{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "CHAPTER 10: SYNCHRONOUS MOTOR" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.1, Page number 335" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "V = 2.5*10**3 #Supply voltage(V)\n", "R_r = 0.12 #Per phase resistance(ohm)\n", "X_r = 3.2 #Syncronous reactance(ohm)\n", "I_a = 185.0 #Line current(A)\n", "pf = 0.8 #Leading power factor\n", "\n", "#Calculation\n", "phi = math.acos(pf) #Angle(radians)\n", "phi_deg = phi*180/math.pi #Angle(degree)\n", "V_t = V/3**0.5 #Terminal voltage per phase(V)\n", "Z_s = complex(R_r,X_r) #Impedance per phase(ohm)\n", "beta = math.atan(X_r/R_r) #Angle(radians)\n", "beta_deg = beta*180/math.pi #Angle(degree)\n", "E_r = I_a*abs(Z_s) #Resultant voltage due to impedance(V)\n", "E_f = (V_t**2+E_r**2-2*V_t*E_r*math.cos(beta+phi))**0.5 #Excitation voltage per phase(V)\n", "\n", "#Result\n", "print('Excitation voltage per phase , E = %.2f V' %E_f)\n", "print('\\nNOTE : Changes in answer is due to precision i.e more number of decimal places')\n", "print(' ERROR : Line current I_a = 185 A not 180 A as given in textbook question')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Excitation voltage per phase , E = 1846.18 V\n", "\n", "NOTE : Changes in answer is due to precision i.e more number of decimal places\n", " ERROR : Line current I_a = 185 A not 180 A as given in textbook question\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.2, Page number 335-337" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "kVA = 1200.0 #kVA ratings\n", "V = 14.0*10**3 #Supply voltage(V)\n", "R_r = 4.8 #Per phase resistance(ohm)\n", "X_r = 35.0 #Syncronous reactance(ohm)\n", "pf = 0.95 #Leading power factor\n", "\n", "#Calculation\n", "phi = math.acos(pf) #Angle(radians)\n", "phi_deg = phi*180/math.pi #Angle(degree)\n", "Z_s = complex(R_r,X_r) #Impedance per phase(ohm)\n", "I_a = kVA*10**3/(3**0.5*V) #Armature current(A)\n", "E_r = I_a*abs(Z_s) #Resultant voltage due to impedance(V)\n", "V_t = V/3**0.5 #Terminal voltage per phase(V)\n", "b = math.atan(X_r/R_r) #Beta value(radians)\n", "b_deg = b*180/math.pi #Beta value(degree)\n", "E_f = (V_t**2+E_r**2-2*V_t*E_r*math.cos(b-phi))**0.5 #Excitation voltage per phase(V)\n", "sin_delta = (E_r/E_f)*math.sin(b-phi)\n", "delta = math.asin(sin_delta)*180/math.pi #Torque angle(degree)\n", "\n", "#Result\n", "print('Excitation voltage per phase , E_f = %.2f V' %E_f)\n", "print('Torque angle , \u03b4 = %.2f\u00b0' %delta)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Excitation voltage per phase , E_f = 7483.23 V\n", "Torque angle , \u03b4 = 12.12\u00b0\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.3, Page number 343-344" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "V = 440.0 #Supply voltage(V)\n", "R_a = 1.5 #Per phase armature resistance(ohm)\n", "X_a = 8.0 #Synchronous reactance(ohm)\n", "P = 4.0 #Number of poles\n", "f = 50.0 #Supply frequency(Hz)\n", "pf = 0.9 #Leading power factor\n", "I_a = 50.0 #Armature current(A)\n", "\n", "#Calculation\n", "V_t = V/3**0.5 #Terminal voltage per phase(V)\n", "phi = math.acos(pf) #Angle(radians)\n", "phi_deg = phi*180/math.pi #Angle(degree)\n", "Z_s = complex(R_a,X_a) #Impedance per phase(ohm)\n", "E_r = I_a*abs(Z_s) #Resultant voltage due to impedance(V)\n", "beta = math.atan(X_a/R_a) #Beta value(radians)\n", "beta_deg = beta*180/math.pi #Beta value(degree)\n", "E_f = (V_t**2+E_r**2-2*V_t*E_r*math.cos(beta+phi))**0.5 #Excitation voltage per phase(V)\n", "P_dm = (((E_f*V_t)/abs(Z_s))-((E_f**2*R_a)/abs(Z_s)**2)) #Maximum power per phase(W)\n", "\n", "#Result \n", "print('Maximum power per phase , P_dm = %.1f W' %P_dm)\n", "print('\\nNOTE : ERROR : In textbook solution E_f = 513.5 V is taken instead of 533.337089826 V')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum power per phase , P_dm = 10205.3 W\n", "\n", "NOTE : ERROR : In textbook solution E_f = 513.5 V is taken instead of 533.337089826 V\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10.4, Page number 344" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "P = 4.0 #Number of poles\n", "f = 50.0 #Supply frequency(Hz)\n", "V_t = 1500.0 #Terminal voltage per phase(V)\n", "E_f = 1000.0 #Excitation voltage per phase(V)\n", "Z_s = 12.0 #Synchronous impedance per phase(ohm)\n", "R_a = 1.5 #Armature resistance(ohm)\n", "\n", "#Caclulation\n", "P_dm = ((E_f*V_t/Z_s)-(E_f**2*R_a/Z_s**2)) #Maximum power(W)\n", "N_s = 120*f/P #Synchronous speed(rpm)\n", "T_dm = 9.55*P_dm/N_s #Maximum torque(N-m)\n", "\n", "#Result \n", "print('Maximum power developed , P_dm = %.f W' %P_dm)\n", "print('Maximum toruqe , T_dm = %.1f N-m' %T_dm)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Maximum power developed , P_dm = 114583 W\n", "Maximum toruqe , T_dm = 729.5 N-m\n" ] } ], "prompt_number": 1 } ], "metadata": {} } ] }