtQZ6tR11CHvEl5ThNUAAYWIiKXY48KxdZgYCEiciH2qlBsDQYWIiIXYc8KxdZwvlBHRER3\n+e7cdxi2bhheGvCS3YpJthUDCxGRkztQfQBPrn8S6UPSkRyV7OjhtIiBhYjIiVlSodjZMLAQETmp\nvH/nYVrONGSPzXZIMcm2YmAhInJC2aXZmLttLrZM3OKwYpJtxcBCRORkVuxbgcW7F6NgSgEie0Q6\nejitxsBCROQknKlCsTUYWIiInMDtFYp3T9ttVYViR2NgISJyMGesUGwNBhYiIgdy1grF1nDOegBE\nRO2AM1cotgYDCxGRA+iv65Hw9wSnrVBsDQYWIiI7u1Wh+JFejzhthWJrMLAQEdmRq1QotoZ7hUki\nIifmShWKrcHAQkRkBweqD2BE9ggsHbzUJSoUW4OBhYhIYq5Yodgakl7cy8/PR1hYGEJCQpCent5k\nm9TUVISEhEClUqGkpKTFvmlpaZDL5YiOjkZ0dDTy8/OlnAIRkVXy/p2HcRvHIXtsdrsIKgAAIZH6\n+noRHBwsysvLhcFgECqVShw/frxRm7y8PDF8+HAhhBCFhYUiLi6uxb5paWli2bJlLb6/hFMjIrLI\n+iPrhd87fqJQV+jooVjMFudOyTKW4uJiKBQKBAYGwsvLC0lJScjJyWnUJjc3F8nJN681xsXFQa/X\no6ampsW+N+dOROS8VuxbgVd2vIKCKQUuV/beWpLtsVRVVSEgIMD0Wi6Xo6ioqMU2VVVVqK6uNtt3\n+fLlWLt2LWJiYrBs2TL4+vo2OYa0tDTT1/Hx8YiPj7dyVkRE5gkXq1Cs1Wqh1WptekzJAotMJrOo\nXWuzj1mzZuGNN94AALz++ut46aWXsGrVqibb3h5YiIikJlywQvGdf3QvWrTI6mNKFlj8/f2h0+lM\nr3U6HeRyudk2lZWVkMvlqKura7Zvjx49TN+fMWMGRo4cKdUUiIgs5m4Viq0h2R5LTEwMysrKUFFR\nAYPBgA0bNkCtVjdqo1arsXbtWgBAYWEhfH194efnZ7bvmTNnTP03b96Mvn37SjUFIiKLGIwGTPx8\nIr6/+D0KJhe066ACSJixeHp6IiMjAwkJCTAajUhJSYFSqURmZiYAYObMmUhMTIRGo4FCoYCPjw+y\nsrLM9gWA+fPn49ChQ5DJZAgKCjIdj4jIEa4armLsxrG41+te5E3Kc6tikm0lE256i5VMJuPdY0Qk\nKf11PUasH4HgLsFYpV7lFsUkbXHudL/qZ0REduDuFYqtwcBCRNRK7aFCsTUYYomIWqG9VCi2BgML\nEZGF2lOFYmswsBARWaC9VSi2BgMLEVEL8v6dh2k505A9NhuD+wx29HCcHgMLEZEZ2aXZmLttLrZM\n3NLuikm2FQMLEVEzVuxbgcW7F6NgSgEie0Q6ejgug4GFiOgOrlah2NkwsBAR3cYVKxQ7GwYWIqL/\nMDYYMStvFg7XHm73FYqtwcBCRISbFYqf+eIZnP/lPAomF6CTdydHD8llsQ4BEbV7Vw1Xoc5Wo66h\nDnmT8hhUrMTAQkTtmv66Hgl/T4Df/X7YNH4Ty97bAAMLEbVbrFAsDQYWImqXblUoHh02mhWKbYzh\nmYjaHVYolhYDCxG1KwfPHMST659khWIJMbAQUbvBCsX2wcBCRO0CKxTbDwMLEbk9Vii2LwYWInJr\nrFBsfwwsROSWblUo/vjgx9g5dSeCuwQ7ekjthqQ3bufn5yMsLAwhISFIT09vsk1qaipCQkKgUqlQ\nUlJicd9ly5bBw8MDFy5ckGz8ROSablUo/qz0M+yZvodBxc7MZiw//fQTNm3ahF27dqGiogIymQy9\ne/fGwIEDMX78ePTo0aPZvkajEbNnz0ZBQQH8/f0RGxsLtVoNpVJpaqPRaHDq1CmUlZWhqKgIs2bN\nQmFhYYt9dTodduzYgd69e9toGYjIXbBCseM1G1hSUlJw+vRpDB8+HM8//zweeughCCFw5swZFBcX\nY8KECVAoFPjkk0+a7F9cXAyFQoHAwEAAQFJSEnJychoFltzcXCQn37yPPC4uDnq9HjU1NSgvLzfb\n909/+hPefvttjBo1yhZrQERughWKnUOzgeXFF19Ev3797vq+UqnEH/7wB7z66qs4cuRIsweuqqpC\nQECA6bVcLkdRUVGLbaqqqlBdXd1s35ycHMjl8ibHdqe0tDTT1/Hx8YiPj2+xDxG5pquGqxi7cSzu\n9boXeZPyWEzSQlqtFlqt1qbHbDawNHXivnDhAiorK00/M3dyl8lkFg1ACGFROwD45ZdfsGTJEuzY\nscOi/rcHFiJyX/rreoxYPwLBXYKxSr2KxSRb4c4/uhctWmT1MVvcvB80aBB+/vlnXLhwAY888ghm\nzJiBuXPntnhgf39/6HQ602udTge5XG62TWVlJeRyebN9T58+jYqKCqhUKgQFBaGyshKPPPIIfvrp\nJ4smS0Tup/ZKLR7/9HFWKHYmogUqlUoIIcTHH38s3njjDSGEEJGRkS11E3V1daJPnz6ivLxc3Lhx\nQ6hUKnH8+PFGbfLy8sTw4cOFEELs3btXxMXFWdxXCCECAwPF+fPnm3x/C6ZGRC6u4mKFCPmfELHw\nm4WioaHB0cNxC7Y4d7YY2o1GI86cOYONGzfirbfeAmDZZS5PT09kZGQgISEBRqMRKSkpUCqVyMzM\nBADMnDkTiYmJ0Gg0UCgU8PHxQVZWltm+d7L0chsRuR9WKHZesv9EqGZt2rQJb775Jh599FGsWLEC\np0+fxrx58/D555/ba4xtIpPJWrV/Q0SugxWKpWOLc2ezgWX9+vVISEhA166ueQ84AwuRe2KFYmnZ\n4tzZ7KWwH3/8EePHj4fBYMCQIUMwfPhw/Pa3v+XlJyJyGFYodg0tXgr7+eefUVBQgPz8fOzbtw9h\nYWEYPnw4EhIS4OfnZ69xthozFiL3cqtCcU5SDisUS0jSS2HNOXbsGLZu3Yrt27dj+/btVr25lBhY\niNzHyv0r8daut5D/TD4rFEvMboHl8OHD+OGHH1BfX296w7Fjx1r1xlJjYCFyfeK2CsU7Ju9gMUk7\nkHSP5ZZp06ahtLQUERER8PD49XlKZw8sROTaxH8qFGvKNNgzfQ96derl6CGRhVrMWMLDw3Hs2DGX\n27RnxkLkum6vUKyZpGGFYjuyxbmzxZIusbGxOH78uFVvQkRkKYPRgElfTMLpi6dRMLmAQcUFWXQp\nbMCAAejZsye8vb0B3Ixo5iobExG1xbW6axi7cSzu8byHFYpdWIuXwoKDg/Hee+8hMjKy0R7Lrc9K\ncVa8FEbkWlih2DnYZfO+R48eUKvVVr0JEZE5tVdq8cRnT2Bg74F4L+E9eMgk/dR0kliLGcsLL7wA\nvV6PkSNHomPHjjc7yWQYM2aMXQbYVsxYiFzDD/ofMHTdUEzqOwkLBy10uRuF3I1dMpZr167B29v7\nrochnT2wEJHzY4Vi99TqJ+9dBTMWIufGCsXOSdLbjdPS0lBbW9tsxzNnzmDhwoVWvTkRtU+7ftiF\nJ/7+BD5M/JBBxQ01eyksJiYGSUlJMBgM6N+/Px566CEIIVBTU4ODBw/C29sbL7/8sj3HSkRugBWK\n3V+Ll8J0Oh3+7//+Dz/++CMAoHfv3nj00Ufv+vx6Z8NLYUTOhxWKnZ9Dqhu7CgYWIufCCsWuwS53\nhRERWWvpnqX46MBH2Dl1JysUtwMMLEQkGSEEXv3Xq8j7dx4rFLcjDCxEJInbKxTvnLqTxSTbEQYW\nIrI5g9GAyZsn49y1cyiYXIBO3p0cPSSyIwYWIrIpVigmSSu95efnIywsDCEhIUhPT2+yTWpqKkJC\nQqBSqVBSUtJi39dffx0qlQpRUVEYPHgwdDqdlFMgolbQX9dj2Lph6OHTA5vGb2JQaaeavd142bJl\njRvKZOjevTv+67/+C0FBQS0e2Gg04uGHH0ZBQQH8/f0RGxuL7OxsKJVKUxuNRoOMjAxoNBoUFRXh\nxRdfRGFhodm+ly9fRqdON9Pq5cuX4/Dhw/jkk0/unhhvNyayK1Yodg+SlnS5fPkyrly5Yvp3+fJl\n7Nu3D0888QSys7NbPHBxcTEUCgUCAwPh5eWFpKQk5OTkNGqTm5uL5OSb5Rzi4uKg1+tRU1Njtu+t\noAIAV65cQbdu3do0cSKynR8v/YjHsh7DqIdH4f2E9xlU2rlm91jS0tKa/P6FCxcwePBgTJw40eyB\nq6qqEBAQYHotl8tRVFTUYpuqqipUV1eb7btgwQKsW7cO9913HwoLC5sdw+1ziI+PR3x8vNkxE1Hr\nfXfuOyT8PQF/+t2fWKHYBWm1Wmi1Wpses9Wb9126dLGonaWfqdCWlGvx4sVYvHgxli5dirlz5yIr\nK6vJds0FRyKyDVYodn13/tG9aNEiq4/Z6sDyzTff4MEHH2yxnb+/f6ONdZ1Od1d9sTvbVFZWQi6X\no66ursW+ADBp0iQkJia2dgpEZAO7ftiFcRvHIXNEJp5SPuXo4ZATaTaw9O3b967vXbx4EQ899BDW\nrl3b4oFjYmJQVlaGiooK9OrVCxs2bLhrb0atViMjIwNJSUkoLCyEr68v/Pz80LVr12b7lpWVISQk\nBACQk5OD6OjoVk2YiKzHCsVkTrOBZcuWLY1ey2QydO3aFffff79lB/b0REZGBhISEmA0GpGSkgKl\nUonMzEwAwMyZM5GYmAiNRgOFQgEfHx/TJa3m+gLAa6+9hpMnT6JDhw4IDg7GihUr2jRxImqbWxWK\nt0zcwgrF1CRWNyYii7FCsftjdWMishtWKCZLMbAQkVmsUEytxcBCRM1ihWJqCwYWImoSKxRTWzGw\nENFdWKGYrMGCPkTUCCsUk7UYWIjIpPZKLR7/9HE80usRZI3KgqcHL2pQ6zGwEBEAVigm2+GfI0TE\nCsVkUwwsRO0cKxSTrTGwELVjrFBMUmBgIWqnNGUaTP1yKisUk80xsBC1Q6xQTFJiYCFqRy5dv4SX\nd7yMHad3oGBKASsUkyR4PyFRO7Ht1Db0W9kPHWQdUDqrlEGFJMOMhcjN3Z6lrFKvwpA+Qxw9JHJz\nzFiI3NidWQqDCtkDMxYiN8QshRyJGQuRm2GWQo7GjIXITTBLIWfBjIXIDTBLIWfCjIXIhTFLIWfE\njIXIRTFLIWcleWDJz89HWFgYQkJCkJ6e3mSb1NRUhISEQKVSoaSkpMW+r7zyCpRKJVQqFcaMGYNL\nly5JPQ0ip3Hp+iU8u+VZzPxqJlapV2HliJX8PHpyKpIGFqPRiNmzZyM/Px/Hjx9HdnY2Tpw40aiN\nRqPBqVOnUFZWho8++gizZs1qse+wYcNw7NgxHD58GKGhofjrX/8q5TSInAazFHIFkgaW4uJiKBQK\nBAYGwsvLC0lJScjJyWnUJjc3F8nJNz8DIi4uDnq9HjU1NWb7Dh06FB4eHqY+lZWVUk6DyOGYpZAr\nkXTzvqqqCgEBAabXcrkcRUVFLbapqqpCdXV1i30BYPXq1Zg4cWKT75+Wlmb6Oj4+HvHx8W2cCZHj\nbDu1Dc999RyGK4ajdFYpAwrZlFarhVartekxJQ0sMpnMonZCiDYdf/HixejYsSMmTZrU5M9vDyxE\nroZ3fJE93PlH96JFi6w+pqSBxd/fHzqdzvRap9NBLpebbVNZWQm5XI66ujqzfdesWQONRoN//etf\nEs6AyDGYpZBLExKqq6sTffr0EeXl5eLGjRtCpVKJ48ePN2qTl5cnhg8fLoQQYu/evSIuLq7Fvlu3\nbhXh4eHi7Nmzzb63xFMjkoT+F72YkTtD9H6vt9hxeoejh0PtkC3OnZJmLJ6ensjIyEBCQgKMRiNS\nUlKgVCqRmZkJAJg5cyYSExOh0WigUCjg4+ODrKwss30BYM6cOTAYDBg6dCgAYMCAAfjwww+lnAqR\n5JilkLuQ/SdCuR2ZTNbmvRsie7p9L+UT9SfcSyGHssW5k0/eEzkQn0shd8RaYUQOwDu+yJ0xYyGy\nM2Yp5O6YsRDZCbMUai+YsRDZwbZT29B3RV9mKdQuMGMhktDtWcrqUasZUKhdYMZCJJFbWYqHzANH\nZh1hUKF2gxkLkY0xS6H2jhkLkQ0xSyFixkJkE8xSiH7FjIXISsxSiBpjxkLURsxSiJrGjIWoDZil\nEDWPGQtRKzBLIWoZMxYiCzFLIbIMMxaiFjBLIWodZixEZjBLIWo9ZixETWCWQtR2zFiI7sAshcg6\nzFiI/oNZCpFtMGMhArMUIltixkLtGrMUIttjxkLtFrMUImlIHljy8/MRFhaGkJAQpKenN9kmNTUV\nISEhUKlUKCkpabHvpk2bEBERgQ4dOuDgwYNST4HczKXrl/Dslmcx86uZWD1qNTJHZKKzd2dHD4vI\nbUgaWIxGI2bPno38/HwcP34c2dnZOHHiRKM2Go0Gp06dQllZGT766CPMmjWrxb59+/bF5s2bMXDg\nQCmHT26IWQqR9CTdYykuLoZCoUBgYCAAICkpCTk5OVAqlaY2ubm5SE5OBgDExcVBr9ejpqYG5eXl\nzfYNCwuk+8ewAAANUUlEQVSTctjkZoQQKKkpwQdFH2BnxU7upRBJTNLAUlVVhYCAANNruVyOoqKi\nFttUVVWhurq6xb4tSUtLM30dHx+P+Pj41k2AXNq5a+fw2ZHPsPrQavx842dMi5qG5cOX87IX0W20\nWi20Wq1NjylpYJHJZBa1E0JI8v63BxZqH+ob6rHt1DZkHcpCwfcFGPnwSLyX8B7iA+PhIeO9KkR3\nuvOP7kWLFll9TEkDi7+/P3Q6nem1TqeDXC4326ayshJyuRx1dXUt9iW65eS5k8g6lIV1R9YhoHMA\npkdPxyr1KjxwzwOOHhpRuyPpn3AxMTEoKytDRUUFDAYDNmzYALVa3aiNWq3G2rVrAQCFhYXw9fWF\nn5+fRX0B6bIdcn6Xb1zGqoOr8OjqRzFozSAYhRE7Ju9A4YxCPPfIcwwqRA4iacbi6emJjIwMJCQk\nwGg0IiUlBUqlEpmZmQCAmTNnIjExERqNBgqFAj4+PsjKyjLbFwA2b96M1NRUnDt3Dk8++SSio6Ox\ndetWKadCTkIIgd0/7sbqktXIOZmD+MB4zH90PoYrhsOrg5ejh0dEAGTCTf/kl8lkzGbciO6SDmsP\nr0XWoSzc43kPpkdPxzP9nkEPnx6OHhqRW7HFuZOBhZzW9frryPkuB1mHslBcVYynI5/G9KjpiOkV\nY/GNIUTUOgwsZjCwuKZbz5ysLlmNfxz9B6J6RmF69HQ8FfYU7vW619HDI3J7tjh3sgglOYU7nzmZ\nqpqK/c/tR6BvoKOHRkStxIyFHKapZ06mRU3jMydEDsRLYWYwsDivpp45eTriad4eTOQEeCmMXMbl\nG5ex8dhGrD60GqcvnMZk1WTsmLwD4d3DHT00IrIxZiwkmaaeOZkWNY3PnBA5MV4KM4OBxXH4zAmR\n62JgMYOBxb74zAmRe2BgMYOBRXp85oTI/XDznhyCz5wQkTnMWMgifOaEqH3gpTAzGFhsg8+cELUv\nvBRGkuAzJ0RkDWYsBIDPnBDRTbwUZgYDi2X4zAkR3Y6BxQwGlubxmRMiag4DixkMLI3xmRMisgQ3\n76lFZ6+exfrS9XzmhIjshhmLmxBCoPpyNUpqSnCo5hBKakpQcqYEZ6+dxeiw0XzmhIgswkthZrhz\nYDE2GHHqwqmbweNWIDlTAgCIfiga0T2jEdUzCtE9o6HookAHjw4OHjERuQoGFjPcJbBcr7+Ooz8d\nbZSFlP5Uiu73db8riPTq1Iub70RkFVucOyW9LpKfn4+wsDCEhIQgPT29yTapqakICQmBSqVCSUlJ\ni30vXLiAoUOHIjQ0FMOGDYNer5dyCnalv66HtkKL9wvfR/KXyei3oh+6pHfB9Jzp2P3jboR0CcFf\nB/8Vurk6fP/i9/h8wuf4y8C/YEToCPh39m82qGi1WvtOxIlxLX7FtfgV18K2JNu8NxqNmD17NgoK\nCuDv74/Y2Fio1WoolUpTG41Gg1OnTqGsrAxFRUWYNWsWCgsLzfZdunQphg4dinnz5iE9PR1Lly7F\n0qVLpZqGJG7fDyk5U4JDtYdM+yH9/PohqmcUHvvNY0j9bSoiekTgHs97rHo/rVaL+Ph42wzexXEt\nfsW1+BXXwrYkCyzFxcVQKBQIDAwEACQlJSEnJ6dRYMnNzUVycjIAIC4uDnq9HjU1NSgvL2+2b25u\nLnbu3AkASE5ORnx8vFMHljv3Q0rO3NwTAX7dDxkfPh5L/rCE+yFE5BYkCyxVVVUICAgwvZbL5Sgq\nKmqxTVVVFaqrq5vtW1tbCz8/PwCAn58famtrmx3DyOyRNplLW52/dv6u/ZDUuFTuhxCRW5MssFh6\n0rRkk0gI0eTxZDKZ2ff5atJXFo1BaldwBeUoxxf4wmFjWLRokcPe29lwLX7FtfgV18J2JAss/v7+\n0Ol0ptc6nQ5yudxsm8rKSsjlctTV1d31fX9/fwA3s5Samhr07NkTZ86cQY8eTde0coc7woiIXJFk\nd4XFxMSgrKwMFRUVMBgM2LBhA9RqdaM2arUaa9euBQAUFhbC19cXfn5+Zvuq1Wp8+umnAIBPP/0U\no0ePlmoKRETUBpJlLJ6ensjIyEBCQgKMRiNSUlKgVCqRmZkJAJg5cyYSExOh0WigUCjg4+ODrKws\ns30B4NVXX8WECROwatUqBAYGYuPGjVJNgYiI2kK4mK1bt4qHH35YKBQKsXTp0ibbzJkzRygUCtGv\nXz9x8ODBVvV1JW1dix9//FHEx8eL8PBwERERIT744AN7DlsS1vxeCCFEfX29iIqKEiNGjLDHcCVl\nzVpcvHhRjB07VoSFhQmlUin27t1rr2FLwpq1WLJkiQgPDxeRkZFi4sSJ4vr16/YatiRaWosTJ06I\n3/3ud8Lb21u8++67rep7J5cKLPX19SI4OFiUl5cLg8EgVCqVOH78eKM2eXl5Yvjw4UIIIQoLC0Vc\nXJzFfV2JNWtx5swZUVJSIoQQ4vLlyyI0NLTdrsUty5YtE5MmTRIjR46027ilYO1aTJkyRaxatUoI\nIURdXZ3Q6/X2G7yNWbMW5eXlIigoyBRMJkyYINasWWPfCdiQJWvx008/iX379okFCxY0CixtOXe6\nVEXC25+N8fLyMj3fcrvmno2xpK8raeta1NbWomfPnoiKigIA3H///VAqlaiurrb7HGzFmrUAbt4c\notFoMGPGDJe/6cOatbh06RJ2796N6dOnA7h5SfqBBx6w+xxsxZq16Ny5M7y8vHDt2jXU19fj2rVr\nphuIXJEla9G9e3fExMTAy8ur1X3v5FKBpbnnXixp09SzMXf2dSVtXYvKyspGbSoqKlBSUoK4uDhp\nBywha34vAGDu3Ll455134OHhUv87NMma34vy8nJ0794d06ZNQ//+/fHss8/i2rVrdhu7rVnze9Gl\nSxe89NJL+M1vfoNevXrB19cXQ4YMsdvYbc2StbBlX5f6P8mWz8a4urauxe39rly5gnHjxuGDDz7A\n/fffb9Px2VNb10IIga+++go9evRAdHS0W/zeWPN7UV9fj4MHD+KFF17AwYMH4ePj49RVLVpizfni\n9OnTeP/991FRUYHq6mpcuXIFn332ma2HaDfWPIzdlr4uFViseTbGkr6upK1rcSudr6urw9ixY/HM\nM8+4/C3b1qzFt99+i9zcXAQFBWHixIn4+uuvMWXKFLuN3dasWQu5XA65XI7Y2FgAwLhx43Dw4EH7\nDFwC1qzF/v378fvf/x5du3aFp6cnxowZg2+//dZuY7c1a85/bepr0x0iidXV1Yk+ffqI8vJycePG\njRY34/bu3WvajLOkryuxZi0aGhrE5MmTxX//93/bfdxSsGYtbqfVal3+rjBr1+Kxxx4TJ0+eFEII\nsXDhQjFv3jz7Dd7GrFmLkpISERERIa5duyYaGhrElClTREZGht3nYCutOf8tXLiw0eZ9W86dLhVY\nhBBCo9GI0NBQERwcLJYsWSKEEGLlypVi5cqVpjZ//OMfRXBwsOjXr584cOCA2b6urK1rsXv3biGT\nyYRKpRJRUVEiKipKbN261SFzsBVrfi9u0Wq1Ln9XmBDWrcWhQ4dETEyM6Nevn3jqqadc+q4wIaxb\ni/T0dNPtxlOmTBEGg8Hu47elltbizJkzQi6Xi86dOwtfX18REBAgLl++3Gxfc9z2g76IiMgxXGqP\nhYiInB8DCxER2RQDCxER2RQDCxER2RQDC5EFOnTogOjoaERGRiIqKgp/+9vfLHqg8saNGxg0aJAk\nD18OHjwYly9ftvlxiazFwEJkgfvuuw8lJSU4evQoduzYga1bt1r0iYOfffYZRowYIcnHUCclJeHj\njz+2+XGJrMXbjYks0KlTp0bZQXl5OWJjY3Hu3Dmz/YYOHYr//d//RWhoKLRaLRYuXIgHH3wQpaWl\nGD9+PCIiIrB8+XJcv34dX375Jfr06YOpU6eaAtlPP/2EVatWISsrC/v27UNcXJzpc4tqa2sxcuRI\nFBcXSzp3otZixkLUBkFBQTAajTh79myzbYxGI44ePYrQ0FDT944cOYLMzEycOHEC69atw+nTp1Fc\nXIwZM2Zg+fLlpnZ6vR579+7Fe++9B7VajXnz5uHYsWMoLS3F4cOHAdz8mO5z587h6tWr0k2UqA0Y\nWIgkcu7cOXTq1KnR92JjY+Hn54eOHTtCoVAgISEBABAZGYmKigoAN4v+jRw50vT9nj17IiIiAjKZ\nDBEREaZ2wM3gcnsdJyJnwMBC1Abff/89OnTogO7du5ttd+eVZm9vb9PXHh4eptceHh6or683/axj\nx453tWmqnRBCkv0bImswsBC10tmzZ/H8889jzpw5Ztt169YNV65ckXQstbW1Ll2lm9yTp6MHQOQK\nfvnlF0RHR6Ourg6enp6YMmUK5s6da7ZPhw4dEBkZiZMnT+Lhhx+GTCZrNru482fNfX3765qaGnTt\n2hU+Pj5tnRaRJHhXGJGE1qxZg9raWsyfP9/mx/7oo49w9erVFgMckb0xsBBJyGAwYMiQIdi5c6fN\n90IGDx6MnJwcl/70T3JPDCxERGRT3LwnIiKbYmAhIiKbYmAhIiKbYmAhIiKbYmAhIiKbYmAhIiKb\n+n+kDMLwirooewAAAABJRU5ErkJggg==\n" } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.11 Page no.528" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "D=1.5 #in\n", "\n", "CD=0.5\n", "dice=1.84 #slugs/(ft**3) density of ice\n", "dair=2.38*(10**(-3)) #slugs/(ft**3)\n", "U=(4*dice*32.2*(D/12)/(3*dair*CD))**0.5 #ft/sec\n", "\n", "#Result\n", "print \"The velocity of the updraft needed=\",round(U*3600/5275,1),\"mph\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The velocity of the updraft needed= 62.2 mph\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.12 Page no.531" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "Dg=1.69 #in.\n", "Wg=0.0992 #lb\n", "Ug=200 #ft/sec\n", "Dt=1.5 #in.\n", "Wt=0.00551 #lb\n", "Ut=60 #ft/sec\n", "kvis=(1.57*(10**(-4))) #(ft**2)/sec\n", "\n", "#Calculation\n", "import math\n", "Reg=Ug*Dg/kvis\n", "Ret=Ut*Dt/kvis\n", "#the corresponding drag coefficients are calculated as\n", "CDgs=0.25 #standard golf ball\n", "CDgsm=0.51 #smooth golf ball\n", "CDt=0.5 #table tennis ball\n", "Dgs=0.5*0.00238*(Ug**2)*math.pi*((Dg/12)**2)*CDgs/4 #lb\n", "Dgsm=0.5*0.00238*(Ug**2)*math.pi*((Dg/12)**2)*CDgsm/4 #lb\n", "Dt=0.5*0.00238*(Ut**2)*math.pi*((Dt/12)**2)*CDt/4 #lb\n", "#the corresponding decelerations are a=D/s=g*D/W\n", "#deceleration relative to g=D/W\n", "decgs=Dgs/Wg\n", "decgsm=Dgsm/Wg\n", "dect=Dt/Wt\n", "\n", "#result\n", "print\"STANDARD GOLF BALL:\"\n", "print \"The drag coefficient=\",round(Dgs,3),\"lb\"\n", "print \"The deceleration relative to g=\",round(decgs,2)\n", "print\"SMOOTH GOLF BALL:\"\n", "print \"The drag coefficient=\",round(Dgsm,3),\"lb\"\n", "print\"The deceleration relative to g=\",round(decgsm,2)\n", "print\"TABLE TENNIS BALL:\"\n", "print \"The drag coefficient=\",round(Dt,3),\"lb\"\n", "print \"The deceleration relative to g=\",round(dect,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "STANDARD GOLF BALL:\n", "The drag coefficient= 0.185 lb\n", "The deceleration relative to g= 1.87\n", "SMOOTH GOLF BALL:\n", "The drag coefficient= 0.378 lb\n", "The deceleration relative to g= 3.81\n", "TABLE TENNIS BALL:\n", "The drag coefficient= 0.026 lb\n", "The deceleration relative to g= 4.77\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.13 Page no.533" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "U=88 #fps\n", "Ds=40.0 #ft\n", "Dc=15.0 #ft\n", "b=50#ft\n", "Res=U*Ds/(1.57*(10**(-4)))\n", "Rec=U*Dc/(1.57*(10**(-4)))\n", "\n", "#calculation\n", "import math\n", "#from these values of Re drag coefficients are found as\n", "CDs=0.3\n", "CDc=0.7\n", "#by summing moments about the base of the tower\n", "Drs=0.5*0.00238*(U**2)*math.pi*(Ds**2)*CDs/4 #lb\n", "Drc=0.5*0.00238*(U**2)*b*Dc*CDc #lb\n", "M=(Drs*(b+(Ds/2)))+(Drc*(b/2)) #ft*lb\n", "\n", "#Result\n", "print \"The moment needed to prevent the tower from tripping=\",round(M,3),\"lb*ft\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The moment needed to prevent the tower from tripping= 364139.221 lb*ft\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.15 Page no.544" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "U=15 #ft/sec\n", "b=96 #ft\n", "c=7.5 #ft\n", "W=210 #lb\n", "CD=0.046\n", "eff=0.8 #power train efficiency\n", "d=2.38*(10**(-3)) #slugs/(ft**3)\n", "#W=L\n", "CL=2*W/(d*(U**2)*b*c)\n", "D=0.5*d*(U**2)*b*c*CD\n", "P=D*U/(eff*550) #hp\n", "\n", "#Result\n", "print \"The lift coefficient=\",round(CL,3)\n", "print \"The power required by the pilot=\",round(P,3),\"hp\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The lift coefficient= 1.089\n", "The power required by the pilot= 0.302 hp\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 9.16 Page no.548" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "W=2.45*(10**(-2)) #N\n", "D=3.8*(10**(-2)) #m\n", "U=12 #m/s\n", "\n", "#calculation\n", "import math\n", "#W=L\n", "d=1.23 #kg/(m**3)\n", "W=0.5*d*(U**2)*(D**2)*math.pi*CL/4\n", "CL=2*W/(d*(U**2)*math.pi*(D**2)/4)\n", "#using this value of CL, omega*D/(2*U)=x is found as \n", "x=0.9\n", "omega=2*U*x/D #rad/sec\n", "angvel=omega*60/(2*math.pi) #rpm where angvel is angular velocity\n", "\n", "#Result\n", "print \"The angular velocity=\",round(angvel,3),\"rpm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The angular velocity= 5428.021 rpm\n" ] } ], "prompt_number": 12 } ], "metadata": {} } ] }