{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "CHAPTER 1: REVIEW OF ELECTRIC CIRCUITS" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.1, Page number 2-3" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "Q = 4.0 #Charge(C) \n", "t = 0.54 #Time(sec) \n", "\n", "#Calculation\n", "I = Q/t #Current(A) \n", "\n", "#Result\n", "print('Value of Current is , I = %.2f A' %I) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Value of Current is , I = 7.41 A\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.2, Page number 4-5" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "V = -24.0 #Voltage(V)\n", "I = 3.0 #Current(A)\n", "\n", "#Calculation \n", "P = V*I #Power supplied by the element A(W) \n", "\n", "#Result\n", "print('Power supplied by the element A is , P = %.1f W' %P)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Power supplied by the element A is , P = -72.0 W\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.3, Page number 7-9" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Variable declaration\n", "R1 = 5.0 #Resistance(ohm)\n", "R2 = 4.0 #Resistance(ohm)\n", "R3 = 9.0 #Resistance(ohm)\n", "R4 = 6.0 #Resistance(ohm)\n", "V1 = 10.0 #Resistance(ohm)\n", "V2 = 6.0 #Resistance(ohm)\n", "\n", "\n", "#Calculation\n", "R_th = (R1*R4/(R1+R4))+R2 #Thevenin resistance(ohm) by removing R3 & short-circuiting voltage sources\n", "I = (V1-V2)/(R1+R4) #Current(A) by applying KVL\n", "V_th = 6*I+V2 #Thevenin voltage(V) by applying KVL\n", "I_9ohm = V_th/(R_th+R3) #Current through 9 ohm resistor(A)\n", "\n", "#Result\n", "print('Current through 9 ohm resistor , I_9\u03a9 = %.2f A' %I_9ohm) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Current through 9 ohm resistor , I_9\u03a9 = 0.52 A\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.4, Page number 10-11" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from scipy.integrate import quad\n", "\n", "#Variable declaration\n", "V_t1 = 30.0 #Magnitudes of voltages(V) 0 < t1 < 2\n", "V_t2 = -10.0 #Magnitudes of voltages(V) 2 < t2 < 4\n", "T = 4.0 #Time period(sec) from figure\n", "\n", "#Calculation\n", "def integrand(V):\n", " return V**0\n", "\n", "a, err = quad(integrand, 0, 2)\n", "\n", "def integrand(V):\n", " return V**0\n", "\n", "b, err = quad(integrand, 2, 4)\n", "\n", "V_rms = ((a*V_t1**2+b*V_t2**2)/4)**0.5 #RMS value of voltage waveform(V)\n", "\n", "#Result\n", "print('RMS value , V_rms = %.2f V' %V_rms)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "RMS value , V_rms = 22.36 V\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.5, Page number 15-16" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import cmath\n", "\n", "#Variable declaration\n", "V_P = 200.0 #Magnitude of each phase(V) \n", "\n", "#Calculation\n", "V_an = V_P*cmath.exp(1j*0*math.pi/180) #Magnitude of 3-phase voltage(V)\n", "V_bn = V_P*cmath.exp(1j*-120*math.pi/180) #Magnitude of 3-phase voltage(V)\n", "V_cn = V_P*cmath.exp(1j*120*math.pi/180) #Magnitude of 3-phase voltage(V)\n", "V_L = 3**0.5*V_P #Magnitude of line voltage(V)\n", "\n", "#Result\n", "print('Expression of phase voltages are,')\n", "print('\\t\\t\\t V_an = %.f\u2220%.f\u00b0 V' %(abs(V_an),cmath.phase(V_an)))\n", "print('\\t\\t\\t V_bn = %.f\u2220%.f\u00b0 V' %(abs(V_bn),cmath.phase(V_bn)*180/math.pi))\n", "print('\\t\\t\\t V_cn = %.f\u2220%.f\u00b0 V' %(abs(V_cn),cmath.phase(V_cn)*180/math.pi))\n", "print('Magnitude of the line voltage , V_L = %.1f V' %V_L) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Expression of phase voltages are,\n", "\t\t\t V_an = 200\u22200\u00b0 V\n", "\t\t\t V_bn = 200\u2220-120\u00b0 V\n", "\t\t\t V_cn = 200\u2220120\u00b0 V\n", "Magnitude of the line voltage , V_L = 346.4 V\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.6, Page number 16-17" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import cmath\n", "\n", "#Variable declaration\n", "R = 10.0 #Resistance of each coil(ohm)\n", "X = 15.0 #Inductive reactance of each coil(ohm)\n", "V_L = 420.0 #Line voltage(V)\n", "f = 50.0 #Frequency of supply(Hz)\n", "\n", "#Calculation\n", "V_an = (V_L/3**0.5)*cmath.exp(1j*(0-30)*math.pi/180) #Phase voltage(V)\n", "V_bn = (V_L/3**0.5)*cmath.exp(1j*(-120-30)*math.pi/180) #Phase voltage(V)\n", "V_cn = (V_L/3**0.5)*cmath.exp(1j*(120-30)*math.pi/180) #Phase voltage(V)\n", "Z_P = complex(R,X) #Phase impedance(ohm)\n", "#For case(i)\n", "I_L1 = V_an/Z_P #Line current(A)\n", "I_L2 = V_bn/Z_P #Line current(A)\n", "I_L3 = V_cn/Z_P #Line current(A)\n", "#For case(ii)\n", "pf = R/abs(Z_P) #Power factor\n", "\n", "#Result\n", "print('(i) Values of line currents are,')\n", "print('\\t I_L1 = I_an = %.2f\u2220%.2f\u00b0 A' %(abs(I_L1),cmath.phase(I_L1)*180/math.pi))\n", "print('\\t I_L2 = I_bn = %.2f\u2220%.2f\u00b0 A' %(abs(I_L2),cmath.phase(I_L2)*180/math.pi))\n", "print('\\t I_L3 = I_cn = %.2f\u2220%.2f\u00b0 A' %(abs(I_L3),cmath.phase(I_L3)*180/math.pi))\n", "print('(ii) Power factor is , pf = %.1f lag' %pf)\n", "print('\\nNOTE : I_L2 has an angle -206.31\u00b0 in textbook which is same as 153.69\u00b0 i.e (360-206.31)\u00b0 obtained here')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) Values of line currents are,\n", "\t I_L1 = I_an = 13.45\u2220-86.31\u00b0 A\n", "\t I_L2 = I_bn = 13.45\u2220153.69\u00b0 A\n", "\t I_L3 = I_cn = 13.45\u222033.69\u00b0 A\n", "(ii) Power factor is , pf = 0.6 lag\n", "\n", "NOTE : I_L2 has an angle -206.31\u00b0 in textbook which is same as 153.69\u00b0 i.e (360-206.31)\u00b0 obtained here\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.7, Page number 19-20" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import cmath\n", "\n", "#Variable declaration\n", "Z_P = complex(10,15) #Per phase impedance(ohm)\n", "V_L = 420.0 #Voltage(V)\n", "\n", "#Calculation\n", "#For case(i)\n", "V_ab = V_L*cmath.exp(1j*0*math.pi/180) #Phase voltage(V)\n", "V_bc = V_L*cmath.exp(1j*-120*math.pi/180) #Phase voltage(V)\n", "V_ca = V_L*cmath.exp(1j*120*math.pi/180) #Phase voltage(V)\n", "I_ab = V_ab/Z_P #Phase current(A)\n", "I_bc = V_bc/Z_P #Phase current(A)\n", "I_ca = V_ca/Z_P #Phase current(A)\n", "#For case(ii)\n", "I_P = abs(I_ab) #Phase current magnitude(A)\n", "I_L = 3**0.5*I_P #Line current magnitude(A)\n", "\n", "#Result\n", "print('(i) Phase currents are,')\n", "print('\\t\\t I_ab = %.2f\u2220%.2f\u00b0 A' %(abs(I_ab),cmath.phase(I_ab)*180/math.pi))\n", "print('\\t\\t I_bc = %.2f\u2220%.2f\u00b0 A' %(abs(I_bc),cmath.phase(I_bc)*180/math.pi))\n", "print('\\t\\t I_ca = %.2f\u2220%.2f\u00b0 A' %(abs(I_ca),cmath.phase(I_ca)*180/math.pi))\n", "print('(ii) Magnitude of line current , I_L = %.2f A' %I_L)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) Phase currents are,\n", "\t\t I_ab = 23.30\u2220-56.31\u00b0 A\n", "\t\t I_bc = 23.30\u2220-176.31\u00b0 A\n", "\t\t I_ca = 23.30\u222063.69\u00b0 A\n", "(ii) Magnitude of line current , I_L = 40.35 A\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.8, Page number 22-23" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import cmath\n", "\n", "#Variable declaration\n", "V_P = 280.0 #Generator Phase voltage(V)\n", "Z_P = complex(2,3) #Line impedance per phase(ohm)\n", "Z_L = complex(4,5) #Load impedance per phase(ohm)\n", "\n", "#Calculation\n", "V_An = V_P*cmath.exp(1j*0*math.pi/180) #Phase voltage(V)\n", "V_Bn = V_P*cmath.exp(1j*-120*math.pi/180) #Phase voltage(V)\n", "V_Cn = V_P*cmath.exp(1j*120*math.pi/180) #Phase voltage(V)\n", "Z_t = Z_P+Z_L #Total impedance(ohm)\n", "I_Aa = V_An/Z_t #Magnitude of line current for phase A(A)\n", "I_Bb = V_Bn/Z_t #Magnitude of line current for phase B(A)\n", "I_Cc = V_Cn/Z_t #Magnitude of line current for phase C(A)\n", "V_an = I_Aa*Z_L #Phase voltage of load(V)\n", "V_bn = I_Bb*Z_L #Phase voltage of load(V)\n", "V_cn = I_Cc*Z_L #Phase voltage of load(V)\n", "\n", "#Result\n", "print('Line currents are,')\n", "print('\\t\\t I_Aa = %.f\u2220%.f\u00b0 A' %(abs(I_Aa),cmath.phase(I_Aa)*180/math.pi))\n", "print('\\t\\t I_Bb = %.f\u2220%.f\u00b0 A' %(abs(I_Bb),cmath.phase(I_Bb)*180/math.pi))\n", "print('\\t\\t I_Cc = %.f\u2220%.f\u00b0 A' %(abs(I_Cc),cmath.phase(I_Cc)*180/math.pi))\n", "print('\\nLoad phase voltages are,')\n", "print('\\t\\t V_an = %.1f\u2220%.1f\u00b0 V' %(abs(V_an),cmath.phase(V_an)*180/math.pi))\n", "print('\\t\\t V_bn = %.1f\u2220%.1f\u00b0 V' %(abs(V_bn),cmath.phase(V_bn)*180/math.pi))\n", "print('\\t\\t V_cn = %.1f\u2220%.1f\u00b0 V' %(abs(V_cn),cmath.phase(V_cn)*180/math.pi))\n", "print('\\nNOTE : ERROR : Z_L = 6.4\u222038.6\u00b0\u03a9 is taken in textbook solution instead of 6.4\u222051.34\u00b0\u03a9 = (4+j5)\u03a9')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Line currents are,\n", "\t\t I_Aa = 28\u2220-53\u00b0 A\n", "\t\t I_Bb = 28\u2220-173\u00b0 A\n", "\t\t I_Cc = 28\u222067\u00b0 A\n", "\n", "Load phase voltages are,\n", "\t\t V_an = 179.3\u2220-1.8\u00b0 V\n", "\t\t V_bn = 179.3\u2220-121.8\u00b0 V\n", "\t\t V_cn = 179.3\u2220118.2\u00b0 V\n", "\n", "NOTE : ERROR : Z_L = 6.4\u222038.6\u00b0\u03a9 is taken in textbook solution instead of 6.4\u222051.34\u00b0\u03a9 = (4+j5)\u03a9\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.9, Page number 23-24" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import cmath\n", "\n", "#Variable declaration\n", "Z = complex(6,8) #Per phase impedance of load(ohm)\n", "V_AN = 340.0*cmath.exp(1j*0*math.pi/180) #Phase voltage(V)\n", "\n", "#Calculation\n", "V_P = abs(V_AN) #Voltage(V)\n", "V_BN = V_P*cmath.exp(1j*-120*math.pi/180) #Phase voltage(V)\n", "V_CN = V_P*cmath.exp(1j*120*math.pi/180) #Phase voltage(V)\n", "I_an = V_AN/Z #Load current(A)\n", "I_bn = V_BN/Z #Load current(A)\n", "I_cn = V_CN/Z #Load current(A)\n", "I_n = I_an+I_bn+I_cn #Neutral current(A)\n", "\n", "#Result\n", "print('Phase current in each load = Line current in each load are,')\n", "print('\\t\\t\\t\\t I_an = I_Aa = %.f\u2220%.f\u00b0 A' %(abs(I_an),cmath.phase(I_an)*180/math.pi))\n", "print('\\t\\t\\t\\t I_bn = I_Bb = %.f\u2220%.f\u00b0 A' %(abs(I_bn),cmath.phase(I_bn)*180/math.pi))\n", "print('\\t\\t\\t\\t I_cn = I_Cc = %.f\u2220%.f\u00b0 A' %(abs(I_cn),cmath.phase(I_cn)*180/math.pi))\n", "print('Neutral current is , I_n = %.f A' %abs(I_n))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Phase current in each load = Line current in each load are,\n", "\t\t\t\t I_an = I_Aa = 34\u2220-53\u00b0 A\n", "\t\t\t\t I_bn = I_Bb = 34\u2220-173\u00b0 A\n", "\t\t\t\t I_cn = I_Cc = 34\u222067\u00b0 A\n", "Neutral current is , I_n = 0 A\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.10, Page number 25-26" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import cmath\n", "\n", "#Variable declaration\n", "Z = complex(3,4) #Per phase impedance of load(ohm)\n", "V_AN = 200.0*cmath.exp(1j*0*math.pi/180) #Phase voltage(V)\n", "\n", "#Calculation\n", "V_P = abs(V_AN) #Voltage(V)\n", "V_AB = 3**0.5*V_P*cmath.exp(1j*30*math.pi/180) #Line voltage(V)\n", "V_BC = 3**0.5*V_P*cmath.exp(1j*-90*math.pi/180) #Line voltage(V)\n", "V_CA = 3**0.5*V_P*cmath.exp(1j*150*math.pi/180) #Line voltage(V)\n", "#For case(i)\n", "I_ab = V_AB/Z #Load current(A)\n", "I_bc = V_BC/Z #Load current(A)\n", "I_ca = V_CA/Z #Load current(A)\n", "#For case(ii)\n", "I_Aa = I_ab-I_ca #Line current(A)\n", "I_Bb = I_bc-I_ab #Line current(A)\n", "I_Cc = I_ca-I_bc #Line current(A)\n", "\n", "#Result\n", "print('(i) Magnitude of load currents are,')\n", "print('\\t\\t I_ab = %.1f\u2220%.2f\u00b0 A' %(abs(I_ab),cmath.phase(I_ab)*180/math.pi))\n", "print('\\t\\t I_bc = %.1f\u2220%.2f\u00b0 A' %(abs(I_bc),cmath.phase(I_bc)*180/math.pi))\n", "print('\\t\\t I_ca = %.1f\u2220%.2f\u00b0 A' %(abs(I_ca),cmath.phase(I_ca)*180/math.pi))\n", "print('\\n(ii) Magnitude of line currents are,')\n", "print('\\t\\t I_Aa = %.2f\u2220%.2f\u00b0 A' %(abs(I_Aa),cmath.phase(I_Aa)*180/math.pi))\n", "print('\\t\\t I_Bb = %.2f\u2220%.2f\u00b0 A' %(abs(I_Bb),cmath.phase(I_Bb)*180/math.pi))\n", "print('\\t\\t I_Cc = %.2f\u2220%.2f\u00b0 A' %(abs(I_Cc),cmath.phase(I_Cc)*180/math.pi))\n", "print('\\nNOTE : ERROR : Calculation mistakes in textbook')" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) Magnitude of load currents are,\n", "\t\t I_ab = 69.3\u2220-23.13\u00b0 A\n", "\t\t I_bc = 69.3\u2220-143.13\u00b0 A\n", "\t\t I_ca = 69.3\u222096.87\u00b0 A\n", "\n", "(ii) Magnitude of line currents are,\n", "\t\t I_Aa = 120.00\u2220-53.13\u00b0 A\n", "\t\t I_Bb = 120.00\u2220-173.13\u00b0 A\n", "\t\t I_Cc = 120.00\u222066.87\u00b0 A\n", "\n", "NOTE : ERROR : Calculation mistakes in textbook\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.11, Page number 28-29" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import cmath\n", "\n", "#Variable declaration\n", "Z = complex(3,4) #Per phase impedance of load(ohm)\n", "V_AN = 150.0*cmath.exp(1j*0*math.pi/180) #Phase voltage(V)\n", "\n", "#Calculation\n", "V_P = abs(V_AN) #Voltage(V)\n", "V_BN = V_P*cmath.exp(1j*-120*math.pi/180) #Phase voltage(V)\n", "V_CN = V_P*cmath.exp(1j*120*math.pi/180) #Phase voltage(V)\n", "I_Aa = V_AN/Z #Line current(A)\n", "I_Bb = V_BN/Z #Line current(A)\n", "I_Cc = V_CN/Z #Line current(A)\n", "pf = Z.real/abs(Z) #Power factor\n", "I = abs(I_Aa) #Magnitude of line current(A)\n", "P = V_P*I*pf*10**-3 #Power supplied to each phase(kW)\n", "P_t = 3*P #Total power supplied(kW)\n", "\n", "#Result\n", "print('Line currents are,')\n", "print(' I_Aa = %.f\u2220%.2f\u00b0 A' %(abs(I_Aa),cmath.phase(I_Aa)*180/math.pi))\n", "print(' I_Bb = %.f\u2220%.2f\u00b0 A' %(abs(I_Bb),cmath.phase(I_Bb)*180/math.pi))\n", "print(' I_Cc = %.f\u2220%.2f\u00b0 A' %(abs(I_Cc),cmath.phase(I_Cc)*180/math.pi))\n", "print('Power factor , pf = %.1f ' %pf)\n", "print('Power supplied to each phase , P = %.1f kW' %P)\n", "print('Total Power supplied to the load , P_t = %.1f kW' %P_t)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Line currents are,\n", " I_Aa = 30\u2220-53.13\u00b0 A\n", " I_Bb = 30\u2220-173.13\u00b0 A\n", " I_Cc = 30\u222066.87\u00b0 A\n", "Power factor , pf = 0.6 \n", "Power supplied to each phase , P = 2.7 kW\n", "Total Power supplied to the load , P_t = 8.1 kW\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.12, Page number 32" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "P = 120.0 #Total power(kW)\n", "pf = 0.6 #Power factor \n", "\n", "#Calculation\n", "teta = math.acos(pf) #Power factor angle(radians)\n", "teta_deg = teta*180/math.pi #Power factor angle(degree)\n", "P_2 = 1.0/2*((math.tan(teta)*P/3**0.5)+P) #Second wattmeter reading(kW)\n", "\n", "#Result\n", "print('Second wattmeter reading , P_2 = %.1f kW' %P_2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Second wattmeter reading , P_2 = 106.2 kW\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.13, Page number 35" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "P = 5000.0 #Power(W)\n", "pf_1 = 0.8 #Initial Power factor\n", "V = 110.0 #rms Voltage(V)\n", "f = 50.0 #Frequency(Hz)\n", "pf_2 = 0.9 #Final Power factor\n", "\n", "#Calculation\n", "phi_1 = math.acos(pf_1) #Initial Power factor angle(radians)\n", "phi_1_deg = phi_1*180/math.pi #Initial Power factor angle(degree)\n", "phi_2 = math.acos(pf_2) #Final Power factor angle(radians)\n", "phi_2_deg = phi_2*180/math.pi #Final Power factor angle(degree)\n", "C = P*(math.tan(phi_1)-math.tan(phi_2))/(2*math.pi*f*V**2)*10**6 #Parallel capacitance(\u00b5F)\n", "\n", "#Result\n", "print('Capacitance , C = %.1f \u00b5F' %C)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Capacitance , C = 349.5 \u00b5F\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1.14, Page number 35-36" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable declaration\n", "pf_1 = 0.85 #Initial Power factor\n", "kVA = 20.0 #Load(kVA)\n", "f = 50.0 #Frequency(Hz)\n", "pf_2 = 0.95 #Final Power factor\n", "V = 200.0 #Voltage(V)\n", "R = 0.05 #Resistance(ohm)\n", "X = 0.2 #Inductive reactance(ohm)\n", "\n", "#Calculation\n", "phi_1 = math.acos(pf_1) #Initial Power factor angle(radians)\n", "phi_1_deg = phi_1*180/math.pi #Initial Power factor angle(degree)\n", "phi_2 = math.acos(pf_2) #Final Power factor angle(radians)\n", "phi_2_deg = phi_2*180/math.pi #Final Power factor angle(degree)\n", "P = kVA*pf_1 #Load power(kW)\n", "C = P*1000*(math.tan(phi_1)-math.tan(phi_2))/(2*math.pi*f*V**2)*10**6 #Parallel capacitance(\u00b5F)\n", "#Before adding capacitor\n", "I_1 = P*1000/(pf_1*V) #Line current(A)\n", "P_1 = I_1**2*R #Power loss in line(W)\n", "#After adding capacitor\\n\",\n", "S = P*1000/pf_2 #Apparent power(VA)\n", "I_2 = S/V #Line current(A)\n", "P_2 = I_2**2*R #Power loss in line(W)\n", "\n", "#Result\n", "print('Capacitance , C = %.1f \u00b5F' %C)\n", "print('Power loss in the line before adding capacitor , P_1 = %.1f W' %P_1)\n", "print('Power loss in the line after adding capacitor , P_2 = %.1f W' %P_2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Capacitance , C = 393.8 \u00b5F\n", "Power loss in the line before adding capacitor , P_1 = 500.0 W\n", "Power loss in the line after adding capacitor , P_2 = 400.3 W\n" ] } ], "prompt_number": 1 } ], "metadata": {} } ] }