{
 "metadata": {
  "name": "",
  "signature": "sha256:805b87c0e7bc67e50775f14efd1555d6a0dbc6c17cb66c408f5df20cf65eec99"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 6:Differential analysis of fluid flow"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 6.4 Page no.296"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "p1=30                       #kPa\n",
      "d=1000                    #kg/(m**3)\n",
      "r1=1                        #m\n",
      "r2=0.5                     #m\n",
      "#applying energy equation between points (1) and (2) and using the equation V**2=16*(r**2)\n",
      "V1=(16*(r1**2))**0.5          #m/sec\n",
      "V2=(16*(r2**2))**0.5         #m/sec\n",
      "p2=((p1*1000)+(d*((V1**2)-(V2**2)))/2)/1000#kPa\n",
      "\n",
      "#result\n",
      "print \"The pressure at point (2) =\",round(p2,3),\"kpa\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The pressure at point (2) = 36.0 kpa\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 6.5 Page no.301"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "ang2=math.pi/6                      #radians\n",
      "#vp=-2*math.log(r)\n",
      "\n",
      "#calculation\n",
      "#vr=d(vp)/d'r\n",
      "#vr=(-2)/r\n",
      "#vang=(1/r)*(d(vp)/d(ang))\n",
      "import math\n",
      "from scipy import integrate\n",
      "def f1(dtheta):\n",
      "    R=1\n",
      "    return((-2/R)*R)\n",
      "q=integrate.quad(f1,0.0,(3.14/6))\n",
      "\n",
      "#result\n",
      "print \"Volume rate of flow (per unit length) into the opening = \",round(q[0],2),\"ft**2/s\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Volume rate of flow (per unit length) into the opening =  -1.05 ft**2/s\n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 6.7 Page no.310"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "%pylab inline"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n",
        "For more information, type 'help(pylab)'.\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "h=200                                 #ft\n",
      "U=40                                  #mi/hr\n",
      "d=0.00238                          #slugs/ft**3\n",
      "\n",
      "#calculation\n",
      "import math\n",
      "#V**2= (U**2)*(1 + (2*b*math.cos(ang)/r) + ((b**2)/(r**2)))\n",
      "#at point 2, ang=math.pi/2\n",
      "#r=b*(math.pi-ang)/math.sin(ang)=(math.pi*b/2)\n",
      "V=U*(1+(4/(math.pi**2)))**0.5      #mi/hr\n",
      "y2=h/2                                           #ft\n",
      "#bernoulli equation\n",
      "#p1-p2= d*((V2**2)-(V1**2)) + (sw*(y2-y1))\n",
      "V1=U*(5280/3600)\n",
      "V2=V*(5280/3600)\n",
      "pdiff=((d*((V2**2)-(V1**2))/2) + (d*32.2*(y2)))/144#psi\n",
      "\n",
      "#result\n",
      "print \"elevation of point above the plane\",round(y2,2),\"ft\"\n",
      "print \"The magnitude of velocity at (2) for a 40 mi/hr approaching wind =\",round(V,1),\"mi/hr\"\n",
      "print \"The pressure difference between points (1) and (2)=\",round(pdiff,2),\"psi\"\n",
      "\n",
      "#Plot\n",
      "import matplotlib.pyplot as plt\n",
      "fig = plt.figure()\n",
      "ax = fig.add_subplot(111)\n",
      "\n",
      "u=[0,20,40,60,80,100]\n",
      "p=[0.05,0.055,0.0647,0.08,0.10,0.12]\n",
      "xlabel(\"U  (mph)\") \n",
      "ylabel(\"p1-p2  (psi)\") \n",
      "plt.xlim((0,100))\n",
      "plt.ylim((0,0.14))\n",
      "ax.plot([40], [0.0647], 'o')\n",
      "ax.annotate('(40mph,0.0647psi)', xy=(40,0.06))\n",
      "\n",
      "a=plot(u,p)\n",
      "show(a)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "elevation of point above the plane 100.0 ft\n",
        "The magnitude of velocity at (2) for a 40 mi/hr approaching wind = 47.4 mi/hr\n",
        "The pressure difference between points (1) and (2)= 0.06 psi\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEMCAYAAAA4S+qsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9cVFXCP/DPIBQJKuUP1JlBfBzkpyAIkaJGaktakuuP\nRzTQjJ5ce1ykH6vbPrv7YD2LklmRVKttmaIiWZug0rSxNquiwBYUJrgiy8QAQmYioiYwnO8ffh35\nzeXHZYD5vF8vXnLvnHPuuVedz9xz75mrEEIIEBERSWBl7g4QEVH/wdAgIiLJGBpERCQZQ4OIiCRj\naBARkWQMDSIikkzW0NBqtXBzc4OLiwvi4uJavH727FlMnToVtra22Lp1a4vXjUYjfH19MX/+fDm7\nSUREElnL1bDRaMTatWuRnp4OpVKJgIAAhIaGwt3d3VRm+PDh2LZtGw4ePNhqG/Hx8fDw8MDVq1fl\n6iYREXWCbGca2dnZ0Gg0cHZ2ho2NDcLCwpCSktKkzMiRI+Hv7w8bG5sW9UtLS5GWloann34anH9I\nRNQ3yBYaZWVlUKvVpmWVSoWysjLJ9Z977jls2bIFVla87EJE1FfINjylUCi6XPfw4cMYNWoUfH19\nodPpZNkGEZEl6+oIjmwf45VKJQwGg2nZYDBApVJJqnvy5EmkpqZi/PjxWLZsGY4ePYoVK1a0WlYI\nwR8h8L//+79m70Nf+eGx4LHgsWj/pztkCw1/f38UFhZCr9ejtrYWycnJCA0NbbVs852IjY2FwWBA\ncXEx9u/fj1mzZmH37t1ydZWIiCSSbXjK2toaCQkJCAkJgdFoRGRkJNzd3bF9+3YAwOrVq1FRUYGA\ngABUV1fDysoK8fHxyM/Ph729fZO2OAxFRNQ3KER3z1XMSKFQdPtUa6DQ6XQIDg42dzf6BB6LO3gs\n7uCxuKM7750MDSIiC9Od907ez0pERJIxNIiISDKGBhERScbQICIiyRgaREQkGUODiIgkY2gQEZFk\nDA0iIpKMoUFERJIxNIiISDKGBhERScbQICIiyRgaREQkGUODiIgkY2gQEZFkDA0iIpKMoUFERJIx\nNIiISDKGBhERScbQICIiyRgaREQkGUODiIgkkz00tFot3Nzc4OLigri4uBavnz17FlOnToWtrS22\nbt1qWm8wGPDQQw/B09MTXl5eeOutt+TuKhERdUAhhBByNW40GuHq6or09HQolUoEBAQgKSkJ7u7u\npjIXL17E999/j4MHD+Lee+/FCy+8AACoqKhARUUFJk+ejJqaGkyZMgUHDx5sUlehUEDG7hMRDUjd\nee+U9UwjOzsbGo0Gzs7OsLGxQVhYGFJSUpqUGTlyJPz9/WFjY9Nk/ejRozF58mQAgL29Pdzd3VFe\nXi5nd4mIBrzuftC27qF+tKqsrAxqtdq0rFKpkJWV1el29Ho9cnNzERgY2OK1mJgY0+/BwcEIDg7u\nSleJiAYsnU4HnU6Hc5fO4XjJ8W61JWtoKBSKbrdRU1ODxYsXIz4+Hvb29i1ebxwaRETUlLHBiIoR\nFfh09KewGmOFrb/aiqWpS7vcnqyhoVQqYTAYTMsGgwEqlUpy/bq6OixatAjh4eFYsGCBHF0kIhqQ\nbtbfRGJeIuIy4uBo54jNszfjEc0jUCgUWIo+Ghr+/v4oLCyEXq/H2LFjkZycjKSkpFbLNh9nE0Ig\nMjISHh4eiI6OlrObREQDxrXaa3gv5z28dvI1THKchA9CP8CMcTN6rH1Z754CgM8++wzR0dEwGo2I\njIzESy+9hO3btwMAVq9ejYqKCgQEBKC6uhpWVlYYMmQI8vPz8c0332DmzJnw9vY2DXNt2rQJjzzy\nyJ3O8+4pIiIAwOUbl5GQnYBt2dvwoPODeGn6S/Ab49dq2e68d8oeGnJiaBCRpauoqcAbmW/gLzl/\nQahrKDYEbYDbCLd263TnvVPW4SkiIpKHvkqPLSe3IOl0EsK9w5G7OhdOw5xk3y5Dg4ioHym4WIDN\nGZtx+NxhrJ6yGgX/XQBHe8de2z6Hp4iI+oGvyr/CphObcKLkBNYFrsOzAc/CwdahS23xmgYR0QAk\nhMA/vv8HYo/HouDHAvxm2m/wtN/TGGwzuFvt8poGEdEAIoTAkcIjiD0ei0s3LmFD0AaEe4fjrkF3\nmbtrDA0ior7C2GDEgfwD2HRiE6wUVvjd9N9hoftCDLIaZO6umTA0iIjMrL3Z230NQ4OIyEzknr0t\nB4YGEVEvaz57O3VZapuzt/sahgYRUS9pPnv72KpjHc7e7msYGkREMms8e/sJ7yeQ80wOxjmMM3e3\nuoShQUQkE3PP3pYDJ/cREfWwnpy9LQfOCCciMjMhBI59fwyxJ2KRfzG/x2Zvy4EzwomIzKTx7O0f\nr/+I307/bZ+ZvS0HhgYRURc0nr2tgAK/m/E7LHJf1Kdmb8uBoUFE1An9afa2HBgaREQS9MfZ23Jg\naBARtePyjct4+59v462st/rd7G05MDSIiFoxEGZvy4GhQUTUyECavS0HhgYREQbm7G05cHIfEVm0\nvj57Ww7dee+06uG+NKHVauHm5gYXFxfExcW1eP3s2bOYOnUqbG1tsXXr1k7VJSLqKiEE/qH/B0L2\nhOCXyb/Eg+MeRPG6Yvxuxu8GfGB0l2xnGkajEa6urkhPT4dSqURAQACSkpLg7u5uKnPx4kV8//33\nOHjwIO6991688MILkusCPNMgos6xtNnbbemTXyOSnZ0NjUYDZ2dnAEBYWBhSUlKavPGPHDkSI0eO\nxJEjRzpdl4hIKkudvS0H2UKjrKwMarXatKxSqZCVldXjdWNiYky/BwcHIzg4uEv9JaKBp/Hs7VF2\no7Bp9ibM1cy1mNnbt+l0Ouh0uh5pS7bQ6M5fSmfqNg4NIiKAs7eba/6BeuPGjV1uS7bQUCqVMBgM\npmWDwQCVSiV7XSKyXJy9LT/Z7p7y9/dHYWEh9Ho9amtrkZycjNDQ0FbLNr8g05m6REQVNRXYkL4B\nmm0aFF0uwrFVx3BgyQEGhgxkO9OwtrZGQkICQkJCYDQaERkZCXd3d2zfvh0AsHr1alRUVCAgIADV\n1dWwsrJCfHw88vPzYW9v32pdIqLGOHu793FyHxH1O81nb68LXMfZ253Ax70SkUWwxNnbcmBoENGA\n1Z+evd1f9MnJfURE3cHZ230TQ4OI+hTO3u7bGBpE1CdY+rO3+wuGBhGZFWdv9y8MDSIyi9uzt7dl\nb8PMcTM5e7ufYGgQUa9q/uztfzz5Dz57ux9haBBRr+Ds7YGBoUFEsuKztwcWTu4jIllw9nbfxRnh\nRNQncPZ2/8AZ4URkVpy9bTkYGkTUZZy9bXkYGkTUaZy9bbk6DI2qqiqcOnUKer0eCoUCzs7OmDp1\nKoYNG9Yb/SOiPoSzt6nNC+HHjx/Hli1boNfr4evri7Fjx0IIgQsXLiA3NxfOzs5Yv349pk+f3tt9\nNuGFcKLe0Xz29kvTX+Ls7X5Mlgvhn376KbZu3QoXF5dWXz937hz+/Oc/mzU0iEhenL1NzfGWWyJq\nofns7RenvsjZ2wOILGcae/bsQXh4OLZu3drqBp9//vkubZCI+i7O3qaOtBka165dAwBcvXq1yR0R\nQgjeIUE0wDSfvR0fFc/Z29QqDk8RWSjO3rZc3XnvtOqowPr161FdXY26ujrMnj0bI0aMQGJiYpc2\nRkTmJ4TA4XOHEfRBEJ45/AyWei5FUVQRogKjGBjUoQ5D4/PPP8fQoUNx+PBhODs7o6ioCFu2bJHU\nuFarhZubG1xcXBAXF9dqmaioKLi4uMDHxwe5ubmm9Zs2bYKnpycmTZqE5cuX4+bNmxJ3iYhaY2ww\nYv93+zF5+2T84cs/4LkHnkP+s/l4yvcpft0HSdZhaNTX1wMADh8+jMWLF2PYsGGSrmkYjUasXbsW\nWq0W+fn5SEpKQkFBQZMyaWlpOH/+PAoLC7Fjxw6sWbMGAKDX6/Hee+8hJycHp0+fhtFoxP79+7uy\nf0QW72b9Tfwl5y9we9sNCdkJ2Dx7M3KeycESzyX8ug/qtA5nhM+fPx9ubm6wtbXFu+++ix9++AG2\ntrYdNpydnQ2NRgNnZ2cAQFhYGFJSUuDu7m4qk5qaipUrVwIAAgMDUVVVhcrKSgwdOhQ2Nja4fv06\nBg0ahOvXr0OpVHZxF4ksU/XNanyQ+wFnb1OP6jA0Nm/ejPXr12PYsGEYNGgQ7OzscPDgwQ4bLisr\ng1qtNi2rVCpkZWV1WKasrAx+fn544YUX4OTkhHvuuQchISGYM2dOq9uJiYkx/R4cHIzg4OAO+0Y0\nUNUZ6/C3or8hMS8R2vNahGhC+Oxtgk6ng06n65G2OgyNGzduYOfOnThx4gQUCgVmzJhhGkZqj9Tb\nclu7gl9UVIQ333wTer0ew4YNw5IlS7B371488cQTLco2Dg0iSySEQM6FHCTmJSLpuyRMuHcCVvis\nwDuPvoP77rnP3N2jPqD5B+qNGzd2ua0OQ2PFihUYOnQooqKiIITAvn37EBERgQMHDrRbT6lUwmAw\nmJYNBgNUKlW7ZUpLS6FUKqHT6TBt2jQMHz4cALBw4UKcPHmy1dAgslQlV0qwN28vEvMScdN4ExHe\nEch4KgOa+zTm7hoNYB2GxpkzZ5Cfn29anjVrFjw8PDps2N/fH4WFhdDr9Rg7diySk5ORlJTUpExo\naCgSEhIQFhaGzMxMODg4wNHREa6urnjllVdw48YN2NraIj09Hffff38Xdo9oYKm+WY1P8j9BYl4i\nvq38Fks8luC9+e9hmnoaJ91Sr+gwNPz8/HDq1ClMnToVAJCZmYkpU6Z03LC1NRISEhASEgKj0YjI\nyEi4u7tj+/btAIDVq1dj3rx5SEtLg0ajgZ2dHXbu3AkAmDx5MlasWAF/f39YWVnBz88PzzzzTHf2\nk6jfqm+oxxdFXyAxLxFphWkIdg7Gfwf8Nx6b+Bjutr7b3N0jC9PhjHA3NzecO3cOarUaCoUCJSUl\ncHV1hbW1NRQKBfLy8nqrry1wRjgNVEIIfFPxDXbn7UbS6SQ4OzgjwjsCS72WYsTgEebuHvVzsj4j\nXKvVdqlhIuq80upS03WKa3XXEOEdgWOrjmHi8Inm7hoRgHbONK5evYohQ4a0W1lKGTnxTIMGgqs3\nr+KvBX9FYl4ici7kYLHHYkR4RyDIKQhWig7n3xJ1WnfeO9sMjTlz5sDV1RWPP/44/P39cd99t27d\nu3TpEr766iscPHgQhYWFSE9P73rPu4mhQf1VfUM90v+djsS8RBw5dwQzx81EhHcE5rvOh611x5Nn\nibpDltAAgKNHj2Lfvn3IyMhAeXk5AGDs2LGYPn06nnjiCbNPpGNoUH8ihMC3ld8iMS8R+07vg3qo\nGit8VmCp51KMtBtp7u6RBZEtNPo6hgb1B2XVZdh3eh925+1G9c1qRHhHINw7nI9NJbNhaBD1MTW1\nNfi04FPsztuNr8u/xkL3hYjwjsCMcTN4nYLMjqFB1AcYG4z4e/HfkZiXiEP/OoTpTtMR4R2BUNdQ\n3GNzj7m7R2TC0CAyo7zKPNN1ijH2Y7DCZwXCvMIwym6UubtG1CpZ52kQUUvlV8ux7/Q+JOYl4vKN\nywj3Dkd6RDrcR7p3XJmoH+OZBpFE12qv4dOznyIxLxHZZdn4pdsvEeEdgQedH+R1CupXODxFJBNj\ngxFf6r9EYl4iUs6mYJp6GiK8I/C42+N8njb1WwwNoh723Q/fYfe3u7Hv9D6MshuFFT4rsMxrGRzt\nHc3dNaJu6857Z5vn1CUlJQgLC8P06dMRGxuLuro602sLFizo0saI+rKKmgq8fup1+G73xSN7HoGV\nwgqfh3+OnNU5iH4gmoFBhHYuhD/11FNYvHgxAgMD8f777+PBBx9EamoqRowYge+//743+0gkm+t1\n13Hw7EEk5iXilOEUFrgtwGsPv4Zg52AMshpk7u4R9TlthsbFixfxq1/9CgCQkJCAPXv2YObMmTh0\n6FCvdY5IDg2iATq9Dru/3Y2Uf6UgUBmICO8IfLzkY9jdZWfu7hH1aW2GRn19PX7++WfY2t768rTw\n8HCMHj0aISEhuHbtWq91kKinnPnhDBLzErH39F4Mv2c4VviswKbZmzBmyBhzd42o32jzQvjrr78O\nPz+/Fl9KmJubi/Xr1+OLL77ojf61ixfCqbEjR47hrbf+hps3rXH33fWIivoF/B90RdJ3Sdj97W5U\nXqvEE5OeQIR3BCY5TjJ3d4nMhndPkcU7cuQY1q37HEVFfwKsbwBuKRg89fdQOFVioeet+RSzxs/i\ndQoiyBwaRUVFiI6OxqlTp6BQKDBt2jS88cYb+I//+I8ubbAnMTQIAH6u/xkzw1bjnxUegFMG4HQc\nKA8Avl2B2crTSE+LM3cXifoUWW65vW358uX4z//8T1y4cAHl5eVYsmQJli1b1qWNEfWEi9cu4uDZ\ng/jNF7/BtPenYfirw1Ew7gtgSDmQFw68XQAkHgLy3kPdtVvX5Kqrq6FSqfDrX//a1E5xcTECAwPh\n4uKCsLCwJreVd8eTTz6JTz75pMNyWq0Wbm5ucHFxQVxc28EWFRUFFxcX+Pj4IDc317S+qqoKixcv\nhru7Ozw8PJCZmdmk3tatW2FlZYWffvoJALB37174+vqafgYNGoS8vLxO79+hQ4dM/X3rrbeQmJjY\n6TaoHxMdmDRpUot13t7eHVXrFRK6T/1cQ0ODKLhYIP7y9V/EqoOrxMRtE8WwTcNESGKIeFn3svj7\nv/8urt68Kn7xi/8RgGj0874AXhUhIb8XQggRFRUlli9fLtauXWtqe8mSJSI5OVkIIcSvfvUr8e67\n7/ZIn5988knx8ccft1umvr5eTJgwQRQXF4va2lrh4+Mj8vPzW5Q7cuSImDt3rhBCiMzMTBEYGGh6\nbcWKFeL9998XQghRV1cnqqqqTK+VlJSIkJAQ4ezsLC5dutSi3dOnTwuNRtOl/WusurpaBAQEdLsd\n6l3dee/s8Exj7ty52LRpE/R6PfR6PeLi4jB37lz89NNPpk8wRD3l5/qfcaLkBOJOxCE0KRQjt4zE\nI3sewVH9UfiP9cdHiz/CpfWXoA3X4g8P/gGzxs+C/V32iIr6BSZM+J9GLSVBrS7Cr3/9ML7++mv8\n8MMP+MUvfmF6VQiBL7/8EosXLwYArFy5EgcPHgQAxMTEYOXKlZg5cyacnZ3x17/+FS+++CK8vb0x\nd+5c1NfXAwCcnZ2xYcMGeHt7IzAwEEVFRab2jx07hqCgIEyYMKHVs47s7GxoNBo4OzvDxsYGYWFh\nSElJaVEuNTUVK1euBAAEBgaiqqoKlZWVuHLlCo4fP46nnnoKAGBtbY1hw4aZ6j3//PN49dVX2zzO\n+/btQ1hYmGnZ3t4ezz//PLy8vDBnzhz8+OOPAG6dSXh6esLHxwfLly8HAHz44YemM7YhQ4Zg+PDh\nOHPmTJvbooGlw2+5TU5OhkKhwI4dO1pd/+9//1u2ztHAd/HaRZw0nESGIQMZhgx8U/EN3Ee4I8gp\nCOHe4Xj30XehHKrssJ1HH50JANi27Q+4cUOBzMxMvPvuHzB37nTMnj0be/fubXLH36VLl+Dg4AAr\nq1ufm5RKJcrKykyvFxcX48svv8SZM2fwwAMP4NNPP8Vrr72GhQsX4siRI3j88cehUCjg4OCAvLw8\nJCYmIjo6GocOHYIQAhUVFcjIyEBBQQFCQ0OxaNGiJv0tKyuDWq02LatUKmRlZbXYr9bKlZaWYtCg\nQRg5ciRWrVqFb7/9FlOmTEF8fDwGDx6MlJQUqFQqeHt7t3m8PvroI6SmppqWr1+/joCAALz++ut4\n5ZVXsHHjRmzbtg1xcXHQ6/WwsbFBdXU1gFvj4Y3df//9OHbsGDw9Pdv+C6IBo8PQ0Ov1XW5cq9Ui\nOjoaRqMRTz/9NDZs2NCiTFRUFD777DMMHjwYH374IXx9fQHcGq99+umncebMGSgUCnzwwQd44IEH\nutwXMj8hBM5dOocMQwZOlJxAhiEDFTUVeED1AILUQXg5+GUEqgJhf5d9l9p/9NGZePTRmaisrMSM\nGfvx6KMzkZCQgHnz5mHs2LGSL/wpFArMnTsXgwYNgpeXFxoaGhASEgIAmDRpUpNvRLh9fS8sLAzP\nPfecqf7tr9pxd3dHZWVlq9uQqnm/FQoF6uvrkZOTg4SEBAQEBCA6OhqbN2/GSy+9hNjY2CYB2bx+\nVlYWBg8eDA8PD9M6KysrLF26FMCtOVkLFy4EAHh7e2P58uVYsGBBm18fNHbsWH54tCCdep7GM888\n0+KMoy1GoxFr165Feno6lEolAgICEBoaCnf3O88bSEtLw/nz51FYWIisrCysWbPGdDFv3bp1mDdv\nHj7++GPU19dzQmE/dLP+Jr4q/8p0FnHScBKDbQZjutN0BKmDsC5wHbxGeclyG+ztN8rMzEwcP34c\n77zzDmpqalBbW4shQ4YgNjYWVVVVaGhogJWVFUpLS6FU3jmjueuuuwDcejO1sbExrbeysjINTzXX\nOAhu12/cl8aUSiUMBoNp2WAwQKVSdVjudj+FEFCpVAgICAAALF68GJs3b0ZRURH0ej18fHxM5adM\nmYLs7GyMGnXroVD79+83DTW1Rghh2pcjR47g2LFjOHToEP70pz/h9OnTLfancXka+DoVGv/85z8l\nl208ZgvANGbbODTaGq+1tbXF8ePHsWvXrludbDZeS33Tj9d/NA01nSg5gW8qvoHbCDcEqYOw3Gs5\n3p73NlRDW74x9rQRI0agpqYGALBnzx7T+l27duGrr75CbGwsAOChhx7CgQMHsHTpUuzatUvyF3E2\nftNMTk7Ghg0bkJycjGnTpnVY183NDWfPnoW/vz8KCwuh1+sxduxYJCcnIykpqUX50NBQJCQkICws\nDJmZmXBwcICj460vTlSr1Th37hwmTpyI9PR0eHp6wsvLq8mZzfjx4/H111/jvvvuAwA0NDTgwIED\nOHHiRJPt3F6/dOlS7Nu3DzNmzIAQAiUlJQgODkZQUBD2799vOq6NXbhwwfT/nAa+ToXG7X+sUkgZ\ns+3KeG1zMTExpt+Dg4NbzGAneTQeasowZCCjJAMXai4gUBmI6U7Tuz3U1B23h5X+9a9/wdXVtclr\njT8Rx8XFISwsDL///e/h5+eHyMjIVss1/xTdePny5cvw8fGBra1tkzf91urfvrgM3PoglJCQgJCQ\nEBiNRkRGRpo+UG3fvh0AsHr1asybNw9paWnQaDSws7PDzp07TW1s27YNTzzxBGprazFhwoQmr7XV\n92PHjsHJyanFm7ydnR2ys7Pxf//3f3B0dERycjLq6+sRERGBK1euQAiBdevWYdiwYVAoFE3azc7O\nxmuvvdZi29R36HQ66HS6HmlLthnhn3zyCbRaLd577z0Atz7xZWVlYdu2baYy8+fPx29/+1sEBQUB\nAObMmYNXX30VDQ0NmDp1Kk6ePGkarx06dChefvnlpp3n5L5ec7P+Jr6+8DUySu4MNd1jcw+C1EG3\nfpyCMGnUpD4z4/rDDz9EZWVlq9fRekrzT/EdOXLkCIqLi7F27VrZ+tRVQ4YMwdWrVztdr7q6GrNn\nz+7UKASZX68/I1zKtQ0pY7adHa+l3tN4qCmjJAO5FblwHe6KIKcgLPNahoR5Cb0y1NRVy5cvx5w5\nc7B+/XrZxts72+6jjz4qSz96QleP0Ycffoh169b1cG+oL2szNNqagyGEwJEjRzpsWMqYbWfHa0ke\nQggU/lRoOovIMGSg/Go5ApWBCFIHISY4BoHKQAy5e4i5uyrZXXfdhWPHjsm6jYF0x9Dt22k7Kyoq\nqod7Qn1dm6ExYsQIjBs3rtXXLl682HHDbYzZ9uR4LXXNzfqbyLmQY7pgfdJwErbWtghyujXUtPb+\ntX1qqImI+o42r2loNBr8/e9/bzU41Gp1k2Elc+E1DWkuXb/UZAJd7oVcTBw+0RQSQeogqIepO26I\niAYEWa5pREdH4/Lly62Gxm9+85subYzkJ4TA+Z/OmwLiRMkJlFWXIVB1a6jpjzP/iAdUD/SroSYi\n6jv4PI1+7MrPV/D9le9RcqUEZ388a7qr6e5Bdzc5i5jkOAnWVl2654GIBiBZn6dx48YNvPPOOzhx\n4gQUCgVmzJiBNWvWmB4Da04DOTSMDUZcqLmAkisl+L7qVjDcDojbfzaIBowbNg7jHMZhwr0TMFU1\nFUFOQXAa5mTu7hNRHyZraCxZsgRDhw5FeHg4hBDYt28frly5ggMHDnRpgz2pP4fG9brrKLlScicU\nqpuGQ/nVcgy/ZzichjlhnMO4W38Oa/qng60Dv76BiDpN1tDw8PBAfn5+h+vMoa+GhhACF69fbPUs\n4fbvNbU1UA9V3wmFoU3DQTVUhbut7zb3rhDRACTr5D4/Pz+cOnUKU6dOBXDrC+CmTJnSpY0NFLXG\nWpRWl7Y5dGS4YsBgm8FNzhKchjphutN0UyiMtBsJK0WHjzMhIupTOjzTcHNzw7lz56BWq6FQKFBS\nUgJXV1dYW1tDoVB06XGRPUWuM42qn6vaHTq6eO0ixg4Z2+bQkXqY2izfuUREJIWsw1MdPU/DnN9u\n2ZUd78wF5raGjsYMGcO7kYio35I1NPqy1nZcygXm++65r91Q4AVmIhrILDo0orXRTULh6s2rt64h\n/P+fJuEwzAnqoWpeYCYii9br33Lbl6iGqBCkDuIFZiKiXtDvzzT6cfeJiMyiO++d/EhORESSMTSI\niEgyhgYREUnG0CAiIskYGkREJBlDg4iIJGNoEBGRZAwNIiKSjKFBRESSMTSIiEgyhgYREUkma2ho\ntVq4ubnBxcUFcXFxrZaJioqCi4sLfHx8kJub2+Q1o9EIX19fzJ8/X85uEhGRRLKFhtFoxNq1a6HV\napGfn4+kpCQUFBQ0KZOWlobz58+jsLAQO3bswJo1a5q8Hh8fDw8PDz7bgoioj5AtNLKzs6HRaODs\n7AwbGxuEhYUhJSWlSZnU1FSsXLkSABAYGIiqqipUVlYCAEpLS5GWloann36a32RLRNRHyPY8jbKy\nMqjVatOySqVCVlZWh2XKysrg6OiI5557Dlu2bEF1dXW724mJiTH9HhwcjODg4B7pPxHRQKHT6aDT\n6XqkLdlzu66mAAAMUUlEQVRCQ+qQUvOzCCEEDh8+jFGjRsHX17fDHW0cGkRE1FLzD9QbN27scluy\nDU8plUoYDAbTssFggEqlardMaWkplEolTp48idTUVIwfPx7Lli3D0aNHsWLFCrm6SkREEskWGv7+\n/igsLIRer0dtbS2Sk5MRGhrapExoaCh2794NAMjMzISDgwNGjx6N2NhYGAwGFBcXY//+/Zg1a5ap\nHBERmY9sw1PW1tZISEhASEgIjEYjIiMj4e7uju3btwMAVq9ejXnz5iEtLQ0ajQZ2dnbYuXNnq23x\n7ikior6BzwgnIrIwfEY4ERH1CoYGERFJxtAgIiLJGBpERCQZQ4OIiCRjaBARkWQMDSIikoyhQURE\nkjE0iIhIMoYGERFJxtAgIiLJGBpERCQZQ4OIiCRjaBARkWQMDSIikoyhQUREkjE0iIhIMoYGERFJ\nxtAgIiLJGBpERCQZQ4OIiCRjaBARkWQMDSIikkz20NBqtXBzc4OLiwvi4uJaLRMVFQUXFxf4+Pgg\nNzcXAGAwGPDQQw/B09MTXl5eeOutt+TuKhERdUDW0DAajVi7di20Wi3y8/ORlJSEgoKCJmXS0tJw\n/vx5FBYWYseOHVizZg0AwMbGBm+88QbOnDmDzMxMvP322y3qEhFR75I1NLKzs6HRaODs7AwbGxuE\nhYUhJSWlSZnU1FSsXLkSABAYGIiqqipUVlZi9OjRmDx5MgDA3t4e7u7uKC8vl7O7RETUAWs5Gy8r\nK4NarTYtq1QqZGVldVimtLQUjo6OpnV6vR65ubkIDAxssY2YmBjT78HBwQgODu65HSAiGgB0Oh10\nOl2PtCVraCgUCknlhBBt1qupqcHixYsRHx8Pe3v7FnUbhwYREbXU/AP1xo0bu9yWrMNTSqUSBoPB\ntGwwGKBSqdotU1paCqVSCQCoq6vDokWLEB4ejgULFsjZVSIikkDW0PD390dhYSH0ej1qa2uRnJyM\n0NDQJmVCQ0Oxe/duAEBmZiYcHBzg6OgIIQQiIyPh4eGB6OhoObtJREQSyTo8ZW1tjYSEBISEhMBo\nNCIyMhLu7u7Yvn07AGD16tWYN28e0tLSoNFoYGdnh507dwIAMjIysGfPHnh7e8PX1xcAsGnTJjzy\nyCNydpmIiNqhEM0vKPQjCoWixfUQIiJqX3feOzkjnIiIJGNoEBGRZAwNIiKSjKFBRESSMTSIiEgy\nhgYREUnG0CAiIskYGkREJBlDg4iIJGNoEBGRZAwNIiKSjKFBRESSMTSIiEgyhgYREUnG0CAiIskY\nGkREJBlDg4iIJGNoEBGRZAwNIiKSjKFBRESSMTSIiEgyhgYREUkma2hotVq4ubnBxcUFcXFxrZaJ\nioqCi4sLfHx8kJub26m6dIdOpzN3F/oMHos7eCzu4LHoGbKFhtFoxNq1a6HVapGfn4+kpCQUFBQ0\nKZOWlobz58+jsLAQO3bswJo1ayTXpab4H+IOHos7eCzu4LHoGbKFRnZ2NjQaDZydnWFjY4OwsDCk\npKQ0KZOamoqVK1cCAAIDA1FVVYWKigpJdYmIqPfJFhplZWVQq9WmZZVKhbKyMkllysvLO6xLRES9\nz1quhhUKhaRyQohe2Y4l2Lhxo7m70GfwWNzBY3EHj0X3yRYaSqUSBoPBtGwwGKBSqdotU1paCpVK\nhbq6ug7rAt0PHCIi6hzZhqf8/f1RWFgIvV6P2tpaJCcnIzQ0tEmZ0NBQ7N69GwCQmZkJBwcHODo6\nSqpLRES9T7YzDWtrayQkJCAkJARGoxGRkZFwd3fH9u3bAQCrV6/GvHnzkJaWBo1GAzs7O+zcubPd\nukREZGain/rss8+Eq6ur0Gg0YvPmzebuTq8qKSkRwcHBwsPDQ3h6eor4+HghhBCXLl0Sc+bMES4u\nLuLhhx8Wly9fNnNPe0d9fb2YPHmyeOyxx4QQlnschBDi8uXLYtGiRcLNzU24u7uLzMxMizwesbGx\nwsPDQ3h5eYlly5aJn3/+2aKOw6pVq8SoUaOEl5eXaV17+x8bGys0Go1wdXUVn3/+ebtt98sZ4ZY+\nj8PGxgZvvPEGzpw5g8zMTLz99tsoKCjA5s2b8fDDD+PcuXOYPXs2Nm/ebO6u9or4+Hh4eHiYboqw\n1OMAAOvWrcO8efNQUFCAvLw8uLm5Wdzx0Ov1eO+995CTk4PTp0/DaDRi//79FnUcVq1aBa1W22Rd\nW/ufn5+P5ORk5OfnQ6vV4tlnn0VDQ0PbjcsWdTI6efKkCAkJMS1v2rRJbNq0yYw9Mq/HH39cfPHF\nF8LV1VVUVFQIIYS4cOGCcHV1NXPP5GcwGMTs2bPF0aNHTWcalngchBCiqqpKjB8/vsV6Szsely5d\nEhMnThQ//fSTqKurE4899pj429/+ZnHHobi4uMmZRlv7Hxsb22S0JiQkRJw6darNdvvlmYaUOSCW\nQq/XIzc3F4GBgaisrISjoyMAwNHREZWVlWbunfyee+45bNmyBVZWd/4pW+JxAIDi4mKMHDkSq1at\ngp+fH/7rv/4L165ds7jjcd999+GFF16Ak5MTxo4dCwcHBzz88MMWdxyaa2v/y8vLm9yd2tH7ab8M\nDc7NuKWmpgaLFi1CfHw8hgwZ0uQ1hUIx4I/T4cOHMWrUKPj6+rZ5+7UlHIfb6uvrkZOTg2effRY5\nOTmws7NrMQRjCcejqKgIb775JvR6PcrLy1FTU4M9e/Y0KWMJx6E9He1/e6/1y9CQMgdkoKurq8Oi\nRYsQERGBBQsWALj16aGiogIAcOHCBYwaNcqcXZTdyZMnkZqaivHjx2PZsmU4evQoIiIiLO443KZS\nqaBSqRAQEAAAWLx4MXJycjB69GiLOh5fffUVpk2bhuHDh8Pa2hoLFy7EqVOnLO44NNfW/4vW5ssp\nlco22+mXoWHp8ziEEIiMjISHhweio6NN60NDQ7Fr1y4AwK5du0xhMlDFxsbCYDCguLgY+/fvx6xZ\ns5CYmGhxx+G20aNHQ61W49y5cwCA9PR0eHp6Yv78+RZ1PNzc3JCZmYkbN25ACIH09HR4eHhY3HFo\nrq3/F6Ghodi/fz9qa2tRXFyMwsJC3H///W03JMcFmN6QlpYmJk6cKCZMmCBiY2PN3Z1edfz4caFQ\nKISPj4+YPHmymDx5svjss8/EpUuXxOzZsy3ilsLmdDqdmD9/vhBCWPRx+Oabb4S/v7/w9vYWv/zl\nL0VVVZVFHo+4uDjTLbcrVqwQtbW1FnUcwsLCxJgxY4SNjY1QqVTigw8+aHf///SnP4kJEyYIV1dX\nodVq221bIQS/i4OIiKTpl8NTRERkHgwNIiKSjKFBRESSMTSIiEgyhgZZPL1ej0mTJjVZFxMTg61b\nt3ZY9/Dhw4iJiemRfgQHB+Prr79usT4vLw+RkZE9sg2i7mJoELVC6mzhrVu3Ys2aNbJu09vbG0VF\nRfjhhx96ZDtE3cHQIOoig8GA2tpa0/f5PPnkk3j22WcxdepUTJgwATqdDitXroSHhwdWrVplqmdv\nb4/nn38eXl5emDNnDn788UfTawcOHEBgYCBcXV1x4sQJ0/q5c+fiwIEDvbdzRG1gaBB1UUZGBvz8\n/EzLCoUCVVVVOHXqFN544w2EhoZi/fr1OHPmDE6fPo28vDwAwPXr1xEQEIDvvvsODz74oOm51UII\nGI1GZGVl4c0332zyPOv7778fx44d690dJGoFQ4MsXlvDQh0NUZWUlGDMmDFN1s2fPx8A4OXlhdGj\nR8PT0xMKhQKenp7Q6/UAACsrKyxduhQAEB4ebjqjUCgUWLhwIQDAz8/PVB4AxowZ02SZyFwYGmTx\nhg8fjsuXLzdZd+nSJYwcObLDus2/UOGuu+4CcCsY7r77btN6Kysr1NfXt1q/cTjdrjNo0KAm5ZuX\nIzIXhgZZPHt7e4wZMwZffvklAOCnn37C559/junTp7dbb9y4caZvDe2MhoYG0/WJffv2YcaMGR3W\nuXDhAsaNG9fpbRH1NIYGEYDdu3fjlVdega+vL2bPno2YmBiMHz++3TpBQUHIyclpsq7x2UBbZwZ2\ndnbIzs7GpEmToNPp8Mc//rHVco3rZ2dnY+bMmVJ3h0g2/MJCom6YNWsW9u7d2+LaRnuGDBmCq1ev\ndmo7wcHB+OijjyzuGRDU9/BMg6gbXnzxRfz5z3/uVJ3OXpvIy8uDRqNhYFCfwDMNIiKSjGcaREQk\nGUODiIgkY2gQEZFkDA0iIpKMoUFERJIxNIiISLL/B/expgtkdenNAAAAAElFTkSuQmCC\n"
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 6.10 Page no.331"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "d=1.18*1000                                          #kg/m**3\n",
      "vis=0.0045                                             #Ns/m**2, viscosity\n",
      "Q=12.0                                                     #ml/sec\n",
      "dia1=4.0                                                   #mm\n",
      "l=1.0                                                         #m\n",
      "dia2=2.0                                                   #mm\n",
      "\n",
      "#calculation\n",
      "import math\n",
      "V=Q/(1000000*math.pi*((dia1/1000)**2)/4)       #mean velocity, m/sec\n",
      "Re=(d*V*dia1/1000)/vis\n",
      "\n",
      "#result\n",
      "print \"  The Reynolds number is \",round(Re,0),\"is well below critical value of 2100 so flow is laminar.\"\n",
      "pdiff=(8*vis*(l)*(12*10**-6)/(math.pi*(dia1/2000)**4))*10**-3        #kPa\n",
      "print \"a)The pressure drop along a 1 m length of the tube which is far from the tube entrance \",round(pdiff,),\"kpa\"\n",
      "\n",
      "#for flow in the annulus\n",
      "V1=Q/(1000000*math.pi*(((dia1/1000)**2)-((dia2/1000)**2))/4)     #mean velocity, m/sec\n",
      "Re1=d*((dia1-dia2)/1000)*V1/vis\n",
      "\n",
      "#Result\n",
      "print \"b) The Reynolds number is \",round(Re1),\" is well below critical value of 2100 so flow is laminar.\"\n",
      "r1=dia1/2000\n",
      "r2=dia2/2000\n",
      "pdiff1=((8*vis*(l)*(12*10**-6)/(math.pi))*((r1**4)-(r2**4)-((((r1**2)-(r2**2))**2)/(math.log(r1/r2))))**(-1))*10**-3  #kPa\n",
      "\n",
      "#result\n",
      "print \"The pressure drop along a 1 m length of the symmetric annulus =\",round(pdiff1,1),\"kpa\"\n",
      "\n",
      "#plot\n",
      "import matplotlib.pyplot as plt\n",
      "fig = plt.figure()\n",
      "ax = fig.add_subplot(111)\n",
      "\n",
      "T=[0,0.001,0.005,0.01,0.2,0.35,0.5]\n",
      "K=[1.1,1.17,1.22,1.28,2.2,3.8,7.94]\n",
      "xlabel(\"Ri/Ro\") \n",
      "ylabel(\"Pannulus/Ptube\") \n",
      "plt.xlim((0,0.5))\n",
      "plt.ylim((1,8))\n",
      "ax.plot([0.5], [7.94], 'o')\n",
      "ax.annotate('(0.5,7.94)', xy=(0.5,7.9))\n",
      "a=plot(T,K)\n",
      "show(a)\n",
      "\n",
      "T1=[0,0.001,0.005,0.01]\n",
      "K1=[1.1,1.14,1.20,1.28]\n",
      "xlabel(\"Ri/Ro\") \n",
      "ylabel(\"Pannulus/Ptube\") \n",
      "plt.xlim((0,0.01))\n",
      "plt.ylim((1,1.3))\n",
      "a1=plot(T1,K1)\n",
      "show(a1)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "  The Reynolds number is  1002.0 is well below critical value of 2100 so flow is laminar.\n",
        "a)The pressure drop along a 1 m length of the tube which is far from the tube entrance  9.0 kpa\n",
        "b) The Reynolds number is  668.0  is well below critical value of 2100 so flow is laminar.\n",
        "The pressure drop along a 1 m length of the symmetric annulus = 68.2 kpa\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAEMCAYAAACLA8K2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYlOX+P/D3sCmL4IapLAdFC1TAETAXTDAp9y2x0MsF\nFTy2mGX9WvwqqKV11AqsY2lpenJJxARNcTk5Kpts7iiaguKCuCGLIMs8vz88jZLiDOIzz/DM+3Vd\nXNfALPfbO7o/PJ9nUwiCIICIiEhiJlIHICIiAliQiIjIQLAgERGRQWBBIiIig8CCREREBoEFiYiI\nDAILEhFRA3Pv3j307dsXarUaa9aswfPPP4/nn38ea9eufezrf/75Z9jb20OpVEKpVGLVqlWPvCY7\nO1vzvFKphJ2dHaKioh553e3btzFy5Eh4eXnhxRdfxMmTJ2s8X11dDaVSiaFDh2p+9v777+PgwYNa\n/10Ksc5DWrRoEX755ReYmJjAw8MDq1evRqNGjcQYiojIqKxatQo3b97ElClT4Ovri4yMDACAt7c3\nMjIy0LRp0xqvX7NmDTIyMh5bYB5HrVbDwcEBqampcHJyqvHchx9+CFtbW8yZMwfZ2dl46623sHfv\nXs3zX331FTIyMlBcXIy4uDgAwNmzZzFr1izN97URZQspNzcXK1euRGZmJo4fP47q6mps3LhRjKGI\niIzOhg0bMHz4cOzatQuvvPIKmjZtiqZNmyIwMBDx8fGPvF4QBNRl22Pv3r1wdXV9pBgBwKlTpxAQ\nEAAAeOGFF5Cbm4vr168DAC5duoQdO3Zg6tSpNcbr2LEjcnNzUVhY+MRxRSlItra2MDc3x927d1FV\nVYW7d+/CwcFBjKGIiIxKdXU1Tpw4geeffx6XL1+Go6Oj5jlHR0dcvnz5kfcoFArExMTA09MTQUFB\nuHTp0hPH2LhxI8aOHfvY57y8vLBlyxYAQGpqKi5cuKD5vPfeew+LFy+GicmjpUWpVCI5OfmJ44pS\nkJo3b45Zs2bB2dkZbdu2RdOmTdG/f38xhiIiMio3btxAkyZNANwvNLoYOnQoLly4gGPHjiEwMBAT\nJ06s9bUVFRXYtm0bgoKCHvv8xx9/jMLCQiiVSnz77bdQKpUwMTHB9u3b0apVKyiVysdujbVt2xa5\nublPDiqI4M8//xTc3d2FGzduCJWVlcKIESOEX375pcZrAPCLX/ziF7+e4qtDhw6CIAjChg0bhGnT\npmnW1bCwMGHjxo1PXJ+rqqoEOzu7Wp/funWr8Oqrr+q83ru4uAhFRUXCJ598Ijg6OgouLi5C69at\nBSsrK2H8+PGa13300UfC8uXLn/hZomwhpaeno1evXmjRogXMzMwwatQoJCUlPfI64X99TWP/Cg8P\nlzyDoXxxLjgXnItHv155Zfb9WuS+GQBQUlICAHjllVewe/duFBYW4vbt29izZw9effXVR9ba/Px8\nzeO4uDh06tRJ872bm1uN127YsAHBwcG1ru937txBRUUFAGDlypXo27cvmjRpgoULFyIvLw85OTnY\nuHEj+vXrV+Oov6tXr8LFxeWJtUOUguTm5oaUlBSUlZVBEATs3bu3xgQQEZHu7t0zA5qfBYb8EwDQ\npUsXZGdno3nz5pgzZw58fX3RvXt3hIeHa46wCw8Px7Zt2wAAUVFR6NKlC7p27Ypvv/0WP//8M4D7\n7b+HlZaWYu/evRg1alSNn//www/44YcfAABZWVnw8PCAm5sbdu3ahcjIyMdm/ns78fDhw+jZs+cT\n/51mOsxFnXl5eWHChAnw8fGBiYkJunXrhrCwMDGGIiKSPTPLMmDMaEA1D8BbGDduHLZu3YqPPvoI\nISEhCAkJeeQ98+bN0zxeuHAhFi5c+MhrDh06hLffflvzvbW19SNFCgCmTZumedyzZ09kZ2c/MW/f\nvn3Rt29fzfdnzpyBi4sL7Ozsnvg+0c5D0kahUECioQ2OSqWCv7+/1DEMAufiAc7FA8Y+FwO+G4rE\ntPMoWXMCgAnu3buH/v37Y//+/Tof2CCl999/H6NGjYKfn98TX8eCRERkwNYeXYuFBxdigfM3+Onf\nidi16zPZrp0sSEREBupEwQkErAnAvon70KVVFwDyXjt5LTsiIgNUfK8YozeNxpLAJZpiJHfcQiIi\nMjCCIGDslrGwNrfGj8N+rPGcnNdOUY6yIyKip/d9+vfIup6FlCkpUkfRKxYkIiIDkn4lHXNVc5E0\nOQmW5pZSx9Er7kMiIjIQt8tuY0z0GCwfvBwdW3SUOo7ecR8SEZEBEAQBI34dAZemLogc8PirHwDy\nXjvZsiMiMgBLkpbgWsk1RAdFSx1FMixIREQSS7iYgCXJS5AWmgYLUwup40iG+5CIiCRUUFqA4Jhg\nrBq2Cs52zlLHkRQLEhGRRKrV1Ri3ZRzGe47H4OcHSx1HcixIREQSWXBgASqrKzE/YL7UUQwC9yER\nEUlgz7k9WJm5Eumh6TAz4VIMsCAREend5aLLmLB1AtaPWo82TdpIHcdgsGVHRKRHldWVeH3z63jb\n920EtAuQOo5BYUEiItKjT//4FLaNbPFJn0+kjmJw2LIjItKT2NOx2HRyEzLDMmGi4PbA37EgERHp\nwfnb5xG6LRRxwXFoYdVC6jgGiSWaiEhk5VXlGBM9Bp/2+RQ9HHtIHcdg8eKqREQie/P3N1FQWoDo\noGgoFIp6fZac10627IiIRLT++HrsOb8H6aHp9S5GcseCREQkklPXT+Hd+HexZ/we2DW2kzqOwRNt\nH1J2djaUSqXmy87ODlFRUWINR0RkUEorShEUHYRFLy9C19ZdpY7TIOhlH5JarYaDgwNSU1Ph5OR0\nf2AZ90GJyLgJgoBJsZMgCALWjFjzTFt1cl479dKy27t3L1xdXTXFiIhIzn46/BMyrmTg0NRD3G9U\nB3opSBs3bsTYsWMf+XlERITmsb+/P/z9/fURh4hINEfyj+CT/36CA5MOwNrCut6fp1KpoFKp6h+s\nARC9ZVdRUQEHBwdkZWXB3t7+wcAy3uwkIuN0p/wOfFb6YL7/fAR7BIsyhpzXTtFPjN25cye8vb1r\nFCMiIrkRBAFT4qYgsH2gaMVI7kRv2W3YsAHBwfyPQ0TyFnUoCjmFOfhl1C9SR2mwRG3ZlZaW4h//\n+AdycnLQpEmTmgPLeLOTiIxLyqUUDNswDClTU9C+WXtRx5Lz2slLBxER1cPNuzfRbUU3RA2IwnC3\n4aKPJ+e1kwWJiOgpqQU1hqwfgs6tOmNx4GK9jCnntZNX+yYiekpfJHyBontFWNhvodRRZIHXsiMi\negr7cvZhWeoypIWmwdzUXOo4ssAtJCKiOrpafBXjtozD2hFr4WjrKHUc2WBBIiKqgyp1FYJjghHm\nHYZA10Cp48gKCxIRUR2Eq8JhbmqOOS/NkTqK7HAfEhGRjnac3YG1R9ciIywDpiamUseRHRYkIiId\nXLxzESGxIYgZE4NW1q2kjiNLbNkREWlRUV2BMdFj8EHPD+Dn7Cd1HNniibFERFrMjJ+JnMIcbH19\nq+T3N5Lz2smWHRHRE2zO2oy47DhkhGVIXozkjgWJiKgWZ2+exfTfp2PnuJ1oZtlM6jiyx31IRESP\nUVZZhtHRozHPfx582vpIHccocB8SEdFjTI2bitLKUqwftd6gWnVyXjvZsiMi+ps1R9Yg4WIC0kLT\nDKoYyR0LEhHRQ04UnMAHez7Avon70KRRE+1voGeG+5CIiP6n+F4xRm8ajSWBS9ClVRep4xgd7kMi\nIgIgCALGbhkLa3Nr/DjsR6nj1ErOaydbdkREAJanL8ep66eQPCVZ6ihGiwWJiIxe+pV0hKvCkTQ5\nCZbmllLHMVrch0RERu122W2MiR6D5YOXo2OLjlLHMWrch0RERksQBIz4dQRcmrogckCk1HF0Iue1\nky07IjJaS5KW4FrJNUQHRUsdhSBiy66wsBCjR4+Gu7s7OnXqhJSUFLGGIiKqs4SLCViSvASbgjbB\nwtRC6jgEEbeQ3n33XQwaNAibN29GVVUVSktLxRqKiKhOCkoLEBwTjFXDVsHZzlnqOPQ/ouxDunPn\nDpRKJc6fP1/7wDLugxKR4apWV2PAugHwbeuLhS8vlDpOncl57RRlCyknJwf29vYICQnB0aNH4e3t\njcjISFhZWdV4XUREhOaxv78//P39xYhDRKSx4MACVFZXYn7AfKmj6ESlUkGlUkkdQy9E2UJKT09H\nz549kZSUBF9fX8ycORO2traYP//BL4CcqzwRGabd53YjJDYE6aHpaNOkjdRxnoqc105RDmpwdHSE\no6MjfH19AQCjR49GZmamGEMREenkctFlTNw6Eb+M/KXBFiO5E6UgtW7dGk5OTjhz5gwAYO/evejc\nubMYQxERaVVZXYnXN7+Ot33fRkC7AKnjUC1EOzH26NGjmDp1KioqKuDq6orVq1fDzs7uwcAy3uwk\nIsPy4Z4PcbLgJLaP3Q4TRcO+QI2c105eqYGIZC32dCxmxM9AZlgmWli1kDpOvcl57eSVGohIts7f\nPo/QbaGIC46TRTGSu4a97UpEVIvyqnIERQdhdp/Z6OHYQ+o4pAO27IhIlt78/U0UlBYgOigaCoVC\n6jjPjJzXTrbsiEh21h9fjz3n9yA9NF1WxUjuWJCISFZOXT+Fd+PfxZ7xe2DX2E77G8hgaN2HVFpa\nigULFiA0NBQAcPbsWWzfvl30YEREdVVaUYrR0aOx6OVF6Nq6q9RxqI60FqSQkBBYWFggKSkJANC2\nbVvMnj1b9GBERHUhCAKm/z4d3m28MUU5Reo49BS0FqRz587ho48+goXF/fuFWFtbix6KiKiufjr8\nEzKvZmL54OXcb9RAad2H1KhRI5SVlWm+P3fuHBo1aiRqKCKiujiSfwSf/PcTHJh0ANYW/KO5odJa\nkCIiIjBgwABcunQJY8eORWJiIn7++Wc9RCMi0u5O+R0ERQchakAU3O3dpY5D9aDTeUg3btzAoUOH\nIAgCevTogZYtW9Z/YBkfS09E+iEIAoKig9DKuhX+PfjfUsfRCzmvnVq3kARBwP79+5GQkACFQoHK\nykqMHDlSH9mIiJ4o6lAUcgpz8MuoX6SOQs+A1i2k6dOn49y5cwgODoYgCNi0aRPat2+Pf/+7fn+N\nyLnKE5H4Ui6lYNiGYUiZmoL2zdpLHUdv5Lx2ai1Ibm5uyMrKgonJ/QPy1Go1OnXqhNOnT9dvYBlP\nKhGJ6+bdm+i2ohuiBkRhuNtwqePolZzXTq2HfXfo0AEXL17UfH/x4kV06NBB1FBERLVRC2qM/208\nxnQeY3TFSO5q3Yc0dOhQAEBxcTHc3d3RvXt3KBQKpKamam5NTkSkb18kfIGie0VY2G+h1FHoGau1\nIM2aNavWN/GkMyKSwr6cfViWugxpoWkwNzWXOg49Y7z9BBE1CFeLr8J7hTfWjFiDQNdAqeNIRs5r\np9bDvm1sbDRbRBUVFaisrISNjQ2KiopED0dEBABV6ioExwQjzDvMqIuR3GktSCUlJZrHarUacXFx\nSElJETUUEdHD5u6bC3NTc8x5aY7UUUhET9Wy69q1K44cOVK/gWW82UlEz86OszsQti0MmdMy0cq6\nldRxJCfntVPrFlJMTIzmsVqtRkZGBiwtLUUNRUQEABfvXERIbAhixsSwGBkBrQVp27Ztmn1IZmZm\ncHFxQWxsrOjBiMi4VVRXYEz0GHzQ8wP4OftJHYf0QGvLLiEhAX5+NX8ZEhMT0bt3b60f7uLiAltb\nW5iamsLc3BypqakPBpbxZicR1d+78e8itzAXW1/fylNNHiLntVNrQerWrRsyMzNr/EypVOLw4cNa\nP7xdu3bIyMhA8+bNHx1YxpNKRPWzOWsz/t+e/4eMsAw0s2wmdRyDIue1s9aWXXJyMpKSklBQUICv\nvvpKMwHFxcVQq9U6DyDXiSMicZy9eRbTf5+OneN2shgZmVoLUkVFBYqLi1FdXY3i4mLNz21tbbF5\n82adPlyhUKB///4wNTXFtGnTEBoaWuP5iIgIzWN/f3/4+/vXLT0RyUpZZRlGR4/GPP958GnrI3Uc\ng6BSqaBSqaSOoRdPbNkVFBTgwoUL6NChA5o1q/tfKlevXkWbNm1w/fp1BAYGYtmyZejTp8/9gWW8\n2UlET2dq3FSUVpZi/aj13G9UCzmvnbVe7fvHH39Ely5dMGPGDLi5uT3VkXVt2rQBANjb22PkyJE1\nDmogInrYmiNrkHAxASuGrGAxMlK1FqSvv/4aJ0+eRHJyMpKTk7Fo0aI6ffDdu3c1rb7S0lLs3r0b\nHh4e9UtLRLJ0ouAEPtjzATaP2YwmjZpIHYckUus+JAsLC9jb2wMA2rdvj3v37tXpg69du6a51XlV\nVRXGjRuHV155pR5RiUiOiu8VY/Sm0VgSuARdWnWROg5JqNZ9SPb29prblgPAr7/+ijfeeAOCIECh\nUCAqKqp+A8u4D0pEuhEEAWO3jIW1uTV+HPaj1HEaBDmvnbVuIS1evLjGP9zb21vzPfu7RPQsLE9f\njlPXTyF5SrLUUcgA1FqQrly5goEDB0KpVOozDxEZifQr6QhXhSNpchIszXl9THrCQQ3t27dHZGQk\nunbtiokTJ+LXX3/F7du39ZmNiGTqdtltBEUHYfng5ejYoqPUcchAaL10kCAIOHz4MOLj47Fnzx5U\nVVUhMDAQAwYMQPfu3Z9+YBn3QYmodoIgYMSvI+DS1AWRAyKljtPgyHntrPP9kIqKirB7927s2rUL\nK1eufPqBZTypRFS7xYmLEXMqBgdCDsDC1ELqOA2OnNfOWlt2f9m0aZPmduULFizApEmT0L59+3oV\nIyIyTgcvHMTS5KXYFLSJxYgeobUgLViwALa2tkhISMB///tfTJ48GdOnT9dHNiKSkYLSAgTHBGPV\n8FVwtnOWOg4ZIK0FydTUFACwfft2hIaGYsiQIaioqBA9GBHJR7W6GuO2jMMErwkY1HGQ1HHIQGkt\nSA4ODggLC8Ovv/6KwYMHo7y8vE63nyAiWnBgASqrKzE/YL7UUciAaT2oobS0FPHx8fD09ETHjh1x\n9epVHD9+vN6XAZLzjjkiemD3ud0IiQ1Bemg62jRpI3WcBk/Oa6fWgnTx4sXHXp3B2bl+PWA5TyoR\n3Xep6BJ8Vvhgw2sbENAuQOo4siDntVNrQerSpYumGJWXlyMnJwcvvPACTp48Wb+BZTypRARUVlci\nYE0ABnYYiNkvzZY6jmzIee2s9dJBfzlx4kSN7zMzM/Hdd9+JFoiI5OHTPz6FbSNbfNLnE6mjUAOh\ntSD9Xbdu3XDo0CExshCRTMSejsWmk5uQGZYJE4XWY6eIAOhQkJYuXap5rFarkZmZCQcHB1FDEVHD\ndf72eYRuC0VccBxaWLWQOg41IFoLUnFxsWYfkpmZGYYMGYLXXntN9GBE1PCUV5UjKDoIs/vMRg/H\nHlLHoQamzteye2YDy3jHHJGxevP3N1FQWoDooGjeN00kcl47a91CGjp0aK1vUigUiIuLEyUQETVM\n64+vx57ze5Aems5iRE+l1oI0a9YsfeYgogbs1PVTeDf+XewZvwd2je2kjkMNFFt2RFQvpRWl6P5j\nd7zX4z1M7TZV6jiyJ+e1U2tBateu3aNvUihw/vz5+g0s40klMhaCIGDi1olQKBT4efjPbNXpgZzX\nTq1H2aWlpWkel5eXY/Pmzbh586aooYioYfjp8E/IvJqJQ1MPsRhRvT1Vy65bt27IzMys38AyrvJE\nxuBI/hEE/icQByYdgLu9u9RxjIac106tW0gZGRmav3zUajXS09NRXV2t04dXV1fDx8cHjo6O2LZt\nW/2SEpHBuFN+B0HRQYgaEMViRM+M1oI0a9asGifGuri4YNOmTTp9eGRkJDp16oTi4uL6pSQigyEI\nAibHTUZg+0AEewRLHYdkRGtBUqlUT/XBly5dwo4dOzB79mx89dVXT/UZRGR4og5FIbcwF+tGrZM6\nCsmM1oJUXl6OmJgY5Obmorq6WnNvpLlz5z7xfe+99x4WL16MoqKiWl8TERGheezv7w9/f3+dgxOR\n/qVcSsHnBz9HytQUNDZrLHUco6BSqZ56w6Ch0VqQhg8fjqZNm8Lb2xuNG+v2C7h9+3a0atUKSqXy\niRP5cEEiIsN28+5NvL75dawcuhLtm7WXOo7R+Psf6/PmzZMujMh0ukHf3++JpM2nn36K//znPzAz\nM0N5eTmKiorw2muvYe3atQ8GlvGRIkRyoxbUGLJ+CDq36ozFgYuljmPU5Lx2ar1RSa9evXDs2LE6\nfejChQuRl5eHnJwcbNy4Ef369atRjIioYVl0cBGK7hVhYb+FUkchGdPasjt48CBWr16Ndu3aoVGj\nRgDuV+i6FCmeMEfUcO3L2Ydv075FWmgazE3NpY5DMqa1ZZebm/vYn7u4uNRvYBlvdhLJxdXiq/Be\n4Y01I9Yg0DVQ6jgEea+dWlt2Li4ucHJygoWFBUxMTDRfRCRf1epqrDu2Dn1W98E/ff7JYkR6obVl\nt2zZMsybNw+tWrWCqamp5ufHjx8XNRgR6Z9aUCP6ZDQi9keguWVzrBi6AgEuAVLHIiOhtWXn6uqK\n1NRUtGjR4tkOLOPNTqKGRi2o8dup3xCxPwLW5taYHzAfge0Duf/XAMl57dS6heTs7AxbW1t9ZCEi\nPRMEAXHZcQhXhcPMxAxf9v8SAzsMZCEiSWgtSO3atUNAQAAGDx4MCwsLAPcr9Pvvvy96OCIShyAI\n2HF2B8JV4ahSV2F+wHwMfX4oCxFJSqctJGdnZ1RUVKCiokJz6SAiangEQcDuc7sxVzUXdyvvYp7/\nPIxwGwETBQ9UIunxFuZERkAQBPyR8wfmqubidtltRPhHYHSn0SxEDZCc106tW0gFBQX417/+hays\nLJSVlQG4PyF//PGH6OGIqP725+7HXNVcXC2+igj/CLze+XWYmphqfyORnmn982jcuHFwc3PD+fPn\nERERARcXF/j4+OgjGxHVQ+LFRPRf2x+T4yZjctfJyHorC2M9xrIYkcHS2rL763blnp6emssF+fj4\nID09vX4Dy3izk0hKhy4dQrgqHKdvnMacl+ZggtcEXvJHRuS8dmpt2f11ZF3r1q2xfft2tG3bFrdv\n3xY9GBHVTcaVDISrwnHs2jHM7jMbIcoQWJhaSB2LSGdaC9L//d//obCwEEuXLsU777yDoqIifP31\n1/rIRkQ6OJJ/BBGqCKRdScOnfp8iZkwMGpk1kjoWUZ3V2rIrKyvD999/jz///BOenp6YMmUKzMy0\n1i/dB5bxZieRPpwoOIEIVQQS8xLxce+PEeYdBktzS6ljkcjkvHbWWpDGjBkDCwsL9OnTBzt27ICL\niwsiIyOf3cAynlQiMZ26fgrz9s+DKleFD3t9iOm+02FlbiV1LNITOa+dtRYkDw8PzQVUq6qq4Ovr\ni8OHDz+7gWU8qURiOHPzDObvn4/d53ZjVs9ZeKv7W7CxsJE6FumZnNfOWg/7frg99yxbdURUN+du\nncOkrZPQe1VvuLd0x58z/sRHfh+xGJHs1LqFZGpqCiurB22AsrIyWFre708rFAoUFRXVb2AZV3mi\nZyG3MBefHfgMW09vxTvd38HMHjNh19hO6lgkMTmvnbVu+lRXV+szBxH9T96dPHx+8HNEZ0XjTd83\ncfads2hm2UzqWESiYy+OyEBcLrqMRQmLsOHEBoR5hyH77Wy0tGopdSwivWFBIpJYfkk+vkj4AmuP\nrsWUblNw6q1TaGXdSupYRHrHgkQkkYLSAvwr8V9YdXgVJnhNQNZbWWht01rqWESSYUEi0rMbd29g\nSdISrMhYgbEeY3F8+nE42DpIHYtIcqIVpPLycvTt2xf37t1DRUUFhg8fjkWLFok1HJHBu1V2C18l\nf4Xl6csR1CkIR/55BM52zlLHIjIYohWkxo0bY9++fbCyskJVVRX8/PyQkJAAPz8/sYYkMkh3yu/g\nm5RvsCx1GUa4jUBGWAZcmrpIHYvI4IjasvvrPKaKigpUV1ejefPmYg5HZFCK7xUj6lAUvjn0DQZ3\nHIxDUw/Btbmr1LGIDJao9y9Wq9Xo2rUrnnvuOQQEBKBTp05iDkdkEEoqSvBlwpdwjXLFqRunkDg5\nET+P+JnFiEgLUbeQTExMcOTIEdy5cwevvvoqVCoV/P39Nc9HRERoHvv7+9d4jqihuVt5F8vTlmNx\n0mL4u/hDNUmFTvb8I4zqR6VSQaVSSR1DL7TeMfZZWbBgASwtLfHBBx/cH1jGl78g41JWWYYVGSvw\nZeKX6OXUC+F9w+HxnIfUsUim5Lx2itayu3HjBgoLCwHcvw7enj17oFQqxRqOSO/uVd3Dd6nfoeOy\njtiXuw87xu3A5jGbWYyInpJoLburV69i4sSJUKvVUKvVGD9+PF5++WWxhiPSm4rqCqw+vBqfH/wc\nns95YusbW+HT1kfqWEQNnt5ado8MLOPNTpKnyupKrD26FgsOLIBbSzfM85+HFx1flDoWGRk5r528\nUgORFlXqKqw7tg7zD8xHu6btsG7UOvR27i11LCLZYUEiqkW1uhobT2zEvP3z0KZJG6watgp9XfpK\nHYtItliQiP5GLagRfTIaEfsj0NyyOZYPXo5+7fpBoVBIHY1I1liQiP5HLajx26nfELE/AlbmVvjm\n1W/wiusrLEREesKCREZPEATEZcchXBUOUxNTfPHyFxjUcRALEZGesSCR0RIEATvO7kC4KhxV6irM\n85+HYS8MYyEikggLEhkdQRCw+9xuzFXNRWlFKeb5z8NI95EwUYh6aUci0oIFiYyGIAj4I+cPzFXN\nxa2yW4joG4GgzkEsREQGggWJjML+3P2Yq5qLq8VXEd43HG90eQOmJqZSxyKih7AgkawlXkxEuCoc\nOYU5mPvSXIzzHAczE/7aExki/p9JsnTo0iGEq8Jx+sZpzHlpDiZ4TYC5qbnUsYjoCViQSFYyrmQg\nXBWOY9eOYXaf2QhRhsDC1ELqWESkAxYkkoUj+UcQoYpA2pU0fOr3KWLGxKCRWSOpYxFRHbAgUYN2\nouAEIlQRSMxLxMe9P8aG1zbA0txS6lhE9BRYkKhBOnX9FObtnwdVrgof9voQa0euhZW5ldSxiKge\nWJCoQTk17LFKAAAMrElEQVRz8wzm75+P3ed2Y1bPWfhx2I+wsbCROhYRPQM8I5AahHO3zmHS1kno\nvao33Fu6488Zf+Ijv49YjIhkhFtIZNByC3Px2YHP8Nvp3/BO93dw9p2zaNq4qdSxiEgELEhkkPLu\n5OHzg58jOisa032m4+w7Z9HcsrnUsYhIRCxIZFAuF13GooRFWH98PcK8w5D9djZaWrWUOhYR6QEL\nEknqeul1JOUlITEvEYl5iThZcBJTu03F6bdPo5V1K6njEZEeKQRBECQZWKGAREOTRARBQPbNbCRe\nTNQUoPySfPRw7IHeTr3R26k3XnR8kQcqED2BnNdOFiQSTXlVOdKvpGsKUFJeEmwsbNDbubemAHVp\n1YVX3SaqAzmvnaIVpLy8PEyYMAEFBQVQKBQICwvDjBkzHgws40k1VtdLr2u2fBIvJuLotaNwb+le\nowA52DpIHZOoQZPz2ilaQcrPz0d+fj66du2KkpISeHt7Y+vWrXB3d78/sIwn1Rj8vf2WcDEBBaUF\nD9pvzr3R3aE7229Ez5ic107RDmpo3bo1WrduDQCwsbGBu7s7rly5oilI1LA8rv3WpFETzZbPzB4z\n0dm+M9tvRPTU9LIPKTc3F3379sXJkydhY3P/L2Y5V3k5eFz7rZN9J00B6u3cG22btJU6JpHRkfPa\nKfph3yUlJRg9ejQiIyM1xegvERERmsf+/v7w9/cXOw49hiAIOH3jdI0CVFBagJ5OPdHbqTc+7/c5\nujt0h7WFtdRRiYyOSqWCSqWSOoZeiLqFVFlZiSFDhmDgwIGYOXNmzYFlXOUNXXlVOdIup2kKUFJe\nEmwb2cLP2U+zBdTJvhPbb0QGSM5rp2gFSRAETJw4ES1atMDXX3/96MAynlRDU1BaUOPcn2PXjrH9\nRtRAyXntFK0gJSQk4KWXXoKnpycUCgUAYNGiRRgwYMD9gWU8qVJSC+r77beHCtD10uua9ltvp95s\nvxE1YHJeO3libANXVll2/+i3h9pvdo3sapz707lVZ5goeKcRIjmQ89rJgtTAPK791tm+c40C1KZJ\nG6ljEpFI5Lx2siAZsMe1327cvYGejj01+3582/qy/UZkROS8drIgGZCyyjKkXUnTFKDkS8lo2rhp\njYMPOtl3YvuNyIjJee1kQZLQtZJrNc79OV5wXNN+83PyQy+nXmy/EVENcl47WZD0RC2ocer6qRoF\n6GbZzRrtt+4O3WFlbiV1VCIyYHJeO1mQRFJWWYbUy6maApScl4xmls3YfiOiepHz2smC9Iw8rv3W\npVUXTQFi+42IngW5rZ0PY0F6Co9rv90qu1Xj5FNfB1+234jomWvIa6c2LEg6uFt5t8a135LzktHc\nsnmNc3/c7d3ZfiMi0TWktbOuWJAeI78kv8a5PycKTsCjlYemAPVy6oXWNq2ljklERsiQ1876MvqC\npBbUyLqeVaMA3S67rWm/+Tn7wbetLyzNLaWOSkRkMGunGIyuIP3Vfku4mKA5+bSFZQu234ioQWBB\nEmNgPU0q229EJCcsSGIMLMKk1tZ+6+XUq8a139h+I6KGigVJjIGfwaTerbx7/+TTh6791tKqZY2T\nT91aurH9RkSywYIkxsBPMalXi6/WOPfn5PWT8HzOs8bJp8/ZPCdSYiIi6bEgiTGwlklVC2qcLDhZ\nowDduXfnQfvNqTd82vqw/UZERoUFSYyBHzOpgiAgNjsWKzJWPNJ+83P2wwstX2D7jYiMGguSGAP/\nbVKPXTuGmfEzca30Gua+NBf+Lv5svxER/Y2cC5KZ1AFu3r2J2X/MxpZTWxDeNxzTfKbBzETyWERE\npGeS9r++T/8e7t+5w8LUAtlvZ+Ot7m+xGBERGSlJW3Ye//bAf0b+B16tvaSIQETU4Mi5ZSfpFtLH\nfh+zGBEREQARC9LkyZPx3HPPwcPDo9bXDOgwQKzhGxSVSiV1BIPBuXiAc/EA58I4iFaQQkJCEB8f\n/8TXNLdsLtbwDQr/Z3uAc/EA5+IBzoVxEK0g9enTB82aNRPr44mISGZ4likRERkEUY+yy83NxdCh\nQ3H8+PFHB1YoxBqWiEjW5HqUnWQn/ch1QomI6OmwZUdERAZBtIIUHByMXr164cyZM3BycsLq1avF\nGoqIiGRAtIK0YcMGXLlyBbGxsbC2tsbChQvx5ZdfPva1M2bMQMeOHeHl5YXDhw+LFUly8fHxcHNz\nQ8eOHR87F6dPn0bPnj3RuHFjLF26VIKE+qNtLtatWwcvLy94enqid+/eOHbsmAQp9UPbXMTGxsLL\nywtKpRLe3t74448/JEipH9rm4i9paWkwMzPDli1b9JhOv7TNhUqlgp2dHZRKJZRKJT777DMJUj5j\ngoiqqqoEV1dXIScnR6ioqBC8vLyErKysGq/5/fffhYEDBwqCIAgpKSnCiy++KGYkyegyFwUFBUJa\nWpowe/ZsYcmSJRIlFZ8uc5GUlCQUFhYKgiAIO3fuNOrfi5KSEs3jY8eOCa6urvqOqRe6zMVfrwsI\nCBAGDx4sbN68WYKk4tNlLvbt2ycMHTpUooTiEHUfUmpqKjp06AAXFxeYm5vjjTfeQGxsbI3XxMXF\nYeLEiQCAF198EYWFhbh27ZqYsSShy1zY29vDx8cH5ubmEqXUD13momfPnrCzswNw//fi0qVLUkQV\nnS5zYW1trXlcUlKCli1b6jumXugyFwCwbNkyjB49Gvb29hKk1A9d50KQ2cFhohaky5cvw8nJSfO9\no6MjLl++rPU1clx8dJkLY1HXufjpp58waNAgfUTTO13nYuvWrXB3d8fAgQMRFRWlz4h6o+t6ERsb\ni+nTpwOQ7+kjusyFQqFAUlISvLy8MGjQIGRlZek75jMn6mHfuv6y/L3Ky/GXTI7/pqdVl7nYt28f\nVq1ahcTERBETSUfXuRgxYgRGjBiBgwcPYvz48cjOzhY5mf7pMhczZ87EF198obnitdy2EP6iy1x0\n69YNeXl5sLKyws6dOzFixAicOXNGD+nEI2pBcnBwQF5enub7vLw8ODo6PvE1ly5dgoODg5ixJKHL\nXBgLXefi2LFjCA0NRXx8vGwvQ1XX34s+ffqgqqoKN2/eRIsWLfQRUW90mYuMjAy88cYbAIAbN25g\n586dMDc3x7Bhw/SaVWy6zEWTJk00jwcOHIg333wTt27dQvPmDfgaoWLuoKqsrBTat28v5OTkCPfu\n3dN6UENycrJsd17rMhd/CQ8Pl/VBDbrMxYULFwRXV1chOTlZopT6octc/Pnnn4JarRYEQRAyMjKE\n9u3bSxFVdHX5f0QQBGHSpElCTEyMHhPqjy5zkZ+fr/m9OHTokPCPf/xDgqTPlqhbSGZmZvj222/x\n6quvorq6GlOmTIG7uzt++OEHAMC0adMwaNAg7NixAx06dIC1tbVsz1fSZS7y8/Ph6+uLoqIimJiY\nIDIyEllZWbCxsZE4/bOly1zMnz8ft2/f1uwrMDc3R2pqqpSxRaHLXMTExGDt2rUwNzeHjY0NNm7c\nKHFqcegyF8ZCl7nYvHkzli9fDjMzM1hZWcni90KyO8YSERE9jJcOIiIig8CCREREBoEFiYiIDAIL\nEhERGQQWJDIKpqamUCqV8PT0xKhRo1BSUgIAuHLlCoKCgmq81sfHBxUVFXBxcYGnpye6du2K/v37\n48qVK1JEJzIaLEhkFKysrHD48GEcO3YMtra2msNn27Zti+joaM3rcnJy4OjoCAsLCygUCqhUKhw5\ncgR+fn5YtGiRVPGJjAILEhmdnj174ty5cwCA3NxceHh4aJ6Lj4/HgAEDHnlPjx49arynX79+8PLy\nQv/+/WucUU9ET48FiYxKdXU1du/ejS5dujz2+V27dtUoSH+dphcfH695zzvvvIOQkBAcPXoU48aN\nw4wZM8QPTmQEeGIsGQUzMzN4eHjg8uXLcHFxQUpKCkxMTJCbm4uhQ4fi+PHjqKioQK9evZCeng4A\naNeuHZo0aYJbt27BzMwMJ06cgI2NDezt7ZGfnw9TU1NUVlaibdu2uH79usT/QqKGj1tIZBQsLS1x\n+PBhXLhwAY0bN37svWUOHjwIPz+/Gj9TqVS4cOECevTogZUrV2p+zr/jiJ49FiQyKpaWloiKisLs\n2bMfKSrx8fGPve+SqakpvvnmGyxduhQlJSXo1auX5rph69atw0svvaSX7ERyx4JERuHh+8t07doV\nHTp0wKZNm6BQKDTP7d+/H3379n3se1q3bo1Ro0bhu+++w7Jly7B69Wp4eXlh3bp1iIyM1N8/hEjG\nuA+JCPfvwzVt2jT8/vvvUkchMlosSEREZBDYsiMiIoPAgkRERAaBBYmIiAwCCxIRERkEFiQiIjII\nLEhERGQQ/j8y2WFyYO5hqwAAAABJRU5ErkJggg==\n"
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAELCAYAAAAY3LtyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9UVGX+B/D38Ctd0SRDFAbPqMMKJr8U/FUU7YImpZu0\n9hXZ1QPkcvhueTqZ27etU0ydfqhZm9rW5qadTqw/yu+KJY6s1RCaOCaYFNkXyZEfhoppImrA8Hz/\nGBwlZxy43HtnBt6vczoH5s6Pz32OzZvnee5zH40QQoCIiEgCH3cXQERE3oshQkREkjFEiIhIMoYI\nERFJxhAhIiLJGCJERCSZIiGSnZ2NkJAQREdHOzxeWFiI2NhYxMfHY9KkSfj000/tx4xGIyIjIxER\nEYHly5crUR4REclEo8Q6kdLSUgQGBmLhwoWorKy87nhLSwsGDRoEAKisrMTcuXNx9OhRWK1WjBs3\nDrt370ZYWBgSExOxceNGREVFyV0iERHJQJGeSFJSEoKCgpwevxIgAHDhwgXceuutAACz2Qy9Xg+d\nTgd/f3/Mnz8fhYWFSpRIREQycNucyLZt2xAVFYVZs2Zh9erVAICGhgaEh4fbn6PVatHQ0OCuEomI\nyAU/d33w/fffj/vvvx+lpaX44x//iCNHjvTo9RqNRqHKiIj6NjlnMdx+dVZSUhLa29vx448/QqvV\noq6uzn6srq4OWq3W6WuFEPxPCDz77LNur8FT/mNbsC3YFjf+T25uCZGamhr7yZSXlwMAhg0bhoSE\nBFRXV8NisaC1tRWbN2/GnDlz3FEiERF1gyLDWRkZGSgpKUFTUxPCw8NhMBjQ1tYGAMjNzcXWrVvx\n3nvvwd/fH4GBgdi0aZOtGD8/rF27FjNnzoTVakVOTg6vzCIi8mCKXOKrBo1Go0jXzBuZTCYkJye7\nuwyPwLa4im1xFdviKrm/OxkiRET9iNzfnW6fWCciIu/FECEiIskYIkREJBlDhIiIJGOIEBGRZAwR\nIiKSjCFCRESSMUSIiPqJlhb535MhQkTUh128CGzaBMyeDYweLf/7M0SIiPqY9nZg1y5g4UIgNBTY\nsAGYNw+oqZH/s3jbEyKiPkAI4MABoKAA2LwZGDUKyMwE/uu/gBEjrj5P7u9Ot21KRUREvVddbQuO\nggLb75mZQGkpEBGhzuczRIiIvExjo623UVAA1NbaehsFBUBiIqD2pq8cziIi8gLNzcC//20Li/37\ngTlzbL2O3/4W8OtBd4C3gu/EECGivq611TZBXlAA7NwJ3HmnLTjmzAF+9Stp78kQ6cQQIaK+qKMD\n+OILW3B8+CEwbpwtOObNA269tffvz4l1IqI+6JtvbMHxr38BgwbZguPAAUCnc3dlN8YQISJyk/p6\nYONGW3g0NQEZGcC2bUBsrPoT5FJxOIuISEXnztmGqQoKgK++AtLTbb2OO+8EfH2V/3zOiXRiiBCR\nt7h8GdixwxYcn3wCpKTYgiMtDRgwQN1aGCKdGCJE5MmsVqCkxBYc//43EBdnC44HHgCGDnVfXQyR\nTgwRIvI0QgCHDtmCY9MmIDjYFhzz5wNarburs+HVWUREHubYMdtVVQUFwKVLwIIFQHExMH68uytT\nHnsiREQSNDUBW7bYguP//s+2jiMzE5g+3bOvrOJwVieGCBGp7eJFYPt2W3CUlgKzZtmCY8YMICDA\n3dV1D0OkE0OEiNTQ3m67oqqgwBYgU6bYgmPuXGDwYHdX13MMkU4MESJSSnf35vBGXjGxnp2djR07\ndmD48OGorKy87nhBQQFWrFgBIQQGDx6MN998EzExMQAAnU6HIUOGwNfXF/7+/jCbzUqUSER0nSt7\nc/zrX7YgUXtvDm+kSE+ktLQUgYGBWLhwocMQ2bdvH8aPH4+bb74ZRqMR+fn5KCsrAwCMHj0aBw8e\nxC233HLjwtkTISIZnDxpuxz32r05MjPdszeHGryiJ5KUlASLxeL0+LRp0+w/T5kyBfX19V2OMxyI\nSEmO9uZ4/vme781BHrBO5J133kFaWpr9d41Gg5SUFPj6+iI3NxeLFy92Y3VE1Fc42psjK8sWJlL3\n5iA3h8hnn32G9evXY+/evfbH9u7di5EjR+L06dNITU1FZGQkkpKSHL4+Pz/f/nNycjKSk5MVrpiI\nvImzvTnWrpVnbw5vYDKZYDKZFHt/xa7OslgsmD17tsM5EQA4fPgw0tPTYTQaodfrHT7HYDAgMDAQ\nS5cuve4Y50SIyBlHe3MsWOD5e3OoQe7vTh/Z3qkHamtrkZ6ejvfff79LgFy8eBHNzc0AgJaWFhQX\nFyM6OtodJRKRl6mvB1autN3ocOZMoK3NtjfH118Df/0rA0QpigxnZWRkoKSkBE1NTQgPD4fBYEBb\nWxsAIDc3F8899xzOnj2LvLw8ALBfytvY2Ij09HQAQHt7OzIzMzFjxgwlSiSiPuDcOWDrVluv49Ah\n294cr72m3t4cxMWGRORlLl8GiopswbF7t3v35vBGXLHeiSFC1H90dFzdm+N//9dz9ubwRl6xToSI\nqLeEsG0fW1Bg24f8yt4chw97zt4cxBAhIg9jsVzdm+Pixf61N4c34nAWEbldUxPwwQe24PjuO+/Z\nm8MbcU6kE0OEyLv1hb05vBFDpBNDhMj7XLs3x0cfAZMne/feHN6IIdKJIULkHfry3hzeiFdnEZFX\n4N4c/QNDhIhk42hvjvff77t7cxCHs4iolxztzZGZyb05PBXnRDoxRIjcx9HeHJmZtgDh3hyejSHS\niSFCpC5ne3PMm9d/9uboCzixTkSqcrQ3x4EDvLU62TBEiOg69fW2+1UVFNhWk2dk2PbmiI3lBDl1\nxeEsIgLgeG+OzEzuzdHXcE6kE0OEqPe4N0f/wxDpxBAhkoZ7c/RvnFgnoh7j3hykFIYIUR/GvTlI\naRzOIupjuDcH3QjnRDoxRIiu4t4c1F0MkU4MEervuDcHScEQ6cQQof6Ie3NQb/HqLKJ+iHtzkKdi\niBB5KO7NQd6Aw1lEHoR7c5DSOCfSiSFCfQX35iA1MUQ6MUTIm3FvDnIXTqwTeTHuzUF9jY8Sb5qd\nnY2QkBBER0c7PF5QUIDY2FjExMTg9ttvx+HDh+3HjEYjIiMjERERgeXLlytRHpGq6uuBlSttNzqc\nORNoa7PtzfH118Bf/8oAIe+myHBWaWkpAgMDsXDhQlRWVl53fN++fRg/fjxuvvlmGI1G5Ofno6ys\nDFarFePGjcPu3bsRFhaGxMREbNy4EVFRUdcXzuEs8mDcm4M8lVcMZyUlJcFisTg9Pm3aNPvPU6ZM\nQX19PQDAbDZDr9dD1/mn2fz581FYWOgwRIg8TUuLbW+OTZuu7s3x8MPcm4P6NrfPibzzzjtIS0sD\nADQ0NCA8PNx+TKvVYv/+/U5fm5+fb/85OTkZycnJSpVJ5NCV4PjgA9sVVlOm2NZzvPMO9+Ygz2Ay\nmWAymRR7f5ch0tLSgldffRW1tbVYt24dqqur8d133+G+++7r9Yd/9tlnWL9+Pfbu3QvA1s3qiWtD\nhEgtjoJj3jzg73/nlVXkeX75B7bBYJD1/V1OrGdlZSEgIABffPEFACA0NBRPPfVUrz/48OHDWLx4\nMbZv346goCAAQFhYGOrq6uzPqaurg5Y75pAHaGmxhcaDDwKhocC6dUBqKlBTY9ufY/FiBgj1Ty5D\npKamBk888QQCOu8nPWjQoF5/aG1tLdLT0/H+++9Dr9fbH09ISEB1dTUsFgtaW1uxefNmzJkzp9ef\nRyQFg4PINZfDWTfddBMuXbpk/72mpgY33XTTDV+TkZGBkpISNDU1ITw8HAaDAW1tbQCA3NxcPPfc\nczh79izy8vIAAP7+/jCbzfDz88PatWsxc+ZMWK1W5OTkcFKdVMWhKqKecXmJb3FxMV544QVUVVUh\nNTUVe/fuxbvvvou7775brRod4iW+JBdnwTF3LoOD+h633PakqakJ+/fvhxACU6dOxa0e8H8WQ4R6\ng8FB/ZXq60SEECgpKcGePXug0WjQ1taGuXPnylYAkVo4VEUkP5c9kby8PNTU1CAjIwNCCGzZsgVj\nxozB3//+d7VqdIg9EeoO9jiIulJ9OCsyMhJVVVXw8bFdyNXR0YHx48fjyJEjshUhBUOEnGFwEDmn\n+nCWXq9HbW2t/VYktbW1XS7LJfIEHKoicg+nITJ79mwAQHNzM6KiojB58mRoNBqYzWYkJiaqViCR\nMwwOIvdzGiJLly51+qKe3p6ESC4MDiLPwp0NyeNxjoNIPqpPrAcGBtp7Hq2trWhra0NgYCDOnz8v\nWxFSMET6NgYHkTJUn1i/cOGC/eeOjg5s374dZWVlshVAdAWHqoi8j6ThrLi4OBw6dEiJerqNPZG+\ngT0OInWp3hPZunWr/eeOjg4cPHgQAwcOlK0A6n/Y4yDqO1yGyEcffWSfE/Hz84NOp0NhYaHihVHf\nwuAg6ptcDmft2bMHd9xxR5fH9u7di9tvv13RwlzhcJbn41AVkedR/eqsiRMnory8vMtj8fHxqKio\nkK0IKRginonBQeTZVJsT2bdvH7744gucOnUKr776qv1Dm5ub0dHRIVsB5P04VEXUfzkNkdbWVjQ3\nN8NqtaK5udn++JAhQ/Dhhx+qUhx5LgYHEQEuhrNOnTqF48ePQ6/XIygoSM26XOJwlvo4VEXk/eT+\n7vRxduCf//wnJkyYgCVLliAyMpJXZPVTLS220HjwQSA0FFi3DkhNBWpqgOJiYPFiBghRf+a0J3Lb\nbbfBZDIhODgY33//PRYsWOBRK9XZE1EOexxEfZdqE+sBAQEIDg4GAIwZMwY///yzbB9KnodzHEQk\nhdOeSHBwsH1LXADYvHkz5s+fDyEENBoNVq9erWqhv8SeSO+xx0HU/6jWE1m5cmWXD5s0aZL9d+4n\n4r3Y4yAiOTkNkRMnTmDWrFmIj49Xsx5SAIODiJTiNETGjBmD119/HYcOHUJsbCzS0tIwY8YMj7vU\nlxxjcBCRGlze9kQIgYqKChiNRvznP/9Be3s7UlNTcc8992Dy5Mlq1Xkdzolcj3McROSK6vfO+qXz\n58+juLgYu3btwrp162QrpKcYIjYMDiLqCdVDZMuWLbjnnnswZMgQPP/886ioqMDTTz+NiRMnylaE\nFP05RBgcRCSVaivWr3j++ecxZMgQ7NmzB5988gmys7ORl5d3w9dkZ2cjJCQE0dHRDo8fOXIE06ZN\nw4ABA7Bq1aoux3Q6HWJiYhAfH+/W4TJPw5XjROSJXIaIr68vAODjjz/G4sWLcd9996G1tfWGr8nK\nyoLRaHR6fNiwYVizZg0ef/zx645pNBqYTCZUVFTAbDa7Kq9PY3AQkadzGSJhYWH405/+hM2bN+Pe\ne+/F5cuXXd4KPikp6YZXcQUHByMhIQH+/v4Oj/fXYSqAwUFE3sXl9rhbtmyB0WjEsmXLMHToUPzw\nww9YuXKlYgVpNBqkpKTA19cXubm5WLx4sdPn5ufn239OTk5GcnKyYnUpiZfjEpFSTCYTTCaTYu/v\ncmK9trbW4Sr1UaNG3fCNLRYLZs+ejcrKSqfPMRgMCAwMxNKlS+2P/fDDDxg5ciROnz6N1NRUrFmz\nBklJSdcX7uUT65wcJyJ3UO22J1ekpaXZA+Ty5cs4duwYxo0bh2+++Ua2Iq41cuRIALYhr7lz58Js\nNjsMEW/EHgcR9TUuQ+Trr7/u8nt5eTneeOMNWT78l2l48eJFWK1WDB48GC0tLSguLsazzz4ry2e5\nC4ODiPqyHi82BIAJEyZcFy7XysjIQElJCZqamhASEgKDwYC2tjYAQG5uLhobG5GYmIjz58/Dx8cH\ngwcPRlVVFU6dOoX09HQAQHt7OzIzM/Hkk086LtyDh7M4VEVEnkr1xYbXruPo6OhAeXk5fvzxR+za\ntUu2IqTwtBBhcBCRN1B9TqS5udk+J+Ln54f77rsPDzzwgGwFeDMOVRFRfydpOMsTuLsnsmYN8PTT\n7HEQkXdRrScye/bsGxaxfft22YrwJh0dwP/8D/DRR8ChQ8Do0e6uiIjIfZyGyLVrN8jm55+BrCyg\nthbYuxe45RZ3V0RE5F4czuqmn34C0tOBm28GCgqAgQNV+2giItmoPrE+2sF4jUajwffffy9bEZ6u\noQFISwOSkoDXXwc670lJRNTvuQyRAwcO2H++fPkyPvzwQ5w5c0bRojxJVRUwaxbw3/8N/OUvwC/u\n/kJE1K9JGs6aOHEiysvLlain29QYziotBX7/e2DVKuAPf1D0o4iIVKH6cNbBgwft60Q6Ojrw5Zdf\nwmq1ylaAp/rwQ1vvo6DAdit2IiK6nssQWbp0aZfFhjqdDlu2bFG8MHdavRpYscK2f0dcnLurISLy\nXLw66xrXrgHZuRPQ6WR9eyIit1N9OOvy5cvYunUrLBYLrFarfW+RZ555RrYiPAHXgBAR9ZzLEPnd\n736HoUOHYtKkSRgwYIAaNanu2jUg//kP14AQEXWXy+EsV7d9dxe5umRcA0JE/Yncw1k+rp4wffp0\nHD58WLYP9CRVVcD06cCCBbYbKjJAiIh6xmVPJCoqCkePHsXo0aNx00032V6k0bg9WHqbplwDQkT9\nkeqbUlksFoeP69x86VJvGoJrQIiov1L96iydTger1YqTJ0+ivb1dtg92F64BISKSj8sQWbNmDQwG\nA4YPHw7fayYNKisrFS1MbteuAdmzh2tAiIjk4HI4a+zYsTCbzRg2bJhaNXVLT7pk164B2b6da0CI\nqP9S/eqsUaNGYciQIbJ9oNp++sl2Ce/ly7Y1IAwQIiL5dGs/kbvvvhv33nsvAgICANiS7LHHHlO8\nuN7iGhAiImW5DJFRo0Zh1KhRaG1tRWtrq/22J56O+4AQESmvT96AkWtAiIgcU/0S31OnTmHFihWo\nqqrCpUuX7EV8+umnshUhJ64BISJSj8uJ9czMTERGRuL7779Hfn4+dDodEhIS1Kitx1avBh591LYG\nhAFCRKQ8l8NZV7bCjYmJsd/qJCEhAV9++aUqBTpzbZeM+4AQEXWP6sNZV67IGjFiBD7++GOEhobi\n7NmzshXQW9wHhIjIfVwOZz399NM4d+4cVq1ahVdeeQUPPfQQXnvttRu+Jjs7GyEhIYiOjnZ4/MiR\nI5g2bRoGDBiAVatWdTlmNBoRGRmJiIgILF++/IafwzUgRETu5XQ469KlS3jrrbdw9OhRxMTEICcn\nB35+LjsuAIDS0lIEBgZi4cKFDm+Pcvr0aRw/fhzbtm1DUFAQli5dCgCwWq0YN24cdu/ejbCwMCQm\nJmLjxo2Iioq6vnCNBjExgmtAiIh6QLUV64sWLcLBgwcRExODoqIi+xd9dyQlJSEoKMjp8eDgYCQk\nJMDf37/L42azGXq9HjqdDv7+/pg/fz4KCwudvg/3ASEici+nXYtvv/3W3ovIyclBYmKi4sU0NDQg\nPDzc/rtWq8X+/fudPv/SpXwYDLafk5OTkZycrHCFRETexWQywWQyKfb+TkPk2qGr7g5j9VZPV8Ln\n5+crUwgRUR/xyz+wDVf+8paJ03Q4fPgwBg8ebP/90qVL9t81Gg3Onz8vayEAEBYWhrq6OvvvdXV1\n0Gq1sn8OERHJw2mIWK1WxT/8l5M7CQkJqK6uhsViQWhoKDZv3oyNGzcqXgcREUmjyL2zMjIyUFJS\ngqamJoSEhMBgMKCtrQ0AkJubi8bGRiQmJuL8+fPw8fHB4MGDUVVVhcDAQOzcuROPPvoorFYrcnJy\n8OSTTzouXOYrDIiI+gPV91j3VAwRIqKeU31TKiIiImcYIkREJBlDhIiIJGOIEBGRZAwRIiKSjCFC\nRESSMUSIiEgyhggREUnGECEiIskYIkREJBlDhIiIJGOIEBGRZAwRIiKSjCFCRESSMUSIiEgyhggR\nEUnGECEiIskYIkREJBlDhIiIJGOIEBGRZAwRIiKSjCFCRESSMUSIiEgyhggREUnGECEiIskYIkRE\nJBlDhIiIJGOIEBGRZIqESHZ2NkJCQhAdHe30OUuWLEFERARiY2NRUVFhf1yn0yEmJgbx8fGYPHmy\nEuUREZFMFAmRrKwsGI1Gp8eLiopw9OhRVFdX4+2330ZeXp79mEajgclkQkVFBcxmsxLlERGRTBQJ\nkaSkJAQFBTk9vn37dixatAgAMGXKFJw7dw4nT560HxdCKFEWERHJzC1zIg0NDQgPD7f/rtVq0dDQ\nAMDWE0lJSUFCQgLWrVvnjvKIiKib/Nz1wc56G3v27EFoaChOnz6N1NRUREZGIikpyeFz8/Pz7T8n\nJycjOTlZgUqJiLyXyWSCyWRS7P3dEiJhYWGoq6uz/15fX4+wsDAAQGhoKAAgODgYc+fOhdls7laI\nEBHR9X75B7bBYJD1/d0ynDVnzhy89957AICysjIMHToUISEhuHjxIpqbmwEALS0tKC4uvuEVXkRE\n5F6K9EQyMjJQUlKCpqYmhIeHw2AwoK2tDQCQm5uLtLQ0FBUVQa/XY9CgQdiwYQMAoLGxEenp6QCA\n9vZ2ZGZmYsaMGUqUSEREMtAIL70USqPR8CouIqIekvu7kyvWiYhIMoYIERFJxhAhIiLJGCJERCQZ\nQ4SIiCRjiBARkWQMESIikowhQkREkjFEiIhIMoYIERFJxhAhIiLJGCJERCQZQ4SIiCRjiBARkWQM\nESIikowhQkREkjFEiIhIMoYIERFJxhAhIiLJGCJERCQZQ4SIiCRjiBARkWQMESIikowhQkREkjFE\niIhIMoYIERFJxhAhIiLJGCJERCSZIiGSnZ2NkJAQREdHO33OkiVLEBERgdjYWFRUVNgfNxqNiIyM\nREREBJYvX65EeX2OyWRydwkeg21xFdviKraFchQJkaysLBiNRqfHi4qKcPToUVRXV+Ptt99GXl4e\nAMBqteLhhx+G0WhEVVUVNm7ciG+//VaJEvsU/g9yFdviKrbFVWwL5SgSIklJSQgKCnJ6fPv27Vi0\naBEAYMqUKTh37hwaGxthNpuh1+uh0+ng7++P+fPno7CwUIkSiYhIBm6ZE2loaEB4eLj9d61Wi4aG\nBpw4ccLh40RE5Jn83PXBQohev4dGo5Ghkr7BYDC4uwSPwba4im1xFdtCGW4JkbCwMNTV1dl/r6+v\nh1arRVtbW5fH6+rqoNVqHb6HHCFERES945bhrDlz5uC9994DAJSVlWHo0KEICQlBQkICqqurYbFY\n0Nrais2bN2POnDnuKJGIiLpBkZ5IRkYGSkpK0NTUhPDwcBgMBrS1tQEAcnNzkZaWhqKiIuj1egwa\nNAgbNmywFePnh7Vr12LmzJmwWq3IyclBVFSUEiUSEZEchAfYuXOnGDdunNDr9eLll192+JxHHnlE\n6PV6ERMTI8rLy12+9syZMyIlJUVERESI1NRUcfbsWcXPQw5KtMXjjz8uIiMjRUxMjJg7d644d+6c\n4uchByXa4opXXnlFaDQacebMGcXql5NSbbF69WoRGRkpbrvtNvGXv/xF0XOQixJtsX//fpGYmCji\n4uJEQkKCMJvNip+HHHrTFllZWWL48OFiwoQJXZ7f0+9Ot4dIe3u7GDt2rDh27JhobW0VsbGxoqqq\nqstzduzYIWbNmiWEEKKsrExMmTLF5WuXLVsmli9fLoQQ4uWXXxZPPPGEimcljVJtUVxcLKxWqxBC\niCeeeKJft4UQQtTW1oqZM2cKnU7nFSGiVFt8+umnIiUlRbS2tgohhDh16pSKZyWNUm1x1113CaPR\nKIQQoqioSCQnJ6t4VtL0pi2EEOLzzz8X5eXl14VIT7873X7bk+6sDZGyruTa1yxatAjbtm1T98Qk\nUKotUlNT4ePjY39NfX29uicmgVJtAQCPPfYYVqxYoer59IZSbfHmm2/iySefhL+/PwAgODhY3ROT\nQKm2GDlyJH766ScAwLlz5xAWFqbuiUnQm7YAnK/n6+l3p9tDxNmake4850brSk6ePImQkBAAQEhI\nCE6ePKnkachCqba41vr165GWlqZA9fJSqi0KCwuh1WoRExOj8BnIR6m2qK6uxueff46pU6ciOTkZ\nX375pcJn0ntKtcXLL7+MpUuXYtSoUVi2bBleeuklhc+k93rTFjfS0+9Ot4dId9d6iG5c0iuEcPh+\nGo3GK9aUyNkWjrzwwgsICAjAggULJL1eTUq0xaVLl/Diiy92WS8gtS3VpNS/i/b2dpw9exZlZWVY\nuXIlHnzwQSnlqUqptsjJycHq1atRW1uL1157DdnZ2VLKU5XUtujJd2F3vjvdttjwil+uGXG0NqS7\n60rq6+vt3dCQkBA0NjZixIgR+OGHHzB8+HCFz6T35GyLX7723XffRVFRET755BMFz0A+SrRFTU0N\nLBYLYmNj7c+fNGkSzGazR//7UOrfhVarRXp6OgAgMTERPj4+OHPmDIYNG6bk6fSKUm1hNpuxe/du\nAMDvf/97PPTQQ0qehiyktoWroboef3f2ZmJHDm1tbWLMmDHi2LFj4ueff3Y5ObRv3z775NCNXrts\n2TL71QovvfSSV0wmK9UWO3fuFOPHjxenT59W94R6Qam2uJa3TKwr1RZvvfWWeOaZZ4QQQnz33Xci\nPDxcxbOSRqm2iI+PFyaTSQghxO7du0VCQoKKZyVNb9riimPHjjmcWO/Jd6fbQ0QI29UQv/71r8XY\nsWPFiy++KISw/QN/66237M/585//LMaOHStiYmLEwYMHb/haIWyXqf32t7/1ukt8lWgLvV4vRo0a\nJeLi4kRcXJzIy8tT74R6QYm2uNbo0aO9IkSEUKYtWltbxR/+8AcxYcIEMXHiRPHZZ5+pdj69oURb\nHDhwQEyePFnExsaKqVOndrkU1pP1pi3mz58vRo4cKQICAoRWqxXr168XQvT8u1MjhBcMChMRkUdy\n+8Q6ERF5L4YIERFJxhAhIiLJGCJERCQZQ4TIBV9fX8THxyMmJgbp6em4cOECAODEiROYN29el+cm\nJCSgtbUVOp0OMTExiIuLQ0pKCk6cOOGO0okUxxAhcuFXv/oVKioqcPjwYQwZMgT/+Mc/AAChoaH4\n4IMP7M87duwYtFotAgICoNFoYDKZcOjQIdxxxx1ecRsNIikYIkQ9MG3aNNTU1AAALBYLoqOj7ceM\nRiPuueeaqILRAAABoklEQVSe614zderULq/5zW9+g9jYWKSkpHRZTUzkjRgiRN1ktVpRXFyMCRMm\nODy+a9euLiFyZQmW0Wi0v+aRRx5BVlYWvvrqK2RmZmLJkiXKF06kIC42JHLBz88P0dHRaGhogE6n\nQ1lZGXx8fGCxWDB79mxUVlaitbUV06dPt98Jd/To0Rg8eDB+/PFH+Pn54euvv0ZgYCCCg4PR2NgI\nX19ftLW1ITQ0FKdPn3bzGRJJx54IkQsDBw5ERUUFjh8/jgEDBly3ZwMAlJaW4o477ujymMlkwvHj\nxzF16lSsW7fO/jj/bqO+hCFC1E0DBw7E6tWr8dRTT10XBEaj0eE+Lb6+vvjb3/6GVatW4cKFC5g+\nfTo2bdoEACgoKMCdd96pSu1ESmGIELlw7X4KcXFx0Ov12LJlS5e9FkpKSnDXXXc5fM2IESOQnp6O\nN954A2vWrMGGDRsQGxuLgoICvP766+qdCJECOCdC1Ev19fXIzc3Fjh073F0KkeoYIkREJBmHs4iI\nSDKGCBERScYQISIiyRgiREQkGUOEiIgkY4gQEZFk/w8CXDOaRlIIgQAAAABJRU5ErkJggg==\n"
      }
     ],
     "prompt_number": 2
    }
   ],
   "metadata": {}
  }
 ]
}