{ "metadata": { "name": "", "signature": "sha256:c7c5940af2f0332e0055a73277f3e96c5338031f3b285c9ca2e11f04c995d4f4" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 5:Fluid control volume analysis" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 5.1 Page no.195" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "v2=20.0 #m/s, nozzle velocity\n", "dia2= 40.0 #mm, nozzle diameter\n", "\n", "#m1=m2\n", "#d1*Q1=D2*Q2 where d1=d2 is density of seawater\n", "#hence Q1=Q2\n", "#calculation\n", "import math\n", "Q=v2*(math.pi*((dia2/1000)**2)/4) #m**3/sec\n", "\n", "#result\n", "print \"Flowrate=\",round(Q,3),\"m**3/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Flowrate= 0.025 m**3/s\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 5.2 Page no.196" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "v2=1000 #ft/sec, velocity\n", "p1=100 #psia pressure inlet\n", "p2=18.4 #psia pressure outlet\n", "T1=540 #degree R, Temprature inlet\n", "T2=453 #degree R Temprature outlet\n", "dia=4 #inches, inside dia of pipe\n", "#m1=m2\n", "#d1*A1*v1=d2*A2*v2\n", "#A1=A2 and d=p/(R*T) since air at pressures and temperatures involved behaves as an ideal gas\n", "\n", "#calculation\n", "v1=p2*T1*v2/(p1*T2)\n", "\n", "#result\n", "print \"Velocity at section 1 =\",round(v1,1),\"ft/s\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Velocity at section 1 = 219.3 ft/s\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example5.3Page no.197" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "m1=22 #slugs/hr\n", "m3=0.5 #slugs/hr\n", "#-m1+m2+m3=0\n", "m2=m1-m3\n", "\n", "#result\n", "print \"Mass flowrate of the dry air and water \\n vapour leaving the dehumidifier=\",m2,\"slugs/hr\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Mass flowrate of the dry air and water \n", " vapour leaving the dehumidifier= 21.5 slugs/hr\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 5.5 Page no.198" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib inline" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n", "For more information, type 'help(pylab)'.\n" ] } ], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "Q=9.0 #gal/min, Q=m/d ,flow rate\n", "l=5.0 #ft, length\n", "b=2.0 #ft breadth\n", "H=1.5 #ft, height\n", "#continuity equation to water: integral of m= d*((h*b*l)+(H-h)*A) where A is cross-sectional area of faucet\n", "#m=d*(b*l-A)*dh/dt, where dh/dt= hrate\n", "#m=d*Q\n", "#since A<" ] } ], "prompt_number": 44 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 5.6 Page no.201" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "v=971 #km/hr, aeroplane speed\n", "v2=1050 #km/hr velocity of exhaust gases\n", "A1=0.80 #m**2 intake area of jet engine\n", "d1=0.736 #Kg/m**3 density\n", "A2=0.558 #m**2 area of engine\n", "d2=0.515 #Kg/m**3, density\n", "\n", "#w1=v=intake velocity\n", "#mass flow rate of fuel intake = d2*A2*w2 - d1*A1*w1\n", "w2=v2+v\n", "m=(d2*A2*w2 - d1*A1*v)*1000 #in book ,calculation mistake\n", "\n", "#Result\n", "print \"The mass flow rate of fuel intake = \",round(m,1),\"kg/h\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The mass flow rate of fuel intake = 9050.0 kg/h\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 5.7 Page no.202" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "Q=1000 #ml/s, flow rate\n", "A2=30 #mm**2 area\n", "rotv=600 #rpm, revolutionary speed\n", "\n", "#mass in = mass out\n", "w2=(Q*0.001*1000000)/(2*A2*1000)\n", "\n", "#result\n", "print \"Average speed of water leaving each nozzle \\nwhen sprinkle head is stationary and when it rotates with a constant speed of 600rpm =\",round(w2,1),\"m/s\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Average speed of water leaving each nozzle \n", "when sprinkle head is stationary and when it rotates with a constant speed of 600rpm = 16.67 m/s\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 5.8 Page no.203" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "Ap=500 #mm**2\n", "Q2=300 #cm**3/min\n", "Qleak=0.1*Q2 #cm**3/min\n", "#A1=Ap\n", "#mass conservation in control volume\n", "#-d*A1*V + m2 + d*Qleak =0 m2=d*Q2\n", "#V=(Q2+Qleak)/Ap\n", "V=(Q2+Qleak)*1000/Ap\n", "print \"The speed at which the plunger should be advanced=\",round(V,2),\"mm/min\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The speed at which the plunger should be advanced= 660.0 mm/min\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 5.9 Page no.204" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "Given\n", "Q=9 #gal/min\n", "l=5 #ft\n", "b=2 #ft\n", "H=1.5 #ft\n", "#deforming control volume\n", "#hrate=Q/(l*b-A)\n", "#A<