{ "metadata": { "name": "", "signature": "sha256:0be2e552cff1c39387b1a182161229da6bb9f764cb6f5a785cae5a3f7334b401" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter No.2 :FLUID STATICS" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 2.1 Page no.44" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "sg=0.68 #specific gravity of gasoline\n", "htg=17 #ft (height of gasoline)\n", "htw=3 #ft (height of water)\n", "#pressure p= (gamma*h)+atmp\n", "\n", "#calculation\n", "#pressure at water- gasoline interface p1 =sg*g*htg+atmp\n", "p1=sg*62.4*htg #atmp=0 , p1 is in lb/ft**2\n", "pr1=p1/144 #lb/in**2\n", "#pressure head as feet of water H\n", "H= p1/62.4 #ft\n", "#similarly pressure p2 at tank bottom\n", "p2=62.4*htw+p1 #lb/ft**2\n", "pr2 = p2/144 #lb/in**2\n", "#pressure head as ft of water H1\n", "H1=p2/62.4 #ft\n", "\n", "#Result\n", "print \"pressure at interface=\",round(p1,1),\"lb/ft**2\"\n", "print \"pressure head at interface in feet of water =\",round(H,1),\"ft\"\n", "print \"pressure at bottom=\",round(p2,1),\"lb/ft**2\"\n", "print \"pressure head at bottom in feet of water =\",round(H1,1),\"ft\"\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "pressure at interface= 721.3 lb/ft**2\n", "pressure head at interface in feet of water = 11.6 ft\n", "pressure at bottom= 908.5 lb/ft**2\n", "pressure head at bottom in feet of water = 14.6 ft\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 2.2 Page no.46" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib inline" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n", "For more information, type 'help(pylab)'.\n" ] } ], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "h=1250 #ft , height\n", "T=59 #degree farenheit, Temprature\n", "p=14.7 #psi (abs), pressure\n", "sw=0.0765 #lb/ft**3, (specific weight of air at p)\n", "\n", "#considering air to be compressible\n", "#calculation\n", "import math\n", "#p1/p2=math. exp(-(g*(z1-z2))/(R*T))\n", "ratp=math.exp(-(32.2*h)/(1716*(59+460)))\n", "print \"ratio of pressure at the top to that at the base considering air to be compressible=\",round(ratp,3)\n", "\n", "#considering air to be incompressible\n", "#p2=p1-(sw*(z2-z1))\n", "ratp1=1-((sw*h)/(p*144))\n", "print \"ratio of pressure at the top to that at the base considering air to be incompressible=\",round(ratp1,3)\n", "\n", "#Plot\n", "z=[0,1250,5000]\n", "p=[1,0.955,0.82]\n", "a=plot(z,p)\n", "\n", "z1=[0,1250,5000]\n", "p1=[1,0.956,0.84]\n", "a1=plot(z1,p1)\n", "xlabel(\"(Z2-Z1)(ft)\") \n", "ylabel(\"(p2-p1)\") \n", "show(a)\n", "show(a1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "ratio of pressure at the top to that at the base considering air to be compressible= 0.956\n", "ratio of pressure at the top to that at the base considering air to be incompressible= 0.955\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEPCAYAAACDTflkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdY1uUex/E3SzNnLhxYKFNlGo6GCo7INMvGcbXUzFNZ\nVlZmooKYqzqFmie1HFma1fFkS1KP4siUzC3mphRzZSLiYN3nD5EkF+Kz4Pm8rsvr8vk9v/Hlvi75\nen9+y8UYYxARESkGV3sXICIiJZeaiIiIFJuaiIiIFJuaiIiIFJuaiIiIFJuaiIiIFJtVm0jv3r3x\n9PQkODj4sus8//zz+Pn5ERoayvr16wuWJyYmEhgYiJ+fH2PHjrVmmSIiUkxWbSK9evUiMTHxst9/\n99137Nq1i507dzJlyhSefvppAHJzc+nfvz+JiYmkpKQwZ84ctm3bZs1SRUSkGKzaRFq2bMlNN910\n2e+/+uorHn/8cQCaN2/O8ePHOXjwIMnJyfj6+uLt7Y2HhwfdunVj/vz51ixVRESKwa7nRNLS0qhX\nr17BZy8vL9LS0jhw4MAll4uIiGOx+4l1PXVFRKTkcrfnwevWrcu+ffsKPu/fvx8vLy+ys7MLLd+3\nbx9eXl4XbV+phicZRw/bpFYRkdLCx8eHXbt2WWRfdp2JdO7cmY8++giA1atXU6VKFTw9PYmIiGDn\nzp2kpqaSlZXF3Llz6dy580XbZxw9zL7DJ4gY9Boug6rR5a1xnDp7FmOM0/0ZPny43WtwlD8aC42F\nxuLKf3bv3m2x3+NWnYl0796dZcuWcfToUerVq0dcXBzZ2dkA9OvXj3vuuYfvvvsOX19fypcvz/Tp\n088V5e7OxIkTiY6OJjc3lz59+tCwYcNLHsOrRkV+GjOar1f15vHZL3LTkA8YE/kuL3TsYM0fTURE\nsHITmTNnzlXXmThx4iWXd+jQgQ4dit4I7r3djz9u+4aXp3zLy4sH8K8Vk/jiyXdo5utb5H2IiMi1\nsfuJdUtycYG3+3XkQMxmbjYtafFBC+5+czDpp0/auzSri4yMtHcJDkNj8ReNxV80FtbhYowpsZdH\nubi4cKXyF685QI/pr3G8yhKGthhHzH3dcXFxsWGFIiKO52q/O69pX6W5iQAYA8M++IExG5+nWqVy\nzH50Am0ahtuoQhERx6Mmku9aBuLYn7n8Y/Q0lrjEcGe1Lnz+9Eg8K1a3coUiIo7Hkk2kVJ0TuZKq\nN7mxeFxflj/8C7u2l8VrdCNe+fw9cvJy7F2aiEiJ5TQzkQsZA6OnbSZuzQDK1zjK9H+M577QSMsX\nKCLigBRn5bvegTh+3NDzjf+QaAYSXr0FXzz1Ft5V6119QxGREkxxloVUqeLCt28+xKoe2zi8rSG+\nb4fzz9kjOZNzxt6liYiUCE49E7mQMfDO9FSGLBuIx83rmXjvv3i06X26JFhESh3FWfksORDnpadD\nr/jFfJU9AP9aXnzW+12CPC/9yBURkZJIcZYVVa4M895qx5peGziz+R7CE1rRc+ZA0s+k27s0ERGH\noyZyGbeGebD7kwG867+V/y5Ip/aoQMavmE6eybN3aSIiDkNxVhGkp0O/ET/xn1PP4+WVxyePjuf2\nm5tb/bgiItagcyL5bNVEztuwMY9/vPExqT6vcZdPNB92G4NnBU+bHV9ExBJ0TsROwkJd2T73MSYG\n/kLStzXwHhdE/OJ/kZ2bbe/SRETsQjORYkpPh+fjtjPn+ACqNfiVaf9IoIP/XXapRUTkWijOymfP\nJnLexo2G7rHfsNvvBVrUD2Z6t3/R4KYGdq1JRORKFGc5kNBQF7bOu5dJjbey/uvmNHqnGQO/HUpm\nVqa9SxMRsTrNRCwoPR1eit3PJ4df5cbAlbx335t0C/6H7noXEYeiOCufozWR8zZtgkeGrGCX33M0\nrF+F6f8YT4hniL3LEhEBFGc5vJAQ2PhVS/4d9jO7vuxG8/fa02def46dPmbv0kRELEpNxEpcXODx\nx9z4bd4/eTxjG7NnG7zfasik5PfJzcu1d3kiIhahOMtGNm2CxwdtZJff89TxPsGHD03gzpvvtHdZ\nIuKEdE4kX0lqInDucfOzZhkGTP2M7MhXuLthSxI6jaNupbr2Lk1EnIjOiZRQLi7w2GMupH7Tlccz\ntrFgTn0C3g3ljeWjOZtz1t7liYhcM81E7GjTJuj98m52+QykYoMt/Pu+d+no11GXBIuIVSnOylfS\nmwici7g+/hhemPA9uXcNIMKnAe/d+w4B1QPsXZqIlFKKs0oRFxd49FHYsyiaR09uYvXsdkRMupOX\nF77KibMn7F2eiMgVaSbiYDZtgr4vHmS392Bc/Rbydocx9AzpiauL+r2IWIbirHylsYnAXxHXi2+v\nwbXjc3jf7M6ke8cTUSfC3qWJSCmgOKuUOx9x7V7WnO6Zq/nlk760/fBenpzfl8OZh+1dnohIAc1E\nSoBNm6Df8+nsuTmOrMBZxLUdytMRT+Ph5mHv0kSkBFKclc9Zmgj8FXG9NDqFMvcNoFKd35nYMYG2\nDdrauzQRKWHURPI5UxM5Lz0dhg03zPhxPh73vkRrvya8Hf0W3lW87V2aiJQQaiL5nLGJnLdpE/zz\nudP8WuctMoMTePH253j1jlcp51HO3qWJiINTE8nnzE0E/oq4Xo7/jfJdXiHHcw3v3P02DzR8QHe9\ni8hlqYnkc/Ymcl56OgwfDjOSkqjw8PP4e9VgQofxNK7Z2N6liYgDUhPJpyZS2KZN8Ez/HH6r+T4n\nbx3Bo2HdiYuKo8oNVexdmog4EN0nIpcUEgIrlrnzxn39KTM1hYVLzuI/PpAP1n2gF2GJiFVoJlJK\nnY+4Zi5cT7VHnqNK9TNM6DCB2+rdZu/SRMTOFGflUxO5uk2b4JlnDQeqzuHkba9yd0AbxrYbS+2K\nte1dmojYieIsKbKQEFix3IW4h3rgOukXNq2sS9CkYN784U2ycrPsXZ6IlHBqIk7g/LO4tm+uQGTu\naMwHPzJr+XKCJwWzYOcCe5cnIiWY4iwntGkTPPssHKz4HWejXiDUK4B3ot/Bt6qvvUsTERtQnCXX\nJSQEli+HYd3vITthC4eSW9J8agsGfj9QTwkWkWuiJuKkzkdcv2wtw+3mVfj3ZtZtzKLhew0Z8r8h\n/Hn6T3uXKCIlgOIsAf6KuI7zKz5PjGTlH/9lQPMBDGgxgEplK9m7PBGxoBITZyUmJhIYGIifnx9j\nx4696Ps///yTLl26EBoaSvPmzdm6dWvBd97e3oSEhBAeHk6zZs2sWabwV8T16lO3kDx0Km32rGbz\ngR34TfDjzR/e5FT2KXuXKCIOyGpNJDc3l/79+5OYmEhKSgpz5sxh27ZthdYZNWoUTZo0YePGjXz0\n0UcMGDCg4DsXFxeSkpJYv349ycnJ1ipTLnA+4tq2Derc4EvSgFn8s9xS1qQl4zvelwlrJnA256y9\nyxQRB2K1JpKcnIyvry/e3t54eHjQrVs35s+fX2idbdu2ERUVBUBAQACpqakcOXKk4HtFVfZRuTK8\n+y4sXgxLPm1E6rjPGRvyLQv3LMRvgh9Tf55Kdm62vcsUEQdgtSaSlpZGvXr1Cj57eXmRlpZWaJ3Q\n0FDmzZsHnGs6v/76K/v37wfOzUTatWtHREQEU6dOtVaZcgXnI64BA2DQ4+HUWvI1U9p/xmcpnxH4\nXiCzNs7SM7lEnJy7tXZclPdZvPbaawwYMIDw8HCCg4MJDw/Hzc0NgJUrV1KnTh2OHDlC+/btCQwM\npGXLlhftIzY2tuDvkZGRREZGWupHEP6KuDp3PvcsrsfatCA+fhF+nZYxfFkMo1eOJi4yjgcbPYir\niy72E3FESUlJJCUlWWXfVrs6a/Xq1cTGxpKYmAjA6NGjcXV1ZdCgQZfdpn79+mzevJkKFSoUWh4X\nF0eFChUYOHBgoeW6Osv2zl/Fdfo0vPee4Xi1hcQsjSE7N5v4qHg6+XfSC7FEHFyJuDorIiKCnTt3\nkpqaSlZWFnPnzqVz586F1klPTycr69zzm6ZOnUrr1q2pUKECp06dIiMjA4DMzEwWLlxIcHCwtUqV\na3BhxNWliwtfjI3mu/uTGRE1gpilMbT4sAWLdi9ScxdxElZrIu7u7kycOJHo6GgaNWpE165dadiw\nIZMnT2by5MkApKSkEBwcTGBgIN9//z0JCQkAHDp0iJYtWxIWFkbz5s3p1KkTd911l7VKlWt04VVc\n5ctD48Yu/J7UmbVPrmfgbQN5bsFzRM6MZPmvy+1dqohYmW42lOt2YcQ1aRI0ichh9ubZxCbF4lfN\nj/ioeJrV1b0+Io5C7xPJpybiOIyBjz+GQYOgY0cYPRoq35TN9A3TiV8eT5PaTRgROYLQWqH2LlXE\n6ZWIcyLiXP4ecTVqBNM+8KBP2FPsfG4nbeu35e5P7qbrF13ZdmTb1XcoIiWCZiJiFX+PuJo1g8ys\nTN776T3eWvUWHfw6MKzVMHyq+ti7VBGno5mIOLwLr+K6/37o2xdOnyjPq3e8yq7nd+Fzkw/NP2hO\nv6/7sS99n73LFZFiUhMRq7lUxDV5MpR3r8Sw1sPY8dwOqt1YjbDJYQxYMICDJw/au2QRuUaKs8Rm\nLhVxARw6eYixP4xl5saZ9Anvw6t3vEr1G6vbt1iRUkxxlpRIl4q4jh4Fzwqe/Cv6X2z65yZOZp0k\nYGIAw5YO4/iZ4/YuWUSuQk1EbOpyEVduLtStVJdJHSextu9a9p/Yj98EP0atGMXJrJP2LltELkNx\nltjV5SIugO1HtxO3LI4le5fw6h2v8nTE05TzKGe/YkVKCd1smE9NpHS41I2K1S84JbL50GaGJw0n\nOS2Z11u+zpNNnqSMWxn7FSxSwumciJQqV4q4AII9g5nXdR5fdvuSb3Z8g/8Ef6atn0ZOXo59CxcR\nzUTE8Vwp4gL44bcfiFkaQ9qJNGIjY+nauCturm72KVakBFKclU9NpPS6WsQFsGTvEmKWxHDi7AlG\nRI2gS2AXvctEpAjURPKpiZR+6enn3qg4ezbEx8OTT4LbBZMOYwwLdi0gZkkMLi4uxEfF08G3g5qJ\nyBWoieRTE3EeV4u4jDH895f/MmzpMCqVrcTINiNpU7+NfYoVcXBqIvnURJxLUSKu3Lxc5m6dy/Ck\n4dSrVI+RbUZye73b7VOwiIPS1VnilK52FReAm6sbPYJ7sO3ZbTwS8gg9/tODez65h58P/Gy/wkVK\nMc1EpMS6WsQFcDbnLB+u/5A3VrxB87rNGRE1gqCaQbYvVsSBKM7KpyYiRYm4AE5nn+bfa//NuB/G\n0aZ+G2IjY/Gv5m/7gkUcgOIskXxFibgAynmU46XbXmLX87sIqhnEHdPuoPf83qQeT7VL3SKlhWYi\nUqoUJeICOH7mOP/68V+899N7dG3clSEth1C3Ul3bFitiJ5qJiFzG5R43/3dVbqjCiKgRbO+/nQpl\nKhDyfggvff8ShzMP275okRJMTURKnaJGXADVb6zOuPbj2PL0FnLycmj4XkNe/9/rHDt9zPaFi5RA\nirOk1CtqxAXwW/pvjFw+knnb5vF88+d5ocULVCpbyXbFitiA4iyRa1DUiAvg5so3M+XeKax5cg27\nju3Cd7wv434YR2ZWpm2LFikh1ETEKVxLxAXgU9WHj7p8RNITSaw9sBbfCb6MXzOeMzlnbFu4iINT\nnCVO6VoiLoANBzcwbOkw1h9cz9BWQ+kV1gsPNw/bFCtiYbrZMJ+aiFyPot6oeKE1+9cwdOlQdv+5\nm+Gth9MzuKfeZSIljs6JiFjAtUZcAM29mrPw0YVMv286H6z7gKB/B/HZ1s/IM3m2K1zEgWgmIpLv\nWiMuYwyL9ixi6NKhnMk5Q3xUPPf636t3mYjDU5yVT01ELK04EZcxhq93fM3QpUMp61aWkW1G0r5B\nezUTcViKs0SspDgRl4uLC50DOrO+33pevv1lBiQOoPWM1iz/dbntChexE81ERK7gWiMuOPdirNmb\nZxO7LBafm3yIj4qnuVdz6xcrUkSKs/KpiYgtFCfiAsjOzWbGhhnEL48nrFYYI6JGEFYrzPoFi1yF\n4iwRGypOxAXg4eZB31v7suO5HbRv0J57PrmHhz9/mJQjKbYpXMQGrjgTOXz4MJ9//jnLly8nNTUV\nFxcXbrnlFlq1asXDDz9MzZo1bVnrRTQTEXsoTsQFcCr7FO8lv8ebq94k2jea2Nax+FT1sW6xIpdg\nkzirT58+7N69mw4dOtCsWTNq166NMYbff/+d5ORkEhMT8fX15YMPPrBIIcWhJiL2UtyIC+DE2RMk\nrE4gYU0CXQK7MLT1UG6ufLN1Cxa5gE2ayKZNmwgJCbnixkVZx5rURMTe0tNh+HCYPRvi4+HJJ8Gt\niDewHzt9jLdXvc37P79Pj6AevN7ydWpXrG3dgkXQifUCaiLiKIobcQEczjzM2JVjmbFxBr3DejPo\nzkFUv7GI0xqRYrD7ifUOHTpY5OAipcW1PG7+72qWr8nb0W+z6Z+bOJV9ioCJAQxdMpTjZ45bt2gR\nC7jsTGTdunWX3MAYQ8eOHTl48KBVCysKzUTEEV1PxAWQejyV+GXxfLXjK15o/gLPN3+eimUrWq9g\ncTo2ibPc3Nxo1arVJTdavXo1p0+ftkgB10NNRBzZ9URcADv+2EHcsjgW71nMq7e/yjNNn6GcRznr\nFCtOxSZNpHHjxvz3v//F39//ou/q1avHvn37LFLA9VATEUd3PVdxnbfl8BaGJw1n9f7VvH7n6zzZ\n5EnKupe1TsHiFGxyTiQ2Npa8vEs/3nr8+PEWObhIaVfcGxUvFFQziP/84z981e0rvtv1Hf4T/flw\n3Yfk5OVYr3CRItLVWSI2dL0RF8CqfasYunQov6X/RmzrWLoFddOLseSa2PQS36NHjxIXF8fKlStx\ncXGhZcuWDBs2jGrVqlmkgOuhJiIlkSUiLoAle5cwdOm5q7hGRI6gS8MuuLroSUZydTa9xLdbt27U\nrFmTefPm8cUXX1CjRg26du1qkYOLOCNLRFwAbeq3YWWvlbzV/i1GrRxFxJQIvt3xrf5jJbZlrqJx\n48YXLQsKCrraZsYYYxYsWGACAgKMr6+vGTNmzEXfHzt2zNx///0mJCTENGvWzGzZsqXI2+bPoIpU\nh4gj27jRmDvvNObWW41Zs6Z4+8jLyzPzUuaZxu81Ni0+aGEW715s8vLyLFuolBqW/N151T29+OKL\nZvbs2SY3N9fk5uaaTz/91Lz00ktX3XFOTo7x8fExe/fuNVlZWSY0NNSkpKQUWufll182I0aMMMYY\n88svv5i2bdsWeVtj1ESk9MjLM+ajj4ypXduYJ5805siR4u0nJzfHzN402/iN9zORMyLNyl9XWrZQ\nKRUs+bvzqnHWlClT6NmzJ2XKlKFMmTJ0796dKVOmULFiRSpVqnTZ7ZKTk/H19cXb2xsPDw+6devG\n/PnzC62zbds2oqKiAAgICCA1NZXDhw8XaVuR0sRSEZebqxvdg7uT8mwKj4U8Rs95PenwSQfWHlhr\nncLF6V21iZw8eZK8vDxycnLIyckhLy+PjIwMMjIyOHHixGW3S0tLo169egWfvby8SEtLK7ROaGgo\n8+bNA841nV9//ZX9+/cXaVuR0qhyZXj3XVi8+NzJ9+bNITn52vfj7upOr/Be7HhuB539O3P/p/fT\nZW4XNh/abPmixam5X8vKsbGxxMbGFmldFxeXq67z2muvMWDAAMLDwwkODiY8PBw3N7cibXthTedF\nRkYSGRlZ5G1FHNX5Z3F9/PG5Z3EV9yquMm5leLrp0zwR9gTvr32f9rPaE1U/itjWsQRUD7BO8eJw\nkpKSSEpKss7OryX7CgsLK/K6P/74o4mOji74PGrUqMueID/P29vbZGRkFHnbayxfpEQ6ftyYAQOM\nqVHDmPffNyYnp/j7yjibYUYtH2Wqj6tunvjyCbPn2B7LFSolhiV/d1rtovKIiAh27txJamoqWVlZ\nzJ07l86dOxdaJz09naysLACmTp1K69atqVChQpG2FXEWloq4ACqUqcDgloPZ+dxObq50MxFTI3j6\nm6fZf2K/ZYsWp3FNTWTt2qKfnHN3d2fixIlER0fTqFEjunbtSsOGDZk8eTKTJ08GICUlheDgYAID\nA/n+++9JSEi44rYizux6Hjf/d1VuqEJcVBzb+2+nUtlKhL4fyouJL3Lo5CHLFi2l3hXvWE9MTCQt\nLY22bdvi7e1dsHzatGn07t3bFvVdke5YF2d1vY+b/7uDJw8yesVoPt78MU81eYpX7niFquWqWq5g\ncSg2uWN98ODBjBo1is2bN9O2bdtCD12cMGGCRQ4uIsVjyYgLoFaFWiR0SGBDvw0cO30M/wn+xCXF\nkX4m3XJFS6l02ZlIUFAQ69evx8PDg+PHj9O9e3cCAgJ45513aNKkCevXr7d1rRfRTETEcs/iutCe\nP/cQtyyOBTsXMPC2gfRv1p/yZcpbpmCxO5vMRHJzc/Hw8ACgSpUqfP3115w4cYKHH3644GS4iNif\npW5UvFCDmxow8/6ZLHtiGesOrsN3gi8JqxM4k3PGcoVLqXDZJtKgQQOWLVtW8Nnd3Z1p06YRGBjI\ntm3bbFKciBSdpSMugIY1GjL3obkk9kxkSeoS/Cb4MXntZLJy9R9JOeeycdb519+WK3fx6zj379+P\nl5eXdSsrAsVZIpdmjYgLIDktmWFLh7Hjjx0Mbz2cniE9cXe9pnuWxQHY9H0ixhjmzZtX6H0iXbp0\nscjBr5eaiMiVWfoqrvNW/LqCmKUxHDp5iLjIOB5u/LDeZVKC2LSJPP300+zevZvu3btjjOGzzz6j\nQYMGTJo0ySIFXA81EZGiscQbFf/OGMPiPYuJWRrD6ezTxEfF0zmg8zU9tkjsw6ZNJDAwkJSUFFxd\nz/0vIy8vj0aNGvHLL79YpIDroSYiUnTWiriMMXy781tilsTg4eZBfFQ80T7RaiYOzKZvNvT19eW3\n334r+Pzbb7/h6+trkYOLiO1Y4yquc/t1oZN/J9b1W8ert7/KS9+/RMvpLUlKTbJI3eLYrjoTadWq\nFT/99BPNmjXDxcWF5ORkmjZtSqVKlXBxceGrr76yVa0X0UxEpPisEXEB5OblMmfLHGKTYvGu4s3I\nNiNp4dXCMjsXi7BJnGWMwcXF5ZKPDz4/Tc3NzaVNmzYWKaQ41ERErs+FEVenTjBqlGUiLoDs3Gxm\nbJhB/PJ4QjxDiI+KJ7x2uGV2LtfFJk2kdevWdOrUifvuuw9/f/9C323fvp0vv/ySb7/9luXLl1uk\nkOJQExGxDGtdxQVwNucsU9dNZdSKUdxe73biIuNoXLOxZXYuxWKTJnL27Fk++eQT5syZw5YtW6hY\nsSLGGE6ePElQUBA9e/akR48elClTxiKFFIeaiIhlWSviAjiVfYpJP03izVVv0r5Be2IjY/GtqvOr\n9mDTq7PgXGx1NP+Z09WrV8fNUv9FuU5qIiKWZ82ICyDjbAYJaxJIWJPAfQH3MbTVUG6pcovlDiBX\nZdOrswDc3Nzw9PTE09PTYRqIiFjHhVdx3Xij5a7iOq9i2YrEtIphR/8d1KpQiyZTmtD/u/4cyDhg\nmQOITRVpJuKoNBMRsT5rRlwARzKPMPaHsUzfMJ1eYb0YdMcgapSvYdmDSCE2n4mIiPP6+xsVn3qq\n+G9UvJQa5Wvw1l1vsfnpzZzJOUPge4HELInhz9N/Wu4gYjVqIiJyVdaOuADqVKzDxHsmsu6pdRw8\neRD/if6MXD6SjLMZljuIWJziLBG5ZtaOuAB2/rGTuGVxLNqziFduf4Vnmj7DjR43Wv5ATsjmV2c5\nKjUREfux9lVc5209vJXhScNZtW8Vr7d8nb5N+lLWvazlD+REdE5EROzOFhEXQOOajfniH1/wTY9v\nSNyViP9Efz5Y9wHZudmWPZAUi2YiImIRtoi4AH7c9yNDlw4l9XgqsZGxdA/qjpurbj24Foqz8qmJ\niDgWW0VcAEv3LmXo0qEcO32MEVEjeKDhA3oxVhGpieRTExFxTNZ8FteFjDF8v/t7YpbEkGtyiY+K\np6NfR73L5CrURPKpiYg4NltFXMYY5m+fz9ClQynvUZ6RbUbStn5bNZPLUBPJpyYi4vhsGXHlmTw+\n2/oZw5OGU7tCbUa2GcmdN99pnYOVYLo6S0RKDFtdxQXg6uJKt6BubH1mK0+EPcGj/32Uuz++m5/S\nfrL8wQTQTEREbMxWERdAVm4W09ZPY+TykUTUiWBE1AhCPEOsd8ASQnFWPjURkZLJlhEXwOns00z+\neTJjVo4h0juS2MhYAqsHWu+ADk5xloiUaLaMuADKeZTjhRYvsOv5XYTVCqPl9JY88eUT7Plzj3UO\n6EQ0ExERu7NlxAWQfiadd1a/w8TkiTzU6CFiWsXgVcnLugd1IJqJiEipYu3Hzf9d5RsqExsZy/b+\n26lyQxVC3w/lhcQXOHjyoPUOWkqpiYiIQ7B1xAVQ7cZqjGk3hq3PbAWg8aTGvLb4Nf449Yf1DlrK\nKM4SEYdk64gLYF/6Pt5Y8QZfpHxB/2b9ebHFi1S+obL1D2xjirNEpNSzdcQFUK9yPd7v9D7JfZNJ\nPZ6K7wRfxqwcQ2ZWpnUPXIKpiYiIw7JHxAXQ4KYGzLh/Bit6rWDjoY34TvDl3dXvcibnjHUPXAIp\nzhKREsMeERfApkObGLZ0GGsPrCWmVQy9w3tTxq2MbQ5uBbrZMJ+aiIjzsfWNihf6Ke0nhiUN45ej\nvzC89XAeCXkEd1d32xzcgnRORESclr0iLoCmdZuyoOcCZnWZxYwNM2g8qTFzNs8hz+RZ/+AOSjMR\nESnR7BVxGWP4397/EbMkhszsTEZEjuD+wPtLxOPnFWflUxMREbBvxGWM4bud3xGzNAY3Fzfio+K5\n2/duh24mirNERC5gz4jLxcWFjv4d+fmpn3ntztd4edHL3Dn9TpbuXWr9gzsAzUREpNSxV8QFkJuX\ny6dbPmV40nBuqXILI6NGclu922xXQBEozsqnJiIil2PPiAsgOzebjzZ+xIjlIwiqGUR8VDxNajex\nXQFXoDhLROQq7BlxAXi4edCnSR929N/BPb73cO+ce3nwswfZcniLbQqwEc1ERMQp2DPiAjiVfYp/\n//Rvxq1G0xf6AAAQhUlEQVQaR7sG7YhtHYtfNT/bFpFPMxERkWtkj2dxXehGjxsZePtAdj23i0bV\nG3H7tNvpM78PqcdTbVeEFVi1iSQmJhIYGIifnx9jx4696PujR49y9913ExYWRlBQEDNmzCj4ztvb\nm5CQEMLDw2lm6/8yiEipZO+IC6Bi2YoMaTWEHf13UKdiHW6dcivPfvssBzIO2K4IC7JanJWbm0tA\nQACLFy+mbt26NG3alDlz5tCwYcOCdWJjYzl79iyjR4/m6NGjBAQEcOjQIdzd3alfvz4///wzVatW\nvXzxirNE5DrYO+ICOJJ5hHE/jOPD9R/SK6wXg+4cRM3yNa16zBIRZyUnJ+Pr64u3tzceHh5069aN\n+fPnF1qndu3anDhxAoATJ05QrVo13N3/eg6NGoSIWJO9Iy6AGuVr8OZdb7L1ma1k5WbR8L2GDPnf\nEP48/adtCykmqzWRtLQ06tWrV/DZy8uLtLS0Quv07duXrVu3UqdOHUJDQ0lISCj4zsXFhXbt2hER\nEcHUqVOtVaaIODlHiLgAaleszYR7JrDuqXUczjyM3wQ/4pfFc+LsCdsWco2s9vjJotzyP2rUKMLC\nwkhKSmL37t20b9+ejRs3UrFiRX744Qdq167NkSNHaN++PYGBgbRs2fKifcTGxhb8PTIyksjISAv+\nFCLiLCpXhnffhd69z0VcU6faJ+K6pcotTO08lUF3DiJuWRx+E/x4+baXebbZs9zocWOx9pmUlERS\nUpJlCz3PWMmPP/5ooqOjCz6PGjXKjBkzptA6HTp0MCtXriz43KZNG/PTTz9dtK/Y2Fjz1ltvXbTc\niuWLiBPLyzPmo4+MqV3bmL59jTlyxH61bDm0xTz02UOm9lu1zfjV482Z7DPXvU9L/u60WpwVERHB\nzp07SU1NJSsri7lz59K5c+dC6wQGBrJ48WIADh06xPbt22nQoAGnTp0iIyMDgMzMTBYuXEhwcLC1\nShURKcRRIi6AxjUb8/nDn/Ntj29ZuGchfhP8mPrzVLJzs21fzCVY9WbDBQsW8MILL5Cbm0ufPn0Y\nPHgwkydPBqBfv34cPXqUXr168dtvv5GXl8fgwYPp0aMHe/bs4YEHHgAgJyeHnj17Mnjw4IuL19VZ\nImIDjnAV13mr969m6NKh7PlzD7GtY+kR3AM3V7dr2oeenZVPTUREbMXez+L6u6TUJGKWxHDs9DHi\nIuN4sNGDuLoULVxSE8mnJiIitpaeDsOHw+zZEB8PTz4Jbtc2EbAYYwwLdy8kZmkM2bnZxEfF08m/\n01UvbFITyacmIiL24kgRlzGGr7Z/xdClQynnUY6RUSNp16DdZZuJmkg+NRERsSdHi7jyTB6fb/2c\n4UnD8azgSXxUPK1uaXXReiXijnURkdLOka7iAnB1caVrUFe2PLOF3mG9eeLLJ4j+OJrktGSrHVMz\nERERC3GkiAsgKzeL6eunM3LFSJrUbsKIyBGE1gpVnHWemoiIOBpHi7gAzuScYfLayYz5YQytbmnF\nZw9/pjhLRMQROVrEBXCD+w0MaDGAXc/tokkty76iVzMRERErcrSIC3RiXUSkxHCEx81bk5qIiIiV\nOWLEZSmKs0REbMzeEZfiLBGREqw0RVxqIiIidlBaIi7FWSIiDsCWEZfiLBGRUqakRlxqIiIiDqIk\nRlyKs0REHJS1Ii7FWSIiTqAkRFxqIiIiDszRIy7FWSIiJYglIi7FWSIiTsrRIi41ERGREsaRIi7F\nWSIiJdy1RlyKs0REpIA9Iy41ERGRUsBeEZfiLBGRUuhKEZfiLBERuSJbRVxqIiIipdTlIi6LHkNx\nloiIczgfca1cabnfnWoiIiJOxBhwddU5ERERKQYXF8vuT01ERESKTU1ERESKTU1ERESKTU1ERESK\nTU1ERESKTU1ERESKTU1ERESKTU1ERESKTU1ERESKTU1ERESKTU1ERESKTU1ERESKTU1ERESKTU1E\nRESKTU1ERESKzapNJDExkcDAQPz8/Bg7duxF3x89epS7776bsLAwgoKCmDFjRpG3FRER+7NaE8nN\nzaV///4kJiaSkpLCnDlz2LZtW6F1Jk6cSHh4OBs2bCApKYmBAweSk5NTpG2lsKSkJHuX4DA0Fn/R\nWPxFY2EdVmsiycnJ+Pr64u3tjYeHB926dWP+/PmF1qlduzYnTpwA4MSJE1SrVg13d/cibSuF6R/I\nXzQWf9FY/EVjYR1WayJpaWnUq1ev4LOXlxdpaWmF1unbty9bt26lTp06hIaGkpCQUORtRUTE/qzW\nRFyK8CLfUaNGERYWxoEDB9iwYQPPPvssGRkZ1ipJREQszN1aO65bty779u0r+Lxv3z68vLwKrbNq\n1SqGDBkCgI+PD/Xr12f79u14eXldddvz2xSlWTmLuLg4e5fgMDQWf9FY/EVjcY6Pj4/F9mW1JhIR\nEcHOnTtJTU2lTp06zJ07lzlz5hRaJzAwkMWLF3PHHXdw6NAhtm/fToMGDahUqdJVtwXYtWuXtcoX\nEZEisFoTcXd3Z+LEiURHR5Obm0ufPn1o2LAhkydPBqBfv368/vrr9OrVi9DQUPLy8hg3bhxVq1YF\nuOS2IiLiWFyMMcbeRYiISMlUYu9YL+03I/bu3RtPT0+Cg4MLlh07doz27dvj7+/PXXfdxfHjxwu+\nGz16NH5+fgQGBrJw4cKC5T///DPBwcH4+fkxYMAAm/4MlrJv3z6ioqJo3LgxQUFBjB8/HnDO8Thz\n5gzNmzcnLCyMRo0aMXjwYMA5x+K83NxcwsPDuffeewHnHQtvb29CQkIIDw+nWbNmgI3GwpRAOTk5\nxsfHx+zdu9dkZWWZ0NBQk5KSYu+yLGr58uVm3bp1JigoqGDZK6+8YsaOHWuMMWbMmDFm0KBBxhhj\ntm7dakJDQ01WVpbZu3ev8fHxMXl5ecYYY5o2bWrWrFljjDGmQ4cOZsGCBTb+Sa7f77//btavX2+M\nMSYjI8P4+/ublJQUpx2PzMxMY4wx2dnZpnnz5mbFihVOOxbGGPP222+bHj16mHvvvdcY47z/Try9\nvc0ff/xRaJktxqJENpFVq1aZ6Ojogs+jR482o0ePtmNF1rF3795CTSQgIMAcPHjQGHPuF2tAQIAx\nxphRo0aZMWPGFKwXHR1tfvzxR3PgwAETGBhYsHzOnDmmX79+Nqreeu677z6zaNEipx+PzMxMExER\nYbZs2eK0Y7Fv3z7Ttm1bs2TJEtOpUydjjPP+O/H29jZHjx4ttMwWY1Ei4yxnvRnx0KFDeHp6AuDp\n6cmhQ4cAOHDgQKFLoM+Px9+X161bt8SPU2pqKuvXr6d58+ZOOx55eXmEhYXh6elZEPM561i8+OKL\nvPnmm7i6/vWrzFnHwsXFhXbt2hEREcHUqVMB24yF1a7OsibdG3JuDJxtHE6ePMmDDz5IQkICFStW\nLPSdM42Hq6srGzZsID09nejoaJYuXVroe2cZi2+++YaaNWsSHh5+2UeaOMtYAPzwww/Url2bI0eO\n0L59ewIDAwt9b62xKJEzkaLcyFgaeXp6cvDgQQB+//13atasCVw8Hvv378fLy4u6deuyf//+Qsvr\n1q1r26ItJDs7mwcffJBHH32U+++/H3Du8QCoXLkyHTt25Oeff3bKsVi1ahVfffUV9evXp3v37ixZ\nsoRHH33UKccCzj2LEKBGjRp06dKF5ORkm4xFiWwiF97ImJWVxdy5c+ncubO9y7K6zp07M3PmTABm\nzpxZ8Mu0c+fOfPrpp2RlZbF371527txJs2bNqFWrFpUqVWLNmjUYY5g1a1bBNiWJMYY+ffrQqFEj\nXnjhhYLlzjgeR48eLbjC5vTp0yxatIjw8HCnHItRo0axb98+9u7dy6effkqbNm2YNWuWU47FqVOn\nCh4ZlZmZycKFCwkODrbNWFz/6Rz7+O6774y/v7/x8fExo0aNsnc5FtetWzdTu3Zt4+HhYby8vMy0\nadPMH3/8Ydq2bWv8/PxM+/btzZ9//lmw/htvvGF8fHxMQECASUxMLFi+du1aExQUZHx8fMxzzz1n\njx/luq1YscK4uLiY0NBQExYWZsLCwsyCBQuccjw2bdpkwsPDTWhoqAkODjbjxo0zxhinHIsLJSUl\nFVyd5YxjsWfPHhMaGmpCQ0NN48aNC34n2mIsdLOhiIgUW4mMs0RExDGoiYiISLGpiYiISLGpiYiI\nSLGpiYiISLGpiYiISLGpiYhTOnv2LK1bt2bSpEmEh4cX/AkODsbV1ZXt27ezaNEiIiIiCAkJISIi\n4qLHi5wXExNTaB/+/v64u7tz6tQpfvnlF2677TZuuOEG3n777ULHb9WqFXl5eQXLDh8+TMeOHQs+\nd+/endDQUN59910SEhI4ffp0wXdt27YtuLlMxJ50n4g4pWnTpvHHH3/wyiuvFFr++uuvs3//fj76\n6CM2bNhArVq1qFWrFlu3biU6OrrQIyEu55FHHqFBgwaMGDGCI0eO8Ouvv/Lll19y0003MXDgwIL1\nhgwZwq233soDDzwAwLBhwwgODubhhx/m4MGDtGzZkp07dwJQv3591q5dS7Vq1QCYOnUqGRkZvPTS\nS5YaEpHisex9kyIlQ7t27cz27dsLLVu2bJnx9fU1GRkZF62fl5dnqlatarKysq6431mzZpkWLVqY\n3NzcQstjY2PNW2+9VWjZ6tWrzUMPPVTwuWHDhgXvCgkODjblypUzYWFhJi4uzpQpU8YEBwebNm3a\nGGPOPda7adOmRf+BRaykRD7FV+R65ObmsmXLFvz9/QuWHT9+nF69evHxxx9ToUKFi7b5z3/+w623\n3oqHh8dl95uamsrgwYNZtmxZoUeTX05YWBirVq0C4ODBg7i5uXHjjTcC8PXXX9OpUyfWr18PwPTp\n00lKSqJq1aoA1KpVi6NHj5KZmUn58uWL/sOLWJjOiYjTOXr06EWPkv/nP//JY489xm233XbR+lu3\nbuW1115j8uTJl91nbm4ujzzyCCNHjqRBgwZFqqNs2bLk5eVx5swZfv3114KnsMK5h05ejaenZ6En\nsYrYg5qIOKULf0nPnDmTffv2MXTo0IvW279/Pw888ACzZs2ifv36AHz55ZcFJ9HXrVsHwMiRI6lb\nty6PP/74Nddx/h0PRWkcl9tWxF4UZ4nTqV69OidPngRgz549DBkyhBUrVlwUQR0/fpyOHTsyduzY\nQjOU+++/v9DjsVevXs3MmTMLGsqlXKpBnD17Fjc3N8qWLcstt9xS8N6HS6lYsSInTpwoiLPg3Fvr\nnOE9OuLY1ETE6bi5uREUFMT27dt55513OH36dMEVUudNmDCBZcuWsXv3buLi4oiLiwNg0aJFVK9e\nvdC6sbGxnD59mqioqELL582bR7ly5WjatCknTpzA1dWVhIQEUlJSqFChAuvXry9oTrVq1SInJ6fQ\nOY4LZxlPPfUUd999N3Xr1uV///sfBw8epFq1ajofInanS3zFKc2YMYNDhw4xaNAgu9Xw+uuv07Rp\nU7p06QKca0YNGzaka9euV912ypQpZGZm8uKLL1q7TJErUhMRp5SVlUW7du1ISkoq0pVUlnb27Fna\nt2/PsmXLCmYcR44c4fHHH+e777676vZt27Zl/vz5l7ySTMSW1ERERKTYdHWWiIgUm5qIiIgUm5qI\niIgUm5qIiIgUm5qIiIgUm5qIiIgU2/8Bf2dYlrsM/5QAAAAASUVORK5CYII=\n", "text": [ "" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 2.3 Page no.49" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "#Given \n", "T=10 #degree C, Temprature\n", "dmax=40 #m, maximum diameter\n", "p=598 #mm Hg, pressure\n", "\n", "#Calculate\n", "#pressure in lake at any depth h is given by p=gamma*h + local barometric pressure 'pbar'\n", "#pbar/(gamma Hg)=598 mm= .598 m (gamma Hg) = 133kN/m**3\n", "pbar=0.598*133 #kN/m**2\n", "#(gamma water)=9.804 kN/m**3 at 10 dergree C\n", "p=(9.804*40)+pbar #kN/m**2\n", "\n", "#Result\n", "\n", "print \"The absolute pressure at a depth of 40 m in the lake=\",round(p,0),\"kPa(psi)\"\n", " " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The absolute pressure at a depth of 40 m in the lake= 472.0 kPa(psi)\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 2.4 Page no.52" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "sg1=0.90 #specific gravity of oil\n", "sg2=13.6 #specific gravity of Hg\n", "#height of column at different section\n", "h1=36.0 #inches, \n", "h2=6.0 #inches\n", "h3=9.0 #inches\n", "\n", "#Calculation\n", "#pressure equation: airp+h1*sg1*(gamma water)+h2*sg1*(gamma water)-h3*sg2*(gamma water)=0\n", "airp=-(sg1*62.4*((h1/12)+(h2/12)))+(sg2*62.4*(h3/12)) #lb/ft**2\n", "#gage pressure = airp\n", "pgage=airp/144\n", "\n", "#Result\n", "\n", "print \"Gage pressure=\",pgage,\"psi\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Gage pressure= 3.055 psi\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 2.5 Page no.53" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "gamma1=9.8 #kN/m**3, specific wt of gage \n", "gamma2=15.6 #kN/m**3\n", "h1=1 #m, height\n", "h2=0.5 #m\n", "#pA-(gamma1)*h1-h2*(gamma2)+(gamma1)*(h1+h2)=pB\n", "#pA-pB=diffp\n", "diffp=((gamma1)*h1+h2*(gamma2)-(gamma1)*(h1+h2))\n", "\n", "#Result\n", "print \"The difference in pressures at A and B =\",diffp,\"kpa\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The difference in pressures at A and B = 2.9 kpa\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 2.6 Page no.61" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "dia=4 #m, diameter\n", "sw=9.8 #kN/m**3 specific weight of water\n", "hc=10 #m, height\n", "ang=60 #degrees, amgle\n", "\n", "#Calculation\n", "import math\n", "A=math.pi*(dia**2)/4\n", "fres=sw*hc*A\n", "#for the coordinate system shown xc=xres=0\n", "Ixc=math.pi*((dia/2)**4)/4\n", "yc=hc/(math.sin (ang*math.pi/180))\n", "yres= (Ixc/(yc*A))+yc\n", "ydist=yres-yc\n", "\n", "#Result\n", "print \"The resultant force acting on the gate of the reservoir =\",round(fres*10**-3,2,),\"kN\"\n", "print \"The resultant force acts through a point along the diameter of the gate at a distance of \",round(ydist,2),\"m\"\n", "y=[2,5,10,30]\n", "hc=[0.44,0.18,0.0886,0.04]\n", "a1=plot(y,hc)\n", "xlabel(\"(hc) m\") \n", "ylabel(\"(Yr-Ym) m\") \n", "show(a1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The resultant force acting on the gate of the reservoir = 1.23 kN\n", "The resultant force acts through a point along the diameter of the gate at a distance of 0.09 m\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEMCAYAAADal/HVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtwVHWa//F3A+EixEAIlwiYBMiQBCWJkAQcjG3YSlJm\nw21wFWed2sHSxgtRwFnHYSzDuFOrTLkbJuNqcMXFAafYWQaJM+7E4NhpQXIBsvKTi5RAdESiAYaA\nRDAJ5/dHm5aYdCeddOd0dz6vKsq+nO/hOXWsfjjf53ueYzEMw0BERMSNAWYHICIigU2JQkREPFKi\nEBERj5QoRETEIyUKERHxSIlCREQ88muicDgcJCYmEh8fT3FxsdvtampqGDRoENu2bXN9Fhsby4wZ\nM0hNTSU9Pd2fYYqIiAeD/LnzRx55hJKSEmJiYsjJyWHp0qVERUW126a1tZXHH3+c3Nzcdp9bLBbs\ndjuRkZH+DFFERLrgtyuKxsZGADIzM4mJiSE7O5uqqqoO2xUXF7NkyRLGjBnT4TvdCygiYj6/JYqa\nmhoSEhJc75OSkqisrGy3zcmTJ9mxYwcPPPAA4LyKaGOxWMjKymLhwoWUlpb6K0wREemCX6eeuvLo\no4/yzDPPYLFYMAyj3RXE7t27iY6O5vDhw+Tn55Oens748ePbjb86sYiISPd5NWNj+Mm5c+eMlJQU\n1/uHH37Y+OMf/9hum7i4OCM2NtaIjY01RowYYYwdO9bYsWNHh32tXLnS2LBhQ4fP/Rh+QHjqqafM\nDsGvdHzBK5SPzTBC//i8/e3029RTREQE4Fz5VFdXR3l5ORkZGe22OX78OCdOnODEiRMsWbKEF154\ngfnz59PU1MSFCxcAaGhooKysrEOxW0RE+oZfp56Kioqw2Ww0NzdTUFBAVFQUJSUlANhsNrfj6uvr\nWbx4MQCjR49m9erVTJo0yZ+htnPlCgzQHSYiIgBYvrkMCUpttQ1fam6G2Fg4ehSGD/fprr1mt9ux\nWq3mBuFHOr7gFcrHBqF/fN7+dipRdCIzE372M9Bsl4iEIm9/OzXB0ol58+AvfzE7ChGRwKBE0Yms\nLHj7bbOjEBEJDJp66sTXX0NUFNTVgTqIiEio0dSTDwweDDffDHa72ZGIiJhPicIN1SlERJyUKNxQ\nnUJExEmJwo2UFPj8c/jsM7MjERExlxKFGwMHgtUK77xjdiQiIuZSovBg3jxNP4mIKFF40FanCN4F\nxCIivadE4UFCgrP30/HjZkciImIeJQoPLBbnVYWWyYpIf6ZE0QUtkxWR/k4tPLrw8ceQluZcKqsn\nr4pIKFALDx+LiYHwcPjgA7MjERExh18ThcPhIDExkfj4eIqLi91uV1NTw6BBg9i2bZvXY/uC2nmI\nSH/m10TxyCOPUFJSws6dO3n++ec5ffp0h21aW1t5/PHHOzwTuztj+4rqFCLSn/ktUTQ2NgKQmZlJ\nTEwM2dnZVFVVddiuuLiYJUuWMGbMGK/H9pXbbgOHA1paTAtBRMQ0g/y145qaGhISElzvk5KSqKys\nJC8vz/XZyZMn2bFjB3/5y1+oqanB8k21uDtj2xQWFrpeW61Wvzzndtw4mDQJ9u+H9HSf715ExK/s\ndjv2Xjw3wW+JojseffRRnnnmGVcFvicrmK5OFP7U1s5DiUJEgs13/xG9du1ar8b7beopLS2NI0eO\nuN4fPHiQ2bNnt9tm37593HXXXcTFxbFt2zYefPBBSktLuzW2r+nGOxHpr/yWKCIiIgDn6qW6ujrK\ny8vJyMhot83x48c5ceIEJ06cYMmSJbzwwgvMnz+/W2P72q23QmUlXLpkahgiIn3Or1NPRUVF2Gw2\nmpubKSgoICoqipKSEgBsNpvXY80UEQFJSc5k4YcyiIhIwNKd2V742c+cz6l4+uk++ytFRHxOd2b7\nkeoUItIf6YrCC01NMHYsnDrlbOshIhKMdEXhR9dc42wQ+O67ZkciItJ3lCi8pHYeItLfKFF4SQ0C\nRaS/UY3CS83NEBUFx445/ysiEmxUo/CzsDCYOxd60TZFRCSoKFH0gJbJikh/okTRA20NAkVE+gMl\nih6YMQPOnIFPPzU7EhER/1Oi6IEBA5wPM9L0k4j0B0oUPaQ6hYj0F0oUPdRWpwjexcUiIt2jRNFD\n8fHOJPHRR2ZHIiLiX0oUPWSxqJ2HiPQPfk0UDoeDxMRE4uPjKS4u7vD9jh07SE5OJiUlhby8PGpq\nalzfxcbGMmPGDFJTU0kP0AdVq52HiPQHfm3hkZqayvr164mJiSEnJ4ddu3a1e1LdxYsXGT58OAAV\nFRU8+eSTOBwOAOLi4ti3bx+RkZHugzehhcfV/vpXuOkm+Pxz50ooEZFgEDAtPBobGwHIzMwkJiaG\n7Oxsqqqq2m3TliTath86dGi77wO9DdWkSTBqFPy//2d2JCIi/uO3RFFTU0NCQoLrfVJSEpWVlR22\n2759O7GxsSxbtowNGza4PrdYLGRlZbFw4UJKS0v9FWavaZmsiIS6QWYHsGjRIhYtWsTWrVtZtGgR\ntbW1AOzevZvo6GgOHz5Mfn4+6enpjB8/vsP4wsJC12ur1YrVau2jyJ3mzYNNm2Dlyj79a0VEus1u\nt2PvRSdTv9UoGhsbsVqtrh/+FStWkJubS15entsx48aNo66ujmHDhrX7fNWqVSQmJnLfffe1+9zs\nGgVAQwNMnQqnTzs7y4qIBLqAqVFEREQAzpVPdXV1lJeXk5GR0W6bY8eOuYJ98803mTlzJsOGDaOp\nqYkLFy4A0NDQQFlZGbm5uf4KtVfGjIG4ONi71+xIRET8w69TT0VFRdhsNpqbmykoKCAqKoqSkhIA\nbDYb27Zt49VXXyUsLIzU1FTWrVsHQH19PYsXLwZg9OjRrF69mkmTJvkz1F5pq1PMmWN2JCIivqcn\n3PnAn/4Ezz2noraIBAdvfzuVKHzg/Hm47jpnveI75RURkYATMDWK/uTaa53PqHjvPbMjERHxPSUK\nH9H9FCISqpQofESPRxWRUKUahY9cugRRUXDyJHyzMlhEJCCpRmGSoUMhIwO+6WkoIhIylCh8SG3H\nRSQUKVH4kAraIhKKVKPwoZYWZ53i6FEYO9bsaEREOqcahYkGDYJbboFeNGkUEQk4ShQ+pmWyIhJq\nlCh8THUKEQk1ShQ+dsMN0NgIn3xidiQiIr6hROFjAwbAbbfpqkJEQocShR+oTiEioUSJwg/a6hQB\ntHJXRKTH/JooHA4HiYmJxMfHU1xc3OH7HTt2kJycTEpKCnl5edTU1HR7bCCbMsW5VPbDD82ORESk\n9/x6w11qairr168nJiaGnJwcdu3aRVRUlOv7ixcvMnz4cAAqKip48skncXzTLKmrsRB4N9xd7cc/\nhrQ0ePBBsyMREWkvYG64a2xsBCAzM5OYmBiys7Opqqpqt01bkmjbfujQod0eG+i0TFZEQoXfEkVN\nTQ0JCQmu90lJSVRWVnbYbvv27cTGxrJs2TJeeuklr8YGsqwseOcduHLF7EhERHpnkNkBLFq0iEWL\nFrF161YWLlxIbW2tV+MLCwtdr61WK1ar1bcB9tCECTBmDLz/PqSmmh2NiPRndrsdey96C/mtRtHY\n2IjVanX98K9YsYLc3Fzy8vLcjhk3bhx1dXVcvnyZ2267rcuxgVyjAHjoIYiLg8ceMzsSEZFvBUyN\nIuKbx7w5HA7q6uooLy8nIyOj3TbHjh1zBfvmm28yc+ZMhg0bxsiRI7scGwxUpxCRUODXqaeioiJs\nNhvNzc0UFBQQFRVFSUkJADabjW3btvHqq68SFhZGamoq69at8zg22FitztVPX38NgwebHY2ISM/o\neRR+dtNNUFwM3/++2ZGIiDgFzNSTOKmdh4gEOyUKP1OdQkSCnaae/OzLL2H8ePjiC7jmGrOjERHR\n1FPAGTECUlJg926zIxER6Rklij4wb56mn0QkeClR9IGsLBW0RSR4qUbRBy5fhqgo+Otf4Zt7CUVE\nTKMaRQAaMgTmzIGKCrMjERHxnhJFH9EyWREJVt1q4XH69GkqKyu5fPky4LxsWbx4sV8DCzXz5jnb\neYiIBJsuaxSFhYX893//N6mpqQy+qmHRK6+84vfguhIsNQqA1lZnneLIERg3zuxoRKQ/8/a3s8tE\nMX36dGpra9sliUARTIkCYOFCuPNOWLrU7EhEpD/zeTH7+9//Pnv27OlVUOKkOoWIBKMuryhqa2vJ\nzMxk5MiRrudEWCwWDhw40CcBehJsVxQHD0J+Phw/bnYkItKfefvb2WUx+6677uI3v/kNc+bMCcjp\np2CSlARNTXDihPPJdyIiwaDLRBEREcHSpUuVJHzAYvl2+unee82ORkSke7qsUWRmZrJw4UI2btzI\ntm3b2LZtG3/4wx+6tXOHw0FiYiLx8fEUFxd3+H7Lli0kJyeTnJzM3XffzdGjR13fxcbGMmPGDFJT\nU0lPT/fikAKb6hQiEmy6rFH80z/9ExaLpcPn3Vkem5qayvr164mJiSEnJ4ddu3a1e6Tpnj17SEpK\nIiIigk2bNrFz505++9vfAhAXF8e+ffuIjIx0H3yQ1SjAOe10883w2WfOKwwRkb7m8+WxPdXY2IjV\naqW2thaAgoICcnJyyMvL63T706dPc9NNN/HJJ58AzkSxd+9eRo8e7fbvCMZEAc76xJ/+5KxZiIj0\ntYDp9VRTU0NCQoLrfVJSEpWVlW6337BhA/n5+a73FouFrKwsFi5cSGlpqb/CNIWmn0QkmHSrhYe/\n7dy5k82bN/Pee++5Ptu9ezfR0dEcPnyY/Px80tPTGT9+fIexhYWFrtdWqxWr1doHEffOvHnw+9/D\nww+bHYmI9Ad2ux273d7j8X029bRixQpyc3M7TD0dOHCAxYsX8+c//5mpU6d2uq9Vq1aRmJjIfffd\n1z74IJ16OnUKpk+HhgYYONDsaESkv/H5fRRHjx5l//79fPjhh1gsFqZNm0Zqairf+973PI6LiIgA\nnCufrr/+esrLy3nqqafabfPJJ5/wgx/8gC1btrRLEk1NTbS2thIeHk5DQwNlZWWsXLmy2wcV6KKj\nnX9qa2HWLLOjERHxzG2i+P3vf8+LL77IwIEDSUhIYMqUKRiGwe7du/nP//xPWltbefDBB1myZInb\nnRcVFWGz2WhubqagoICoqChKSkoAsNls/OIXv+Ds2bMsX74cgLCwMKqrq6mvr3d1px09ejSrV69m\n0qRJvjxu07XVKZQoRCTQuZ16WrduHT/60Y86rQsAnDp1it/+9rf88z//s18D9CRYp54AXn8dXngB\nysrMjkRE+puAWR7bF4I5Ufztb3D99XDmDOimdxHpSz6vUXz66ads3bqVPXv2tHtwUagtWe1ro0ZB\nQgJUVkJmptnRiIi412WiuO+++5g9ezY2m42wsDCATu/UFu+11SmUKEQkkHU59TRr1iyqq6sZMCDw\nHq8dzFNPAG+9Bf/yL+BwmB2JiPQnPq9RbN++HbvdzoIFC1zPowC46aabeh6ljwR7orh40flY1M8/\nh+HDzY5GRPoLn9coPvzwQ1599VX27t3brtX4O++807MIxWX4cJg5E3btgpwcs6MREelcl1cUU6dO\n5f/+7/8YMWJEX8XUbcF+RQGwdq3zymLdOrMjEZH+wudNAZOTk/n88897FZS4pwaBIhLoupx6Onfu\nHElJSaSnp7d7ZraWx/pGRgYcPQpnz4KHR2+IiJimy0Tx5JNPdvhMy2N9Z/Bg54OMKipg0SKzoxER\n6chtjWL58uU8++yzruZ+gSgUahQAv/oVfPwx/OY3ZkciIv2Bz2oUU6ZMYebMmWzZssUngYl7qlOI\nSCDzuOrp5MmTrFy5kjNnzvDAAw+4ppwsFouru6uZQuWKorUVxoyBDz6A664zOxoRCXU+vY9iwoQJ\n5OXlsWbNGt544412d2cHQqIIFQMHgtUK77wDP/yh2dGIiLTnNlF88MEHPPjgg0RHR1NTU0N0dHRf\nxtXvzJsHb7+tRCEigcdtjeKOO+5gzZo1bN261ZUkNmzY0GeB9TdZWc5EEQIzaSISYtwmitraWnK+\n01fihRde8GrnDoeDxMRE4uPjKS4u7vD9li1bSE5OJjk5mbvvvpujR492e2yoSUiA5mY4ccLsSERE\n2nObKIYOHdrrnT/yyCOUlJSwc+dOnn/+eU6fPt3u+8mTJ+NwOHj//ffJycnh6aef7vbYUGOxfHtV\nISISSDy28GhpaSExMdH13pu7sRsbGwHIzMwkJiaG7Oxsqqqq2m0zZ84c130aeXl5VFRUdHtsKJo3\nT8tkRSTweEwUgwYNIikpidraWgAmTZrU7R3X1NSQkJDgep+UlERlZaXb7Tds2EB+fn6PxoaKtvsp\nVKcQkUDSZQuPs2fPMmvWLFJSUrjum0X+vu71tHPnTjZv3sx7773n9djCwkLXa6vVitVq9VlcfS0m\nBsLD4eBBuOEGs6MRkVBht9ux2+09Ht9lm/HOdm6xWLj11ls97rixsRGr1eq6GlmxYgW5ubnk5eW1\n2+7AgQMsXryYP//5z0ydOtWrsaFyw93V7r8fpk+HRx4xOxIRCVVe/3YabthsNuPcuXPuvu6WlJQU\no6Kiwjhx4oQxbdo0o6Ghod33H3/8sTF16lSjsrLS67HfJLhexReIfvc7w5g/3+woRCSUefvb6Xbq\nqa3X09q1a/lhD+8CKyoqwmaz0dzcTEFBAVFRUZSUlABgs9n4xS9+wdmzZ1m+fDkAYWFhVFdXux3b\nH9x2GyxfDi0tMKjLiUEREf9Tr6cAdOON8PLLkJ5udiQiEorU6ykEtLXzUKIQkUCgXk8BKCsLiovh\niSfMjkRExMPUU2JiIkVFRR3aeASSUJ16amyEiRPh9GkYMsTsaEQk1Phs6mnfvn1cc801HgcbhqHH\novpBRAQkJcGePc724yIiZnJ7Z3Z2djY///nPOXToEK2tra7PW1paOHjwIGvWrGHu3Ll9EmR/dPvt\n8PTTcO6c2ZGISH/nduqptbWV0tJSXnrpJQ4cOMDAgQMxDIPW1lZmzJjB/fffz4IFC9oVuPtaqE49\ngbOT7OrVUFYGO3Y4u8uKiPiCt7+dXd6Z3eb8+fNYLBbCw8N7HJyvhXKiaPPyy86i9iuvwHduTBcR\n6RG/JYpA1B8SBcB778Edd8CKFfD4486W5CIiPaVEEaI+/RQWLYIpU2DjRuhinYGIiFve/naaV2AQ\nr0ycCA4HDB4Mc+fCJ5+YHZGI9BdKFEFk2DDYtAnuuQcyMpyJQ0TE35QogozFAitXwquvOusWL75o\ndkQiEupUowhiH30ECxbALbfAr3/tnJYSEemKahT9yNSpUFkJ9fXORoJffGF2RCISipQoglx4OPzh\nD87nWKSlwf79ZkckIqFGU08h5H/+Bx54wDkNtXSp2dGISKAKqKknh8NBYmIi8fHxFBcXd/j+yJEj\nzJkzh6FDh/Lcc8+1+y42NpYZM2aQmppKuh7M0C1LljifY7FmDfz0p3BViy4RkR7z6xVFamoq69ev\nJyYmhpycHHbt2tXukaYNDQ18/PHHvP7664waNYrVq1e7vouLi2Pfvn1ERka6D15XFJ06fRr+4R9g\n6FB47TUYOdLsiEQkkATMFUVjYyMAmZmZxMTEkJ2dTVVVVbttxowZw6xZswgLC+t0H0oCPRMV5Wwm\nOHWq836LI0fMjkhEgpnHR6H2Rk1NDQlXtTxNSkqisrKSvG52trNYLGRlZREXF8eyZcuYP39+p9sV\nFha6XlutVqx6gAMAYWHOWsXLL0NmppoKivRndrsdu93e4/F+SxS9tXv3bqKjozl8+DD5+fmkp6cz\nfvz4DttdnSiko3vvdT4EackSNRUU6a+++4/otWvXejXeb1NPaWlpHLlqzuPgwYPMnj272+PbntGd\nmJjI/PnzeeONN3weY38xZw5UVzuX0S5dCk1NZkckIsHEb4kiIiICcK58qquro7y8nIyMjE63/W4t\noqmpiQsXLgDOgndZWRm5ubn+CrVfmDBBTQVFpGf8uuqpoqKC5cuX09zcTEFBAQUFBZSUlABgs9mo\nr68nLS2N8+fPM2DAAMLDwzl06BBffPEFixcvBmD06NH88Ic/ZNmyZR2D16onrxkGFBXBunWwdauz\nfiEi/YueRyHdUl4O//iPsHYtLF9udjQi0peUKKTb1FRQpH8KmPsoJPB9t6ng55+bHZGIBCIlin7u\n6qaC6elqKigiHWnqSVzUVFCkf1CNQnrlwAFYuNDZK+qXv4SBA82OSER8TYlCek1NBUVCm4rZ0mtq\nKigiV1OikE61NRV8/HHnTXl/+pPZEYmIWTT1JF3as0dNBUVCiWoU4hcnT8KiRTB5MmzcCNdcY3ZE\nItJTqlGIX6ipoEj/pUQh3TZ0KGzaBPfc4yxyOxxmRyQifUGJQrxiscDKlfDqq3DHHfDii2ZHJCL+\nphqF9JiaCooEJ9UopM+oqaBI/+DXROFwOEhMTCQ+Pp7i4uIO3x85coQ5c+YwdOhQnnvuOa/GSmBQ\nU0GR0OfXqafU1FTWr19PTEwMOTk57Nq1i6ioKNf3DQ0NfPzxx7z++uuMGjWK1atXd3ssaOop0Kip\noEhwCJipp8bGRgAyMzOJiYkhOzubqqqqdtuMGTOGWbNmERYW5vVYCTxLlsDbb8OaNfDTn0Jrq9kR\niYgv+C1R1NTUkJCQ4HqflJREZWWl38eKuWbMgOpq55/8fDh3zuyIRKS3BpkdQG8VFha6XlutVqxW\nq2mxiFNbU8HHHnPeb7FjB1yV90Wkj9ntdux2e4/H+y1RpKWl8ZOf/MT1/uDBg+Tm5vp87NWJQgJH\nWBisX+9s95GZCa+8Anl5Zkcl0j999x/Ra9eu9Wq836aeIiIiAOfqpbq6OsrLy8nIyOh02+8WVbwZ\nK4Ft2TLnFcX998Mzz4DWHogEH7+ueqqoqGD58uU0NzdTUFBAQUEBJSUlANhsNurr60lLS+P8+fMM\nGDCA8PBwDh06xIgRIzod2yF4rXoKGmoqKBI41D1WAtalS84riw8+gNdfh+uvNzsikf5JiUICmmFA\nURGsW+dcTjtxorMz7cSJ374eNszsKEVCmxKFBIWaGnjvPeeU1KefOv+cPOn8M3x45wnk6tcREXqA\nkkhPKVFIUDMMOH362wTy3UTS9vrKlfYJpLOkMmYMDFA3M5EOlCikXzh/vutkcv48REe7vyqZONH5\n/XcaA4iEPCUKkW9cugSffeY+kZw86ex4O3p011NdWqUloUSJQsQLLS3OZOEpmXz6qTNRuEsmbf8d\nOVJ1EwkOShQiPmYYcOZM5wnk6s9aWjxflUycCGPHqm4i5lOiEDHJhQtd100aG2H8ePdXJW11Ez0t\nUPxJiUIkgF2+3HXdpL4eIiO7rpsMH2720UiwUqIQCXKtrd2rmwwd2vVU16hRqptIR0oUIv2AYcDZ\ns13XTb7+unt1k4EDzT4i6UtKFCLi8uWXXddN/va3b+sm7pLKddepbhJKlChExCuXL8OpU56TSX29\ncxqrqyXCI0aYfTTSHUoUIuJzra3wxRdd100GD+56qisyUnUTsylRiIgpDMM5jdVVMrl0yfNVycSJ\nMG6c6ib+pEQhIgHt4sWu6yZnzzqThaeprgkTYMgQs48mOAVUonA4HNhsNlpaWigoKGDFihUdtnni\niSfYunUro0aNYsuWLSQkJAAQGxvLtddey8CBAwkLC6O6urpj8EoUIiHp66+7rpucOuVsm9LVVFd4\nuNlHE3gCKlGkpqayfv16YmJiyMnJYdeuXURFRbm+r66uZtWqVZSWllJWVsaWLVv44x//CEBcXBz7\n9u0jMjLSffBKFCL91pUrzrqJu6XBba8HDep6qmv06P5VN/H2t3OQvwJpbGwEIDMzE4Ds7GyqqqrI\ny8tzbVNVVcWSJUuIjIxk6dKl/PznP2+3DyUBEXFnwADnst7x42HWrM63MQw4d65jAtm71/k43rbP\nm5o8P9ukrW4yyG+/mIHNb4ddU1PjmkYCSEpKorKysl2iqK6u5p577nG9HzNmDMePH2fy5MlYLBay\nsrKIi4tj2bJlzJ8/31+hikiIslicy3pHjYIbbnC/XVNTx6uSo0fhnXe+TTBnzjhvTvT0wKwJE5x3\nzIcaU/OjYRhurxp2795NdHQ0hw8fJj8/n/T0dMaPH99hu8LCQtdrq9WK1Wr1U7QiEqquuQbi451/\n3Glu7rxusn9/+7rJtdd2XTe59tq+OzYAu92O3W7v8Xi/1SgaGxuxWq3U1tYCsGLFCnJzc9tdURQX\nF9PS0sLKlSsBmDJlCseOHeuwr1WrVpGYmMh9993XPnjVKEQkgFy5Ag0N7uslJ0/CX//qXPrb1VRX\nVJT/6iYBU6OIiIgAnCufrr/+esrLy3nqqafabZORkcGqVav40Y9+RFlZGYmJiQA0NTXR2tpKeHg4\nDQ0NlJWVuZKJiEigGjDAWcsYNw5mzux8G8Nwtpv/biLZvx9KS7/9/MsvPSeTCROcLen7om7i17+i\nqKgIm81Gc3MzBQUFREVFUVJSAoDNZiM9PZ25c+cya9YsIiMj2bx5MwD19fUsXrwYgNGjR7N69Wom\nTZrkz1BFRPqExeJc1jtyJEyf7n67piZnS/qrk8lHH0FFxbefnT4NY8Z4nuqaMAGGDetlzLrhTkQk\nODU3O/twebrf5LPPnPeSXJ1ANmwIkKknERHxr7AwmDTJ+cedK1ecVx5XJxBv6YpCRKSf8fa3U495\nFxERj5QoRETEIyUKERHxSIlCREQ8UqIQERGPlChERMQjJQoREfFIiUJERDxSohAREY+UKERExCMl\nChER8UiJQkREPFKiEBERj5QoRETEI78mCofDQWJiIvHx8RQXF3e6zRNPPMHkyZOZOXMmR44c8Wps\nqOvNw9CDgY4veIXysUHoH5+3/JooHnnkEUpKSti5cyfPP/88p0+fbvd9dXU17777Lnv37uWxxx7j\nscce6/bY/iDU/2fV8QWvUD42CP3j85bfEkVjYyMAmZmZxMTEkJ2dTVVVVbttqqqqWLJkCZGRkSxd\nupTDhw93e6yIiPQNvyWKmpoaEhISXO+TkpKorKxst011dTVJSUmu92PGjOHYsWPdGisiIn3D1Gdm\nG4bR4XGknIzmAAAHCElEQVR8FovFq314u32wWbt2rdkh+JWOL3iF8rFB6B+fN/yWKNLS0vjJT37i\nen/w4EFyc3PbbZORkcGhQ4fIyckBoKGhgcmTJxMZGdnlWEDPyxYR6QN+m3qKiIgAnKuX6urqKC8v\nJyMjo902GRkZbNu2jTNnzvDaa6+RmJgIwMiRI7scKyIifcOvU09FRUXYbDaam5spKCggKiqKkpIS\nAGw2G+np6cydO5dZs2YRGRnJ5s2bPY4VERETGEGooqLCSEhIMKZOnWr8+te/Njscn4uJiTFuvPFG\nIyUlxUhLSzM7nF778Y9/bIwdO9a44YYbXJ+dP3/emD9/vjFp0iRjwYIFxoULF0yMsHc6O76nnnrK\nmDBhgpGSkmKkpKQY//u//2tihD33ySefGFar1UhKSjJuvfVWY8uWLYZhhM75c3d8oXL+vvrqKyM9\nPd1ITk42MjIyjH/7t38zDMP78xeUiSIlJcWoqKgw6urqjGnTphkNDQ1mh+RTsbGxxpkzZ8wOw2cc\nDoexf//+dj+kzz77rPHwww8bly5dMh566CHjV7/6lYkR9k5nx1dYWGg899xzJkblG6dOnTJqa2sN\nwzCMhoYGIy4uzjh//nzInD93xxcq588wDOPixYuGYRjGpUuXjOnTpxtHjx71+vwFXQuP/nKPhRFC\nhfpbbrmFUaNGtfusurqae++9lyFDhrBs2bKgPoedHR+ExjkcP348KSkpAERFRTF9+nRqampC5vy5\nOz4IjfMHcM011wDw5Zdf0tLSwpAhQ7w+f0GXKPrDPRYWi4WsrCwWLlxIaWmp2eH4xdXnMSEhgerq\napMj8r3i4mJmz57Ns88+y4ULF8wOp9c++ugjDh48SHp6ekiev7bja1s4Eyrn78qVKyQnJzNu3Dge\nfvhhrr/+eq/PX9Aliv5g9+7dvP/++/zrv/4rq1ator6+3uyQfC5U/rXmzgMPPMCJEycoKyvj2LFj\nrkUcwerChQvceeed/Pu//zsjRowIufN39fENHz48pM7fgAEDeP/99/noo4/4j//4D2pra70+f0GX\nKNLS0to1Dzx48CCzZ882MSLfi46OBiAxMZH58+fzxhtvmByR76Wlpblathw+fJi0tDSTI/KtsWPH\nYrFYiIiI4KGHHmL79u1mh9Rjzc3N/OAHP+Cee+5hwYIFQGidv86OL5TOX5vY2Fhuv/12qqqqvD5/\nQZcounN/RjBrampyXeY2NDRQVlbW6c2GwS4jI4ONGzfy1VdfsXHjxpBL9qdOnQKgpaWF1157jdtv\nv93kiHrGMAzuvfdebrjhBh599FHX56Fy/twdX6icv9OnT3Pu3DkAzpw5w1tvvcWCBQu8P3/+rLb7\ni91uNxISEowpU6YY69evNzscnzp+/LiRnJxsJCcnG1lZWcbLL79sdki9dtdddxnR0dHG4MGDjYkT\nJxobN24MmeWVhvHt8YWFhRkTJ040Xn75ZeOee+4xbrzxRmPmzJnGypUrg3YV27vvvmtYLBYjOTm5\n3VLRUDl/nR3fm2++GTLn78CBA0ZqaqoxY8YMIzs729i0aZNhGN4vj7UYRohNNoqIiE8F3dSTiIj0\nLSUKERHxSIlCREQ8UqIQERGPlChE3GhtbWXu3LkYhoHdbic/P7/bY6urq3nooYf8GJ1I31GiEHGj\ntLQUq9Xao6copqens2/fvqBu/SDSRolCxI2XXnqJu+++2/X+q6++4q677iIpKYk1a9a4Pj906BD3\n338/ycnJZGRkcPHiRQDy8/P53e9+12G///Vf/8Wdd95JdnY2kydPZtOmTbzwwgvMmDGDpUuXKrlI\nwFGiEHHjwIEDTJs2zfXe4XCwdu1aamtrKS0t5dNPPwXgwQcfZP78+bz//vu8/fbbDB06FHC2YNm/\nf3+n+3Y4HGzevJl33nmHBx54gLNnz3LgwAGGDRvGW2+95f+DE/GCEoVIJ86fP8/AgQMZOHCg67P0\n9HSmTZvGkCFDuPnmm9m9ezf19fV88cUX/P3f/z0AI0aMcI2ZPHkyH374Yaf7/7u/+zvGjh1LTEwM\no0aNYunSpQDMmTOHPXv2+PnoRLyjRCHSCYvF0qHD5tXPnBg8eDCXL1/udLs2hmF0Wt+wWCyu58K3\n7avtfdt+RQKJEoVIJ8LDw2ltbaWlpcXjduPGjWPs2LGuDr8XLlygtbUVgOPHj/O9732vwxhPXXPU\nUUcCkRKFiBszZsxwTR1ZLBa3q59efPFFduzYwY033khOTo7riuDw4cPcdNNNHbb/7r6++7onq6xE\n/ElNAUXc2L59O3v37uWXv/xlj8bPnj2b8vJywsPDfRyZSN/SFYWIGwsWLMBut/doOqi6uppZs2Yp\nSUhI0BWFiIh4pCsKERHxSIlCREQ8UqIQERGPlChERMQjJQoREfFIiUJERDz6/3mzRdiLDrGcAAAA\nAElFTkSuQmCC\n" } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2.7 Page no.62" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "sw=64 #lb/ft**3 specific weight of water\n", "h=10 #ft, depth\n", "a=3 #ft, distance from horizontal axis\n", "b=3 #ft distance from vertical axis\n", "\n", "#Calculation\n", "#shape is triangular, hence hc=h-(a/3)\n", "hc=h-(a/3)\n", "A=(0.5*a*b) #ft**3 area of the right angled triangle\n", "fres=sw*hc*A #lb\n", "Ixc=b*(a**3)/36\n", "Ixyc=b*(a**2)*(b)/72\n", "#according to the coordinate system taken yc=hc and xc=0\n", "yres=(Ixc/(hc*A))+hc\n", "xres=(Ixyc/(hc*A))\n", "ydist=yres-hc\n", "\n", "#Result\n", "print \"The resultant force on the area shown is=\",round(fres,3),\"lb\"\n", "print \"yR=\",round(yres,1),\"ft\"\n", "print \"xR=\",round(xres,3),\"ft\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The resultant force on the area shown is= 2592.0 lb\n", "yR= 9.0 ft\n", "xR= 0.025 ft\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 2.8 Page no.66" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "sg=0.9 # specific gravity of oil\n", "a=0.6 #m, length of square\n", "pgage=50 #kPa, gage pressure\n", "h1=2 #m; height 1\n", "h2=2.6 #m height 2\n", "\n", "#the force on the trapezoid is the sum of the force on the rectangle f1 and force on triangle f2\n", "f1=((pgage*1000)+(sg*1000*9.81*h1))*(a**2) #N\n", "f2=sg*1000*9.81*(h2-h1)*(a**2)/2 #N\n", "fres=f1+f2 #N\n", "#to find vertical location of fres fres*yres=(f1*(a/2))+(f2*(h1-h2))\n", "yres=((f1*(a/2))+(f2*(a/3)))/fres #m\n", "\n", "#Result\n", "print \"The resultant force on the plate is=\",round((fres/1000),3),\"kN\"\n", "print \"The force acts at a distance of \",round(yres,3), \"m \" \"\\n above the bottom plate alond the vertical line of symmetry\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The resultant force on the plate is= 25.31 kN\n", "The force acts at a distance of 0.296 m \n", " above the bottom plate alond the vertical line of symmetry\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 2.9 Page no.68" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "#Given\n", "dia=6.0 #ft, diameter\n", "l=1 #ft, length\n", "#horizontal force f1=sw*hc*A\n", "hc=dia/4 #ft\n", "sw=62.4 #lb/ft**3, specific wt\n", "A=(dia/2.0)*l #ft**2, area\n", "f1=sw*hc*A #lb\n", "\n", "#Calculation\n", "#this force f1 acts at a height of radius/3 ft above the bottom\n", "ht=(dia/2)/3 #ft\n", "#weight w = sw*volume\n", "import math\n", "w=sw*((dia/2)**2)*math.pi/4*l #lb\n", "#this force acts through centre of gravity which is 4*radius/(3*%pi) right of the centre of conduit\n", "dist=(4*dia/2)/(3*math.pi) #ft\n", "#horizontal force that tank exerts on fluid = f1\n", "#vertical force that tank exerts on fluid = w\n", "#resultant force fres =((f1)**2+(w)**2)**0.5\n", "fres =((f1)**2+(w)**2)**0.5 #lb\n", "\n", "#Result\n", "print \"The resultant force exerted by the tank on the fluid=\",round(fres,1),\"lb\"\n", "print \"The force acts at a distance of\",round(dist,3),\"ft\" " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The resultant force exerted by the tank on the fluid= 522.9 lb\n", "The force acts at a distance of 1.273 ft\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 2.10 Page no.71" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "dia=1.5 #m\n", "wt=8.5 #kN\n", "#tension in cable T=bouyant force(Fb)-wt\n", "#fluid is water\n", "import math\n", "sw=10.1 #kN/m**3\n", "\n", "#Calculaton\n", "vol=math.pi*dia**3/6 #m**3\n", "Fb=sw*vol #kN\n", "T=Fb-wt #kN\n", "\n", "#Result\n", "print \"The tension in the cable =\",round(T,2),\"kN\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The tension in the cable = 9.35 kN\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 2.11 Page no.75" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "sg=0.65 #specific gravity of fuel\n", "l1=0.75 #ft, horizontal distance\n", "l2=0.5 #ft verticle distance\n", "#0.5 ft =z1(max)\n", "#0.5=0.75*(ay(max)/g)\n", "aymax=(0.5*32.2)/0.75 #ft/s**2\n", "\n", "#Result\n", "print \"The max acceleration that can occur before the fuel level drops \\n below the transducer=\",round(aymax,1),\"ft/s**2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The max acceleration that can occur before the fuel level drops \n", " below the transducer= 21.5 ft/s**2\n" ] } ], "prompt_number": 10 } ], "metadata": {} } ] }