{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "CHAPTER 8: STARTING, CONTROL AND TESTING OF AN INDUCTION MOTOR" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.1, Page number 273" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "T_st = '1.5*T_f' #Starting torque\n", "s = 0.03 #Slip\n", "\n", "#Calculation\n", "I_sc_I_f = (1.5/s)**0.5 #I_sc/I_f\n", "\n", "#Result\n", "print('Short circuit current , I_sc = %.2f*I_f' %I_sc_I_f)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Short circuit current , I_sc = 7.07*I_f\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.2, Page number 274-275" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "T_ratio = 50.0/100 #Ratio of starting torque to full load torque T_st/T_f\n", "s_f = 0.03 #Full load slip\n", "I_ratio = 5.0 #Ratio of short circuit current to full load current I_sc/I_f\n", "\n", "#Calculation\n", "x = (1/I_ratio)*(T_ratio/s_f)**0.5 #Percentage of taping\n", "\n", "#Result\n", "print('Percentage tapings required on the autotransformer , x = %.3f ' %x)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Percentage tapings required on the autotransformer , x = 0.816 \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.3, Page number 277" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "T_ratio = 25.0/100 #Ratio of starting torque to full load torque T_st/T_f\n", "I_ratio = 3.0*120/100 #Ratio of short circuit current to full load current I_sc/I_f\n", "\n", "#Calculation\n", "s_f = T_ratio*3/I_ratio**2 #Full load slip\n", "\n", "#Result\n", "print('Full load slip , s_f = %.2f ' %s_f)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Full load slip , s_f = 0.06 \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.4, Page number 281-282" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "Z_icr = complex(0.04,0.5) #Inner cage impedance per phase at standstill(ohm)\n", "Z_ocr = complex(0.4,0.2) #Outer cage impedance per phase at standstill(ohm)\n", "V = 120.0 #Per phase rotor induced voltage at standstill(V)\n", "\n", "#Calculation\n", "#For case(i)\n", "Z_com = (Z_icr*Z_ocr)/(Z_icr+Z_ocr) #Combined impedance(ohm)\n", "I_2 = V/abs(Z_com) #Rotor current per phase(A)\n", "R_2 = Z_com.real #Combined rotor resistance(ohm)\n", "T = I_2**2*R_2 #Torque at stand still condition(synchronous watts)\n", "#For case(ii)\n", "s = 0.06 #Slip\n", "R_ocr = Z_ocr.real\n", "X_ocr = Z_ocr.imag\n", "R_icr = Z_icr.real\n", "X_icr = Z_icr.imag\n", "Z_com6 = complex(R_ocr/s,X_ocr)*complex(R_icr/s,X_icr)/complex(R_ocr/s+R_icr/s,X_ocr+X_icr) #Combined impedance(ohm)\n", "I2_6 = V/abs(Z_com6) #Rotor current per phase(A)\n", "R2_6 = Z_com6.real #Combined rotor resistance(ohm)\n", "T_6 = I2_6**2*R2_6 #Torque at 6% slip(synhronous watts)\n", "\n", "#Result\n", "print('(i) Torque at standstill condition , T = %.2f syn.watt' %T)\n", "print('(ii) Torque at 6 percent slip , T_6 = %.2f syn.watt' %T_6)\n", "print('\\nNOTE : Changes in answer is due to precision i.e more number of decimal places')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) Torque at standstill condition , T = 31089.35 syn.watt\n", "(ii) Torque at 6 percent slip , T_6 = 15982.06 syn.watt\n", "\n", "NOTE : Changes in answer is due to precision i.e more number of decimal places\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.5, Page number 285" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "V = 210.0 #Supply voltage(V)\n", "f = 50.0 #Supply frequency(Hz)\n", "P = 50.0 #Input power(W)\n", "I_br = 2.5 #Line current(A)\n", "V_L = 25.0 #Line voltage(V)\n", "R_1 = 2.4 #DC resistance between any two terminal(ohm)\n", "\n", "#Calculation\n", "V_br = V_L/3**0.5 #Phase voltage(V)\n", "P_br = P/3 #Power per phase(W)\n", "R_eq = P_br/I_br**2 #Equivalent resistance(ohm)\n", "R_2 = R_eq-(R_1/2) #Per phase rotor resistance(ohm)\n", "Z_eq = V_br/I_br #Equivalent impedance(ohm)\n", "X_eq = (Z_eq**2-R_2**2)**0.5 #Equivalent reactance(ohm)\n", "X_1 = 0.5*X_eq #For practical cases reactances(ohm)\n", "\n", "#Result\n", "print('Equivalent resistance , R_eq = %.1f ohm' %R_eq)\n", "print('Equivalent impedance , Z_eq = %.1f ohm' %Z_eq)\n", "print('Equivalent reactance , X_eq = %.1f ohm' %X_eq)\n", "print('Per phase rotor resistance , R_2 = %.1f ohm' %R_2)\n", "print('Reactances for practical cases , X_1 = X_2 = %.1f ohm' %X_1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Equivalent resistance , R_eq = 2.7 ohm\n", "Equivalent impedance , Z_eq = 5.8 ohm\n", "Equivalent reactance , X_eq = 5.6 ohm\n", "Per phase rotor resistance , R_2 = 1.5 ohm\n", "Reactances for practical cases , X_1 = X_2 = 2.8 ohm\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.6, Page number 287" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "V = 210.0 #Supply voltage(V)\n", "f = 50.0 #Supply frequency(Hz)\n", "P = 4.0 #Number of poles\n", "P_0 = 400.0 #Input power(W)\n", "I_0 = 1.2 #Line current(A)\n", "V_0 = 210.0 #Line voltage(V)\n", "P_fw = 150.0 #Total friction and windage losses(W)\n", "R = 2.2 #Stator resistance between any two terminals(ohm)\n", " \n", "#Calculation\n", "R_1 = R/2 #Per phase stator resistance(ohm)\n", "P_scu = 3*I_0**2*R_1 #Stator copper loss(W)\n", "P_core = P_0-P_fw-P_scu #Stator core loss(W)\n", "R_0 = (V_0/3**0.5)**2/(P_core/3) #No-load resistance(ohm)\n", "#Alternate approach\\n\",\n", "phi_0 = math.acos(P_core/(3**0.5*V_0*I_0)) #Power factor angle(radians)\n", "phi_0_deg = phi_0*180/math.pi #Power factor angle(degree)\n", "R_01 = (V_0/3**0.5)/(I_0*math.cos(phi_0)) #No-load circuit resistance per phase(ohm)\n", "X_0 = (V_0/3**0.5)/(I_0*math.sin(phi_0)) #Magnetizing reactance per phase(ohm)\n", " \n", "#Result\n", "print('Stator core loss , P_core = %.1f W' %P_core)\n", "print('No-load circuit resistance per phase , R_0 = %.1f ohm' %R_01)\n", "print('Magnetizing reactance per phase , X_0 = %.f ohm' %X_0)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Stator core loss , P_core = 245.2 W\n", "No-load circuit resistance per phase , R_0 = 179.8 ohm\n", "Magnetizing reactance per phase , X_0 = 122 ohm\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8.7, Page number 290" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "P_1 = 6.0 #Number of pole\n", "P_2 = 4.0 #Number of pole\n", "f = 50.0 #Supply frequency(Hz)\n", "P = 60.0 #Power(kW)\n", "\n", "#Calculation\n", "#For case(i)\n", "s = P_2/(P_1+P_2) #Combined slip\n", "#For case(ii)\n", "N_cs = 120*f/(P_1+P_2) #Combined synchronous speed(rpm)\n", "#For case(iii)\n", "P_0 = P*P_2/(P_1+P_2) #Output of 4-pole motor(kW)\n", "\n", "#Result\n", "print('(i) Combined slip , s = %.1f ' %s)\n", "print('(ii) Combined synchronous speed , N_cs = %.f rpm' %N_cs)\n", "print('(iii) Output of the 4-pole motor , P_0 = %.f kW' %P_0)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) Combined slip , s = 0.4 \n", "(ii) Combined synchronous speed , N_cs = 600 rpm\n", "(iii) Output of the 4-pole motor , P_0 = 24 kW\n" ] } ], "prompt_number": 1 } ], "metadata": {} } ] }