{ "metadata": { "name": "", "signature": "sha256:f20d8b5a5913a9f02b40c1bc779b6f178287c3bedb89723b4661d7c15c29c1bd" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 5:Dc Motor Drives" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No:5.1,Page No:63" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "from sympy import *\n", "\n", "#variable declaration\n", "#motor ratings\n", "V1=200 #rated voltage\n", "Ia1=10.5 #rated current\n", "N1=2000 #speed in rpm\n", "Ra=0.5 #armature resistance\n", "Rs=400 #field resistance\n", "V2=175 #drop in source voltage \n", "\n", "#calculation\n", "flux1 = Symbol('flux1')\n", "flux2=V2/V1*flux1\n", "Ia2=flux1/flux2*Ia1 #since load torque\n", "E1=V1-Ia1*Ra\n", "E2=V2-Ia2*Ra\n", "N2=(E2/E1)*(flux1/flux2)*N1\n", "\n", "#results\n", "#answer in the book is wrong due to accuracy\n", "print\"\\nmotor speed is:N2=\",round(N2,1),\"rpm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "motor speed is:N2= 1983.5 rpm\n" ] } ], "prompt_number": 158 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No:5.2,Page No:63" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "from sympy import *\n", "\n", "#variable declaration\n", "V1=220 #rated voltage\n", "Ia1=100 #rated current\n", "N1=1000 #rated speed in rpm clockwise\n", "Ra=0.05 #armature resistance\n", "Rs=0.05 #field resistance\n", "\n", "#calculation\n", "#turns is reduced to 80% then flux is also reduced by the same value and hence current is also reduced\n", "Ke = Symbol('Ke')\n", "Ia2 = Symbol('Ia2')\n", "T1=Ke*Ia1**2 #flux is directly proportional to current Ia\n", "T2=Ke*0.8*Ia2**2 #flux is directly proportional to current Ia\n", "Ia2=-Ia1/math.sqrt(0.8) #since T1=T2 and the direction is opposite\n", "\n", "E1=V1-Ia1*(Ra+Rs)\n", "\n", "Rs=.8*Rs #Rs=80% of the field resistance 0.05ohm since the flux is reduced to 80%\n", "E2=-(V1+Ia2*(Ra+Rs)) \n", "\n", "N2=(E2/E1)*(Ia1/Ia2)*(N1/0.8) #since E=Kn*flux*N\n", "\n", "#results\n", "print\"\\nmotor speed is:N2=\",round(N2,1),\"rpm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "motor speed is:N2= 1117.7 rpm\n" ] } ], "prompt_number": 160 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No:5.3,Page No:70" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#variable declaration\n", "#motor ratings\n", "V1=220 #rated voltage\n", "Ia1=200 #rated current\n", "Ra=0.06 #armature resistance\n", "Rb=0.04 #internal resistance of the variable source\n", "N1=800 #speed in rpm\n", "N2=600 #speed when motor is operatingin regenerative braking\n", "\n", "#Calculation\n", "Ia2=0.8*Ia1 #motor is opereting in regenerative braking at 80% of Ia1\n", "E1=V1-Ia1*Ra #back emf at rated operation\n", "E2=(N2/N1)*E1 #back emf at the given speed N2\n", "V2=E2-Ia2*(Ra+Rb) #internal voltage of thevariable source\n", "\n", "#results\n", "print\"\\n internal voltage of thevariable source:\",round(V2),\"V\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " internal voltage of thevariable source: 140.0 V\n" ] } ], "prompt_number": 161 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No:5.4,Page No:70" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "from sympy import *\n", "\n", "#variable declaration\n", "#The ratings of the motor is same as that of Ex-5.2\n", "V1=220 #rated voltage\n", "Ia1=100 #rated current\n", "N1=1000 #speed in rpm clockwise\n", "N2=800 #given speed during the dynamic braking\n", "Ra=0.05 #armature resistance\n", "Rs=0.05 #field resistance\n", "\n", "#calculation\n", "T1 = Symbol('T1')\n", "T2 = 2*T1 #dynamic torque is twice the rated torque\n", "Ia2=Ia1*math.sqrt(T2/T1) #since T=Kf*Ia**2\n", "E1=V1-Ia1*(Ra+Rs)\n", "E2=(Ia2/Ia1)*(N2/N1)*E1 #since E=Ke*Ia*N\n", "Rb=E2/Ia2-(Ra+Rs) #since E2=Ia2(Rb+Ra+Rs) during braking\n", "\n", "#results\n", "print\"\\n braking current Ia2:\",round(Ia2,1),\"A\"\n", "print\"\\n required braking resistance Rb:\",round(Rb,2),\"ohm\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " braking current Ia2: 141.4 A\n", "\n", " required braking resistance Rb: 1.58 ohm\n" ] } ], "prompt_number": 162 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No:5.5,Page No:70" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "from array import array\n", "import numpy\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "\n", "#variable declaration\n", "#ratings of the DC shunt motor which operated under dynamic braking\n", "Rb=1 #braking resisance\n", "Ra=0.04 #armature resistance\n", "Rf=10 #field resistance\n", "T=400 #load torque in N-m\n", "\n", "#magnetisation curve at N1\n", "N1=600 #speed in rpm\n", "If=[2.5,5,7.5,10,12.5,15,17.5,20,22.5,25] #field current\n", "E =[25,50,73.5,90,102.5,110,116,121,125,129] #back emf\n", "\n", "#calculation\n", "print\"Field current If:\",If,\"A\"\n", "x=(Rb+Rf)/Rb\n", "Ia = [If * x for If in If] #armature current\n", "Wm=2*math.pi*N1/60\n", "Ke_flux=[E / Wm for E in E] #Ke*flux=constant\n", "Ke_flux=[round(Ke_flux,3) for Ke_flux in Ke_flux] \n", "\n", "Ke_flux=numpy.array(Ke_flux)\n", "Ia=numpy.array(Ia)\n", "T=numpy.array(Ke_flux)*numpy.array(Ia) #torque\n", "print\"\\nKe_flux :\",Ke_flux\n", "T=[round(T,1) for T in T]\n", "print\"\\nTorque :\",T,\"N-m\"\n", "\n", "\n", "#results\n", "#plotting the values of Ke*flux vs If \n", "If=[2.5,5,7.5,10,12.5,15,17.5,20,22.5,25] #field current\n", "plt.subplot(2,1,1)\n", "plt.plot(If,Ke_flux,'y')\n", "plt.xlabel('field current $I_f$')\n", "plt.ylabel('$Ke*flux$')\n", "plt.title('$If vs Ke*flux$')\n", "plt.grid(True)\n", "\n", "#plotting the values of T vs If \n", "If=[2.5,5,7.5,10,12.5,15,17.5,20,22.5,25] #field current\n", "plt.subplot(2,1,2)\n", "plt.plot(T,If)\n", "plt.xlabel('Torque $T$')\n", "plt.ylabel('field current $I_f$')\n", "plt.title('$T vs If$')\n", "plt.grid()\n", "plt.tight_layout()\n", "plt.show()\n", "\n", "print\"\\nFrom the plot we can see that when the torque is 400 N-m, \"\n", "print\"the field current is If=19.3 A, and Ke*flux=1.898 when If=19.3 A\"\n", "T=400 # braking torque\n", "If=19.13 # field current\n", "Ke_flux=1.898 # Ke*flux\n", "Ia=x*If\n", "E=If*Rf+Ia*Ra #since E=V+Ia*Ra\n", "N2=(E/Ke_flux)*(60/(2*math.pi)) #required speed\n", "print\"Hence the required speed in is :\",round(N2),\"rpm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Field current If: [2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5, 25] A\n", "\n", "Ke_flux : [ 0.398 0.796 1.17 1.432 1.631 1.751 1.846 1.926 1.989 2.053]\n", "\n", "Torque : [10.9, 43.8, 96.5, 157.5, 224.3, 288.9, 355.4, 423.7, 492.3, 564.6] N-m\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAaoAAAEbCAYAAACLGcAmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYVVX++PH34eKFiyAqoGJqqAjKVQTzlnenHPE6ao13\nZxqtqcy+Y32nGdN5yvT708yymmqqsTRNndEcQ8dSMdREQ0hNSy1IvBwuIspVbuv3x4kDB9DDAc4F\nzuf1POfBvc9m789aHs/Htfbaa2mUUgohhBDCRjlYOwAhhBDiXiRRCSGEsGmSqIQQQtg0SVRCCCFs\nmiQqIYQQNk0SlRBCCJsmiUoIIYRNk0QlhBDCpkmiEuIX8fHxjB07lujoaDZu3Gjw3rp163jhhRd4\n5513TD5vQkICY8eOZeDAgWzevFm/f9KkSUydOpX9+/c3OPbqca5cuZIOHTo02nmFsCYnawcghK0Y\nMmQIrVq1YsmSJUyfPl2//9atW2zbto3169fj6upq8nmjo6Np1aoV8+fP1593//79PP/880RHRzda\n/FXjLC4uJikpqdHOLYQ1SYtKiF+UlZURHx/PsGHDDPYnJCQQFhZGVFQUffr0adB5CwsL2bRpE6Gh\noSYnqaysLG7fvn3X96vGmZCQwIgRI0yOVQhbJIlKiF+cOnUKX19ffHx89PsSEhJYv349paWl7Ny5\nkytXrrBz506mTZsG6Lra1qxZQ25uLhs2bCA2NpZXX3211vPm5uYyatQounbtanANgO+++47nnnuO\nzz//nL/97W+1xnfo0CESExNrfa8izrKyMnbu3ElcXJw+UaWlpfHvf/+bRx55BICSkhJGjRql/93d\nu3fz+eef8/zzz7N582ZmzZrF999/b2LtCWE+kqiE+MXBgwdrtEKio6Np3bo1ixcvZtKkSVy4cIGI\niAi0Wi0AM2bMwMHBgZ07d5KWlsbAgQM5d+5cjfN6enqi1WqJiYnhjTfeMHg/IyODcePG8T//8z+M\nGzeOoqIig/e1Wi3Tp0+noKCAGzduMHXqVPLy8mqN8+mnn2bChAlcunSJgIAAAL7//nuioqK4evUq\noEtqXbt2BeDy5csEBQUxbtw4vvjiC8aNG8f06dO57777GlibQjQeuUclxC/i4uL43e9+V2P/+fPn\nCQoKAmDEiBEsW7aMuXPnApCdnc2oUaPo2LEjhw8fJjg4mD//+c81zrt48WIGDx5MUFAQr7zyCmlp\naXTp0gWA7du307VrV5KSksjMzOTJJ580+H1fX1/eeecdpk6diqenJx9//DGtW7e+a5wJCQn0799f\nv3/06NG89NJLzJw5E4ADBw4wevRoAH1CSk9Px93dHU9PT37961/Xp/qEMBtpUQmBrjvs6NGjNe5P\npaen0759ezQajX5fYmKi/v5SUlISRUVFvPDCC7z//vskJiZy+PDhGuetaKl5eXnxyCOP8Oabb+qP\nad26NQ899BBjxozht7/9LRqNhjt37ujfv379Oo8//jjz5s1j5syZzJ49m9zc3LvGWXE/bOfOnfr3\njx8/zuDBgwH48ssvGT58OP/973/5/vvvSU5OJjY2lqFDhwIQGxvbkKoUotE5Ll++fLm1gxDCmhIS\nEli7di1nzpyhS5cuRERE6N87ePAgDg4OjBw5Ur+vvLychIQEsrKy6N+/P66urhQWFnLt2jW++uor\nnnnmGdq0aUNSUhJr164lKSmJHj16EBYWRm5uLrt27WLz5s107NiRsLAwevfuzYEDBygoKOD777/n\n8uXL9O3bV389d3d3pkyZwqVLl2jXrh1/+tOfaNmypUEZqsaZlZXFxYsXCQwMpFu3bgAUFBSQlJTE\n9evXyczMpKSkhEGDBvGf//yHs2fP4ubmhlarJT8/n44dO9KpUyfzVroQJtBYauHEtLQ0Zs+eTUZG\nBhqNhscee4ynnnrK4Ji4uDgmTJjA/fffD8CUKVP4y1/+YonwhDCQmJjIe++9h5eXF9OnTyc0NNTa\nIdWqqcQpRENY7B6Vs7Mz69atIywsjLy8PPr168fo0aMJDAw0OO7BBx9k9+7dlgpLiFo5Ojri5+eH\ni4uLTX/5N5U4hWgIiyUqX19ffH19AXBzcyMwMJBr167VSFQWauAJcU9hYWGEhYVZOwyjmkqcQjSE\nVQZTpKamkpSUVOOBR41Gw7FjxwgNDeXhhx+uMcxXCCGE/bH48PS8vDymTp3K+vXrcXNzM3gvIiKC\ntLQ0XFxc2Lt3LxMnTuTChQuWDlEIIYQNsdhgCtAN1f31r3/NQw89xOLFi40e3717dxITE/Hy8jLY\n3759e27cuGGuMIUQQjQif39/Ll26VO/ft1jXn1KKBQsWEBQUdNcklZ6err9HdeLECZRSNZIUwI0b\nN1BKyeserzlz5lg9Blt/SR1JHUkdWeb1448/Nih/WKzr7+jRo2zatImQkBDCw8MBWLlyJZcvXwbg\nD3/4Azt27ODtt9/GyckJFxcXtm7daqnwmp2K52fE3UkdGSd1ZJzUkflZLFENHjyY8vLyex7zxBNP\n8MQTT1goIiGEEE2BTKHUTHl6elo7BJsndWSc1JFxUkfmJ4mqmZJna4yTOjJO6sg4qSPzs+iov8ai\n0WhogmELIYRdauh3trSohBBC2DRJVM1UXFyctUOweVJHxkkdGSd1ZH6SqIQQQtg0uUclhBDCrJrM\nPaq0tDSGDx9Onz596Nu3L6+//nqtxz311FP07NmT0NBQkpKSLBWeEEIIG2WxRFWxHtV3333H8ePH\nefPNNzl//rzBMbGxsVy6dImLFy/y7rvvsmjRIkuF1+xIv7lxUkfGSR0ZJ3VkfhZLVL6+vvrnDaqu\nR1XV7t27mTNnDgDR0dHk5OSQnp5uqRCFEEI0kvLyUkpKsiksTG3wuSy+zAfcfT2qq1ev0qVLF/22\nn58fV65cwcfHx9IhNnnDhg2zdgg2T+rIOKkj45pbHSlVTllZPqWltygru23ws7T0NmVlup/G3i8v\nv4OTUxscHds0OCabWo8Kaq7wq9FoLBWaEEI0WUopysuL6pVUDPfl4ujogqNjG5ycPPQ/dUlH99PJ\nyYNWrbre830HB5cq398N+x63aKIqKSlhypQpzJw5k4kTJ9Z4v3PnzqSlpem3r1y5QufOnWs919y5\nc/WzFnt6ehIWFqb/n01Fn7E9bycnJ+uXU7GFeGxxu2KfrcRji9vV68ra8dji9muvvdag759Dhw5R\nXl7CkCGhlJbeJi7uIGVlBQwY0J2ystvExydSVpZP//7tKCu7zbFjFykvzyc83JnS0tucPJlOWVkB\nISEFgCOnT7fE0dGNqChfnJzacOpUCY6OLgwcGICjowfffHMbR0c3hgwZjpOTB19//SOOjq4MHz4S\nR0cPjhxJpKzMkSFDTC1PtH47OTmZnJwcQNeD1lAWG55esW5Lu3btWLduXa3HxMbGsmHDBmJjYzl+\n/DiLFy/m+PHjNY6T4enGxcXF6T9IonZSR8ZJHd1beXkxBw58zqBBwdVaLNVbKbfv0YK5DfBL68RD\n311W2UppY9BaqdiubM1U7nNwaGnlGqldQ7+zLZaojhw5wtChQwkJCdE3B6uvRwXwxz/+kX379uHq\n6sqHH35IREREzaAlUQkhGlFZWRGlpdmUlGTX8vPGXfZnU15e9EsC8ahjMqm5bcsJprE0mUTVmCRR\nCSGq092jKaxzkikpyaak5AalpdkoVYqzczucnLxwdvaq9vNu+71wdHSX++h1IIlK1Eq6bIyTOjLO\nWnWklKKsLJeSkkyKizMMflZPMlUTj0ajwcmpXa1JpfrPqgnI8Ma/aeRzZFxDv7OtMjxdCGFfdIkn\nn5KSTEpKMigu1v2sLRFVvO/g4Iyzcwecnb1p0UL3s2LbxaV3rQnI0bG1tYsqzMCkFtVPP/1Ex44d\nad3auh8GaVEJYX1lZQX3TDTVExFQI+m0aFH1p+E+STrNh0W7/p544gl+85vfMGzYMI4cOYJGo2HQ\noEH1vnh9SaISwjzKygq4c+cqd+5cpbj4KsXF2ru2fpQqrZZoarZ+qr7v6Ohq7eIJK7Fo119UVBQp\nKSl07dqVwYMHs3PnznpfWJiX9JsbZ091pJSipCRLn4B0yeiKQVK6c+cqZWUFtGzZiZYtO9OiRWeS\nk0sZPLgfrVv30Ld6KhKRo6ObDCTAvj5H1mJSokpLS+P+++/n1Vdf5ezZswwaNIhJkyaZKzYhRB2U\nl9/hzp1r1ZJQ1QR0hTt3ruPo6ErLlp31Sahly860aTPAYJ+zczuD5JOZGUfXrsOsVzghMLHr75NP\nPmHKlCm0bNmSrKws/v3vf/PYY4+ZM75aSdefsAdKKUpLc4y2gkpLc2jRomONJFT58qNFi05yz0dY\njUW7/qZPn87p06cJDw/n/PnzaLXael9YCKFrDeXnnyc//wwFBecoKkqr0gq6ikbjXC3hdMbNLYx2\n7cbpk1KLFt5oNLJYt2i+TEpUc+fOxc3NjYEDBxIREYGnp6dJF5s/fz6ff/453t7enDlzpsb7cXFx\nTJgwgfvvvx+AKVOm8Je//MWkawgd6Tc3zpJ1pFQ5RUWp5OefIS/vDPn5uldRUQqtWvnj5haMi0sf\nvLzGGrSMnJxqTtxsSfI5Mk7qyPxMSlQff/wxKSkpHDt2jLfffhsnJ9Mew5o3bx5PPvkks2fPvusx\nDz74ILt37zbpvELYkuLiLH0iqkhMBQXf4eTUFlfXYFxdg2nfPoauXV/AxaU3Dg4trB2yEDbNpHtU\nx48fRynFAw88AMC//vUvpkyZYtIFU1NTGT9+/F1bVGvXruU///nPvYOWe1TCBpSVFVJQcM6ghZSf\nf4ayskLc3IL1SUn36ouzs2k9EEI0Fxa9R/Xll1/i7OzMa6+9RuvWrenSpYvJiepeNBoNx44dIzQ0\nlM6dO7NmzRqCgoIa7fxC1IdS5RQW/lSlhXSa/Pwz3LmTRuvWPXF1DcbNLZi2bRfj6hpMy5Z+Mmxb\niEZkUqKKiYkhLy+P5557zizBREREkJaWhouLC3v37mXixIlcuHCh1mNlPSpZj6qh2xX7qr5fXJzB\nf//7MYWFKYSEFJKff4YjR87g5OTB0KH9cXUN5sKFIFq3HsfYsTNxcHAmLi6OjAzrl8cc29Xrytrx\n2OJ2Q9ejao7bFl+P6q9//SsDBgwgOjqa9u3b6/cfOnSI0NBQvLy8TLrgvbr+quvevTuJiYk1riFd\nf8bFyQ3eeyorK2Tfvo1ERLQwGOCgVIm+u66y+64vTk4NX067KZLPkXFSR8aZveuvqKiIy5cvs2PH\nDjIyMmjbti1RUVFERkbyj3/8g6VLl9b74tWlp6fj7e2NRqPhxIkTKKVMToRCR/7hGCouzuDWraPc\nunWU27ePkpd3Gh+fXuTk6JJRly5jcXMLpkWLTtJtV4V8joyTOjI/o4lq0KBBhIWFsWjRIgBu3brF\nyZMniY+Px9/f36SLPfLIIxw+fJisrCy6dOnCihUrKCkpAXQLJ+7YsUM/mtDFxYWtW7fWo0jC3iml\nKCj4gVu3jnD7ti45lZRk0qbNA3h4DOb++1fh7t4fR0cXa4cqhKgDo11/zzzzDL/97W+JjIxk9+7d\nxMTEWCq2u5KuP+PsqTuirKyIvLzEX1pMR7h16xhOTm3w8BhEmzaD8PAYhKtrnxoPxdpTHdWX1JFx\nUkfGmb3rb/z48bz88ssUFRVRWFjIDz/8QEhICH379qVz5871vrAQ9VVcnMXt28f0iSkv71tcXHrj\n4TEYH59Z9Or1d1q27GTtMIUQjcSk56jWrl1LZGQk3333HWfPnuXatWv4+fnx5JNPEhAQYM44DUiL\nyn4opSgsvPRLS0l3f+nOnWu0aTMAD49BeHgMxt09yuozOAgh7s7qS9Fv3bqVtLQ0/vSnPzXkNCaR\nRNV8lZcXk5t7yuD+koNDKzw8Buu78tzcgtFoHK0dqhCijqy+FH2LFi3o3bt3Q08jGllT6TcvKblp\n0I2Xm3sKF5eetGkziA4dptOjx+u0atXFLNduKnVkTVJHxkkdmV+DE9XkyZMbIw5hB5RSFBX9pB8m\nfuvWEe7cuYy7ezQeHoPo2vUvtGkzwG6fWRJC1M7krr/09HTc3NzQarUmD09vLNL113SUlt4iK2s3\nN27s5tatI4CDvhtPNxovFAeHBv9/SQhhwyx+j0qr1fLZZ5+h1Wp58cUX633hhpBEZdtKSnK4ceMz\nMjN3kJNzGE/PYbRvPxlPz2G0atVVHqgVws409DvbpNXWCgoK+OCDDzh8+DCOjo6sWrXKpIvNnz8f\nHx8fgoOD73rMU089Rc+ePQkNDSUpKcmk84tKVedos4SSkmyuX/+Q06cf5vjx+8jK2oW39wweeOAK\nwcG76dhxLq1bd7OpJGXpOmqKpI6MkzoyP5MSlYuLC/Pnz2fo0KGUl5fz/PPPm3SxefPmsW/fvru+\nHxsby6VLl7h48SLvvvuufjYMYZtKSm5w/fr7fPvtrzh+vDs3buzBx2cWDzxwlb59d+Lj81u53ySE\naLB636O6fv06PXr0MPmC95qUduHChQwfPpzp06cD0Lt3bw4fPoyPj49h0NL1ZzXFxVlkZe0kM3M7\nt28n4OU1hg4dpuLlNU6eZRJC1Mriw9MrkkZ9kpQxV69epUuXyqHIfn5+XLlypUaiEpZVXJxBVtZO\nMjK2k5t7Ei+vX9Gx4+/p23cnjo6u1g5PCNHMmZSotFoteXl59OjRg/T0dDw8PGjVqlWjBlQ9697t\nnoasR2Xe9aiKi7Pp0yedzMztfPXVCdq0iWLcuCfw8tpNfPwJMjNh2DBXmylvfbYr9tlKPLa4Xb2u\nrB2PLW7LelQ1ty2+HlVVb775JoGBgWg0GoYOHcqWLVuYOXOmSRc01vU3bNgwZsyYAUjXX0PE1eMh\nxDt3rpOV9W8yMraTl5dMu3bjfunW+xWOjq3NE6gV1aeO7I3UkXFSR8ZZdNRfcXExI0aMID8/H0dH\nR9q2bVvvC9cmJiaGjz76CIDjx4/j6ekp3X71VNd/OHfuXOXKlTdIShrKyZNB3L59nC5dljBwoJag\noM106DCpWSYpkHWE6kLqyDipI/Mzqeuvd+/eDBkyhJ49e1JaWsrp06cZN25cnX/f2HpUDz/8MLGx\nsfTo0QNXV1c+/PBD00oj6qSo6ApZWf8iI2M7BQXnaNduPF26LMXLazQODi2tHZ4QQhgw2vX397//\nnYULF+q3f/75Z3bt2kXr1q2ZPn06Hh4eZg+yOun6M656d0RR0WUyM/9FZuZ2Cgp+oH37GDp0+A1t\n24602+QkXTbGSR0ZJ3VknNlH/a1fv55HH32UNm10z8N07dqVp59+GoCLFy9aJVGJuiksTNW3nAoL\nL9G+/QS6dl1G27YjcHBoYe3whBCiToy2qK5cucKxY8eYOHEiLVrovtyUUnzxxRe8+OKLfP311xYJ\ntCppUd1dUdEVMjK2kpm5jaKiFNq3n0iHDr/B03M4Dg7O1g5PCGGHLDLXX3l5Odu2baNXr15s3ryZ\nXbt20b9/fwoKCti9e3e9L15fkqgMlZRkk5m5g/T0T8jPP0OHDpPp0GE6np7DZMJXIYTVmX3U38cf\nf4yDgwOTJk3ixRdfpHfv3iQmJrJ161a2bt1a7wuLhikrKyAj41POnJnA8ePduXnzS/z8FjNw4DUC\nAt7j9GknSVJGVH1GSNRO6sg4qSPzM/pNtnTpUg4ePEh0dDTPPPMMN27cwNPTE4CbN2/i4uJi9iCF\nTnl5CTdvfklGxidkZf2HNm0G4OPzKIGBH8ucekKIZsto19+aNWuIjIwkISGBkydPcvLkSTp27MiA\nAQPQarVWaVXZU9efUuXcvv016emfkJm5ndate+Dt/Sje3r+hRQt5xkwIYfssvh4V6KZSSkhI4K23\n3uK///1vvS9eX/aQqPLyzpCR8Qnp6VtwdHTFx+e3eHvPoHXr+60dmhBCmMSiM1NU8PX1ZcKECSYv\nnLhv3z569+5Nz549Wb16dY334+Li8PDwIDw8nPDwcF566aX6hNdkFRam8vPPqzh5MoQzZ8ahVDnB\nwZ/Rv/9Zunb9s0lJSvrNjZM6Mk7qyDipI/Nr0N32gQMH1vnYsrIy/vjHP/Lll1/SuXNn+vfvT0xM\nDIGBgQbHPfjgg1YZSWgtxcWZZGZuJz39EwoKvsfb+zf07PkmHh6D0Gjq9f8IIYRoViw2LOzEiRP0\n6NFDP+P5jBkz+Oyzz2okqubepQdQWppLVtZnZGR8wq1bx2jXbhxdu/4vbduObrQHceVJeeOkjoyT\nOjJO6sj8LJaoaltrKiEhweAYjUbDsWPHCA0NpXPnzqxZs4agoCBLhWhW5eXFZGfvIz39E7Kz9+Lh\nMQQfn5kEBW2TBQeFEOIeLNa3dLd1paqKiIggLS2Nb7/9lieffJKJEydaIDLzUaqcnJzD/PDDHzh2\nrBNpaWvw9BxGdPSPhITswcfnUbMlKek3N07qyDipI+OkjszPYi2qzp07k5aWpt9OS0vDz8/P4Bh3\nd3f9nx966CEef/xxsrOz8fLyqnE+W104USnF3r3/4ObNL+ne/SjOzu356ado2rZ9k8GDp1ssnuTk\nZJuoD1vermAr8ch209xOTk62qXhsYduqCyc2RGlpKQEBARw4cIBOnToRFRXFli1bDO5Rpaen4+3t\njUaj4cSJE0ybNq3WQtri8PSCgktkZGwhI+MTysuL8PZ+FB+fR3F17WPt0IQQwqrMPnt6Y3FycmLD\nhg2MHTuWsrIyFixYQGBgIO+88w6gW49qx44dvP322zg5OeHi4tIkpmgqKkrju++mUlSUirf3NAIC\nPqBNmwF16uoUQghhnMVaVI3JllpU5eWl5OQcwNNzpE3NrRcna+QYJXVknNSRcVJHxjWZFlVz5eDg\nhJfXWGuHIYQQzZa0qIQQQpiVVaZQEkIIISxFElUzVX0ItqhJ6sg4qSPjpI7MTxKVEEIImyb3qIQQ\nQpiV3KMSQgjRrFk0URlbjwrgqaeeomfPnoSGhpKUlGTJ8JoV6Tc3TurIOKkj46SOzM9iiapiPap9\n+/Zx7tw5tmzZwvnz5w2OiY2N5dKlS1y8eJF3332XRYsWWSq8Zqdi/jFxd1JHxkkdGSd1ZH4WS1RV\n16NydnbWr0dV1e7du5kzZw4A0dHR5OTkkJ6ebqkQm5WKCSHF3UkdGSd1ZJzUkflZLFHVth7V1atX\njR5z5coVS4UohBDCBtnUelRQc4Vfmdy1fhpjav3mTurIOKkj46SOzM+m1qOqfsyVK1fo3LlzjXP5\n+/tLAquDjRs3WjsEmyd1ZJzUkXFSR/fm7+/foN+3WKKKjIzk4sWLpKam0qlTJz799FO2bNlicExM\nTAwbNmxgxowZHD9+HE9PT3x8fGqc69KlS5YKWwghhJXZ1HpUDz/8MLGxsfTo0QNXV1c+/PBDS4Un\nhBDCRjXJmSmEEELYjyY1M0VdHhgW0K1bN0JCQggPDycqKsra4diE+fPn4+PjQ3BwsH5fdnY2o0eP\nplevXowZM8buhxnXVkfLly/Hz8+P8PBwwsPD2bdvnxUjtK60tDSGDx9Onz596Nu3L6+//jogn6Pq\n7lZPDfksNZkWVVlZGQEBAXz55Zd07tyZ/v37s2XLFgIDA60dms3p3r07iYmJeHl5WTsUmxEfH4+b\nmxuzZ8/mzJkzACxdupT27duzdOlSVq9ezc2bN1m1apWVI7We2upoxYoVuLu7s2TJEitHZ31arRat\nVktYWBh5eXn069ePXbt28eGHH8rnqIq71dO2bdvq/VlqMi2qujwwLCo1kf9/WMyQIUNo27atwb6q\nD5jPmTOHXbt2WSM0m1FbHYF8lir4+voSFhYGgJubG4GBgVy9elU+R9XcrZ6g/p+lJpOo6vLAsNDR\naDSMGjWKyMhI3nvvPWuHY7PS09P1o0p9fHxkFpS7eOONNwgNDWXBggV2361VITU1laSkJKKjo+Vz\ndA8V9TRgwACg/p+lJpOo5Lmpujt69ChJSUns3buXN998k/j4eGuHZPM0Go18xmqxaNEiUlJSSE5O\npmPHjjz77LPWDsnq8vLymDJlCuvXr8fd3d3gPfkcVcrLy2Pq1KmsX78eNze3Bn2WmkyiqssDw0Kn\nY8eOAHTo0IFJkyZx4sQJK0dkm3x8fNBqtQBcv34db29vK0dke7y9vfVfvr/73e/s/rNUUlLClClT\nmDVrFhMnTgTkc1SbinqaOXOmvp4a8llqMomq6gPDxcXFfPrpp8TExFg7LJtTUFBAbm4uAPn5+ezf\nv99gFJeoFBMTo59RYOPGjfp/UKLS9evX9X/euXOnXX+WlFIsWLCAoKAgFi9erN8vnyNDd6unBn2W\nVBMSGxurevXqpfz9/dXKlSutHY5N+umnn1RoaKgKDQ1Vffr0kXr6xYwZM1THjh2Vs7Oz8vPzUx98\n8IG6ceOGGjlypOrZs6caPXq0unnzprXDtKrqdfT++++rWbNmqeDgYBUSEqImTJigtFqttcO0mvj4\neKXRaFRoaKgKCwtTYWFhau/evfI5qqa2eoqNjW3QZ6nJDE8XQghhn5pM158QQgj7JIlKCCGETZNE\nJYQQwqZJohJCCGHTJFEJIYSwaZKohBBC2DRJVEIIIWyaJCph115//XWCgoKYOXMmgwcPNnq8m5tb\nrfuXL1/O2rVrGzu8Brt16xZvv/32Xd9XSrF69Wq8vb354IMPLBiZEHVnsaXohbBFb7/9NgcOHKBT\np051Ov5uE4429kSkFc/hV5y3+nZd3bx5k7feeotFixbV+r5GoyE6Oppx48Yxf/78BkQshPlIi0rY\nrYULF/LTTz/xq1/9itdee81gJuxNmzYRHR1NeHg4CxcupLy8vMbvv/zyywQEBDBkyBB++OGHWq/x\n0UcfERoaSlhYGLNnzwZ0Sx9UnedszZo1rFixgp9//pmAgADmzJlDcHAw8fHxBttpaWm1xpWamkpg\nYCCPPfYYffv2ZezYsRQVFQHw/PPP8+OPPxIeHs5zzz1Xa4wJCQlER0fXux6FMDvzzPYkRNPQrVs3\ndePGDaWUUm5ubkoppc6dO6fGjx+vSktLlVJKLVq0SH300UcGx3zzzTcqODhYFRYWqtu3b6sePXqo\ntWvXGpze9b5lAAAgAElEQVT77NmzqlevXvrzZ2dnK6WUSklJUX379tUft2bNGrVixQqVmpqqHBwc\nVEJCgv64qtt3iyslJUU5OTmpb7/9Viml1LRp09SmTZuUUkqlpqYaXKs2U6ZMUYmJiSbXnRCWIl1/\nQlRz4MABEhMTiYyMBKCwsBBfX1+DY+Lj45k8eTKtWrWiVatWxMTE1Fi99ODBg0ybNg0vLy+AWlfP\nrVDxu127diUqKkq/v+r23eIaOnQo3bt3JyQkBIB+/fqRmppqcN57OXPmDKGhoUaPE8JaJFEJUYs5\nc+awcuXKu76v0WgMkkBtCaH6MRWcnJwMuhILCwv1f3Z1dTU4tvp2bXGlpqbSsmVL/bajo6PBOe9F\nq9XSvn17HB0d9fs2b95MVlYWTz/9dJ3OIYS5yT0qIaoZMWIEO3bsIDMzE4Ds7GwuX75scMyQIUPY\ntWsXRUVF5ObmsmfPnhoDHUaMGMH27dvJzs7Wnwd0C+1lZGSQnZ3NnTt3av3d2owcOdJoXNW5u7vr\n1yerTUJCgkELDuDixYuSpIRNkUQlxC8qkkVQUBAvvfQSY8aMITQ0lDFjxuhXcK04JiIigunTpxMa\nGsrDDz9c48u+4jwvvPACDz74IGFhYfzP//wPAM7OzixbtoyoqCjGjBlDUFBQjRhq2w4MDDQaV/Xf\na9euHYMGDSI4OLjGYIqvvvqKDRs2oNVq9V2Fly5dQqvVkpGRYVrlCWFGsh6VEELvzJkzpKamMn78\neGuHIoSetKiEEHonTpzggQcesHYYQhiQRCWEAODTTz/Fzc2N9u3bWzsUIQxI158QQgibJi0qIYQQ\nNk0SlRBCCJsmiUoIIYRNk0QlhBDCpkmiEkIIYdMkUQkhhLBpkqiEEELYNElUQgghbJokKiGEEDZN\nEpUQQgibJolKCCGETZNEJYQQwqZJohJCCGHTJFEJIYSwaY7Lly9fbu0ghGgucnJyGDhwIAUFBZw7\nd46hQ4dy584dLl68yN/+9jdKS0sJDQ2t8/ni4+N57LHH2LBhAy1atCAsLEz/3rp169izZw+XLl0i\nMjLSHMURwiY4WTsAIZqTffv28d///pcOHTqQlpZGy5YtWbFiBQChoaGYuvzbkCFDaNWqFUuWLGH6\n9On6/bdu3WLbtm2sX78eV1fXRi2DELZGEpUQjahLly506NABgEOHDvHggw/q33NxcaFr164mna+s\nrIz4+Hjeffddg/0JCQmEhYURFRXV8KCFsHFyj0qIRjRo0CD9nw8dOsSIESP0223btuXgwYNMmzYN\n0HXdrVmzhtzcXDZs2EBsbCyvvvqqwflOnTqFr68vPj4++n0JCQmsX7+e0tJSdu7caeYSCWF9kqiE\nMJO4uDiGDx+u375w4QLh4eFotVoAZsyYgYODAzt37iQtLY2BAwdy7tw5g3McPHjQINkBREdH07p1\naxYvXsykSZPMXxAhrEwSlRBmkJKSQmFhIX369NHvGzFiBO+//z5z584FIDs7m1GjRvHQQw+RlZVF\ncHAw/fr1MzhP9WRX4fz58wQFBZm1DELYCklUQpjBoUOHGDZsWI39iYmJREdHA5CUlERRUREvvPAC\n77//PomJiRw+fFh/bElJCUePHq1xnvT0dNq3b49GozFnEYSwGTI8XYhGdO7cOf71r3/xzjvv4Ojo\nSFFREWFhYfqkUl5eTkJCAllZWfTv3x9XV1cKCwu5du0aX331Fc888wxt2rQhISGBtWvXcubMGbp0\n6UJERIT+GgcPHsTBwYGRI0daq5hCWJRGmTpetpGkpaUxe/ZsMjIy0Gg0PPbYYzz11FMsX76cf/zj\nH/qRU6+88gq/+tWvrBGiEDYlMTGR9957Dy8vL6ZPn27S81hCNGVWG57u7OzMunXrCAsLIy8vj379\n+jF69Gg0Gg1LlixhyZIl1gpNCJvk6OiIn58fLi4ukqSEXbFaovL19cXX1xcANzc3AgMDuXr1KoDJ\nD0UKYQ/CwsIMZqYQwl7YxGCK1NRUkpKSGDBgAABvvPEGoaGhLFiwgJycHCtHJ4QQwpqsnqjy8vKY\nOnUq69evx83NjUWLFpGSkkJycjIdO3bk2WeftXaIQgghrElZUXFxsRozZoxat25dre+npKSovn37\n1tjfrl07BchLXvKSl7yawMvf379BucJq96iUUixYsICgoCAWL16s33/9+nU6duwIwM6dOwkODq7x\nuzdu3LC7+1hz587ln//8p7XDsCh7K7O9lRekzOZ08yacPg3fflv5On8eOnWC0FDD1333gTkfy2vo\nM39WS1RHjx5l06ZNhISEEB4eDsDKlSvZsmULycnJaDQaunfvzjvvvGOtEG1Kt27drB2Cxdlbme2t\nvCBlbgzl5fDjj4YJ6dtvITsbgoN1iah/f/jd73Tbbm6NenmLsFqiGjx4MOXl5TX2P/TQQ1aIRggh\nbF9urq6VVLWldPYstGtX2TqaM0f38/77wcHqoxAahyzz0UR4enpaOwSLs7cy21t5Qcp8N0pBamrN\nVpJWC0FBlUnp0UchJASaezVKomoi7PH5GXsrs72VF6TMAAUFulZR1YR0+jS4u+uSUUgITJsGL78M\nPXuCkx1+azdoCqX169fz9NNPk5GRgbe3d2PGdU8ajcbuBlMIIZo2peDq1ZqtpMuXISDAcHBDSAi0\nb2/tiBtPQ7+zG5SoNm/ezMWLF9FqtYwbN44HHniA9haoXUlUQghbVlIC585BUpJhUnJyqjnirndv\ncHa2dsTmZdVEVeHSpUsUFhZy4sQJ3NzcmD59ekNPeU/2mKji4uJqXTaiObO3MttbeaF5lLmgAM6c\ngVOndInp1CldkuraFcLDISysMin5+jaPMpuqod/Zde7t/OCDD5g/f36t7/Xo0QOA4OBgPv3003oH\nI4QQtiwnB5KTKxNSUhL89JOuVRQeDhERMHeuruuuKQ4Dt1V1blF5e3szbtw4oqOjiYqKIjQ0FEdH\nR0A3V58ln4ewxxaVEMKy0tMNE9KpU7p9ISG6hFSRmPr0gRYtrB2tbbNY19/q1auJjo4mISGBkydP\ncubMGdq3b09UVBRarZYtW7aYdOG7rUeVnZ3N9OnT+fnnn+nWrRvbtm2rMZxTEpUQorEopRvQUDUh\nJSXpuvSqJqTwcOjVC375/7kwgcUSlVKqxjQYWq2WhIQENmzYwBdffGHShbVaLVqt1mA9ql27dvHh\nhx/Svn17li5dyurVq7l58yarVq0yDNoOE5U99mvbW5ntrbxg+TKXlcHFi4YJKSkJWrY0TEgREbp7\nTOaYVsge/54tdo+qtrmafH19mTBhAm3btjX5wndbj2r37t0cPnwYgDlz5jBs2LAaiUoIIYwpLtYN\naqjaUjp9Gjp0qExIzz6r+/nLV5GwUVZbir6q1NRUHnzwQc6ePct9993HzZs3AV0rzsvLS79dwR5b\nVEKIu8vP1yWhqi2l8+ehe3fDllJYGNTj/9WigSzWojKXvLw8pkyZwvr163F3dzd4T6PRNHjWXSFE\n85KTU9lld+qU7pWaCoGBuoQUEaGbgDUkBFxcrB2taAxWTVQlJSVMmTKFWbNmMXHiRAB8fHzQarX4\n+vpy/fr1u854MXfuXP1IQ09PT8LCwvT9vnFxcQDNajs5OVm/HIotxGOJ7Yp9thKPlLfxt6uXvfr7\n6emwcWMcFy5ATs4wkpLg2rU4/P1h+PBhjBwJw4bF0bUrjB5d+ftFReDiYv3y1bb92muv2cX3VcXq\n7KmpqTSUyV1/zz33HKtXrza6zxilFHPmzKFdu3asW7dOv3/p0qW0a9eO5557jlWrVpGTkyODKbDP\nG7D2VmZ7Ky9UllkpSEurbCFVtJYKCw0HOEREQI8eTXvknT3+PVt8Zorw8HCSkpIM9gUHB3PmzBmT\nLnzkyBGGDh1KSEiIvnvvlVdeISoqimnTpnH58mUZni5EM1ReDpcuGXbdJSXpphGqSEbmHnknLMti\niertt9/mrbfe4scff8Tf31+/Pzc3l0GDBrF58+Z6B2EqSVRCNA2lpbpBDVUTUnKybv2k6s8o/bKw\nt2iGLJaobt26xc2bN3n++edZvXq1/qLu7u60a9eu3gHUhz0mKnvsLrC3Mjf18hYV6ea8q9pS+u47\n6NLFsKUUHg5eXrrfaeplrg97LLPFRv15eHjg4eHB1q1b630xIUTzkJurmw28akvp4kXdzA0VraRZ\ns3QTscqcd6KhTL5HVVRUxL/+9S9SU1MpLS3VnUSjYdmyZWYJsDb22KISwlpu3Kg5HPzKFejb17Cl\n1LcvtGpl7WiFLbL4c1QTJkzA09OTfv360Uo+lUI0K9evVyajipZSdnZll91DD8ELL+hmC7fHlWaF\ndZjcourbty9nz541Vzx1Yo8tKnvs17a3Mlu6vNeuQWKi4evOHV0LqV+/ypaSvz84OJgnBnv7Owb7\nLLPFW1QDBw7k9OnThISE1PuiQgjLunYNvvnGMCmVlOgSUr9+ujWU3nhDhoML22RyiyowMJBLly7R\nvXt3WrZsqTuJRsPp06fNEmBt7LFFJURdKFV7S6m0tDIpVbzuu0+SkrAMiz/wWzEdRvULy8KJQliW\nUnD1as2kVFZmmJAiI3VDxCUpCWtp6He2yT3P9913H/Hx8WzcuJFu3brh4OBARkaGyReeP38+Pj4+\nBAcH6/ctX74cPz8/wsPDCQ8PZ9++fSaft7mqOieavbC3Mt+rvBVTDO3aBX/9Kzz8sG5piogI+Pvf\ndbM9/O53cOIEZGTAvn3w8sswebJtt5zs7e8Y7LPMDWXyParHH38cBwcHDh48yLJly3Bzc+Pxxx/n\nm2++Mek88+bN48knn2T27Nn6fRqNhiVLlrBkyRJTwxKi2VBKN/y7+j0ljaaylfTYY7qffn62m4SE\naCwmJ6qEhASSkpIIDw8HwMvLi5KSEpMvPGTIkFpn1ZUuvdrZ2yghsI8yV7SUdMloGKtX6/7s4FCZ\nlBYu1P3s3Ln5JSV7+Duuzh7L3FAmJ6oWLVpQVlam387MzMShEceuvvHGG3z00UdERkaydu3aGhPS\nCtFUVSSl6i0lR0fDpBQZCZ06Nb+kJER9mZyonnzySSZNmkRGRgZ//vOf2bFjBy+99FKjBLNo0SL9\nDBd//etfefbZZ3n//fdrPVbWo7Kt+MyxXbHPVuIxdbt372F88w1s3x7H999DSsowHByge/c4evWC\nxx8fRr9+cOFCnD4pVZT34kXrx2+J7ep/19aOxxLbsh6V6Uwa9aeUIi0tjfz8fA4cOADAyJEjCQwM\nrNfFU1NTGT9+fK1LhNzrPXsc9Rdnhw8JNqUyZ2frWkrffAMnT+p+5ufrWkf9++tekZH37r5rSuVt\nLFJm+2DR4elKKYKDgxttZorqyej69et0/GWu/3Xr1nHy5Ek++eSTmkHbYaIStiM3Vze9UNWklJGh\nG4FXkZgiI+H++6X7Tgiw8MwUGo2Gfv36ceLECaKioup9UYBHHnmEw4cPk5WVRZcuXVixYoW+yajR\naOjevTvvvPNOg64hREMVFenWT6qalFJTISREl4wefhiWLYOAgKa96qwQtszkB34DAgK4dOkSXbt2\nxdXVVXcSmZnC7Oyxu8DSZS4pgbNnKxPSyZPwww+6CVirduH16aNbjbaxyd+xfbDHMlu0RaWU4r33\n3uO+++6r9wWFsAVlZbokVDUpnTkD3bpVdt0tWKBrObVube1ohbBvVr1HVV/22KIS9acU/PSTYVJK\nSgJv78qk1L+/bqZwd3drRytE89Nk71EJYQ4V89+dPFmZmL75BlxdK5PSX/6ie2apYjl0IYRtk3tU\nTYQ99msbK7PhrA66kXiJibr9VVtKkZG6efFsnfwd2wd7LLPF16Pav39/vS8mRH0pBT//XDMpVZ3V\n4Q9/0A0Rl/nvhGheTG5RrVixwiA7an75RqiYUcIS7LFFZU+UgpQUw4R06hS0aFGZlCpWoZWphoSw\nfRZvUbm6uuqTU2FhIXv27CEoKKjeAQj7phT8+GPNpOTiUpmQnnpK9+dfngUXQtgZk1tU1d25c4cx\nY8Zw+PBhk35v/vz5fP7553h7e+tnpsjOzmb69On8/PPPdOvWjW3bttU6Ka09tqiaQ792eTlculQz\nKbVpY9hK6tcPfHyaR5lNYW/lBSmzvbD4wonV5efnc/XqVZN/b968eTUWRly1ahWjR4/mwoULjBw5\nklWrVjU0PGEl5eXw/ffwySfw7LMwbBi0bQtjxsD27eDpCUuXwoULcPky7NxZuSCgj4+1oxdC2BKT\nW1RVV+QtLy8nIyODZcuW8eSTT5p88epz/fXu3ZvDhw/j4+ODVqtl2LBhfP/99zWDtsMWlS2reHi2\nopWUmKibdqh9e8NWUkSEbp8Qwr5Y/B7Vf/7zn8pfdnLCx8cH50aaTyY9PR2fX/477ePjQ3p6eqOc\nVzSe0lJdUqq6ntK33+oenq1ISMuW6ZKSPKckhGgMJieqijWgzE2j0egHbdRG1qOyzPWvX4d//COO\n8+fh2rVhJCZCmzZxBATAQw8NY8IEyM+Pw93d8PdPn5b1qKS8xrerl93a8VhiW9ajqgdlolmzZqns\n7Gz99o0bN9S8efNMPY1SSqmUlBTVt29f/XZAQIC6fv26Ukqpa9euqYCAgFp/rx5hN3mHDh0y+zUK\nCpQ6ckSptWuV+s1vlOrSRSkvL6UeekipFSuU2rdPqSp/9WZniTLbEnsrr1JSZnvR0O9sk+9RhYWF\nkZycbHRfXVS/R7V06VLatWvHc889x6pVq8jJyal1QIXco2q4imHhx4/rXgkJ8N13EBQEAwZAdLTu\nZ48e8pySEKJhLH6PSilFdnY2Xr/cgMjOzqasrMzkC1dfj+pvf/sbzz//PNOmTeP999/XD08XjSMn\nB06c0CWkisTk4lKZlB55RHdfSWYKF0LYGpNbVB999BEvv/wy06ZNQynF9u3beeGFF5g9e7a5YqzB\nHltUcSY8e1FaqmsdVW0tpaXpEtGAAZXJqVMn88bcUKaUuTmwt/KClNleWLxFNXv2bPr168fBgwfR\naDTs3LlTZqawsuvXKxPS8eO6kXh+fpUJ6emnoW9fcDL5b1sIIayvwTNTWIM9tqgqFBbq1lKq2lrK\ny6u8pzRggG7G8LZtrR2pEELoNPQ7WxKVDas64KGitXTuHAQGGnbhyYAHIYQts/oUSqLxKKW7t7Rh\nA0ydqnuIdsQI2L0bSkvjeO01yMrSLQS4YQPMnAk9ezbfJFX1GRt7YG/lBSmzqJs637VYu3at/s+1\nLfOxZMmSRg6t+VMKzp+HuDg4dAgOH9YthT58OEycCOvWQZcuumPj4mDQIGtGK4QQ1lHnrr/ly5ej\n0Wj44YcfOHnyJDExMSil2LNnD1FRUWzatMncseo11a4/pXTTDx06pEs8cXG6JdKHDat83XefVUMU\nQohGZ/F7VEOGDCE2NhZ3d3cAcnNzefjhh4mPj693EKZqKolKKbh40TAxtWihazENHw4PPggWmpFK\nCCGsxuL3qDIyMgwmoXV2diYjI6PeAdSmW7duhISEEB4eTlRUVKOe25wqEtN778Gjj0LnzjBqFBw7\nplve4tgx3XLq//wnzJljWpKyx35teyuzvZUXpMyibur1HFVUVBSTJ09GKcWuXbuYM2dOowal0WiI\ni4vTz35hq5SCn36qvMdU8fkbPhxGjoSXXoLu3ZvvYAchhLCEeg1PT0xMJD4+Ho1Gw5AhQ4iIiGjU\noLp3784333xDu3btan3fWl1/SkFqqmFXXmlpZVfesGHg7y+JSQghqmqWz1Hdf//9eHh44OjoyB/+\n8Ad+//vfG7xvyUSVmlqZlA4dguJiXUKqSEzNeXi4EEI0Bovdo3Jzc8Pd3b3WV5s2beodQG2OHj1K\nUlISe/fu5c0337ToQA2Aq1dhxQpd6yg6Gvbt0z1cu38/XLsGW7bAY49Br16WS1L22K9tb2W2t/KC\nlFnUTZ3vUeXl5ZkzDgMdO3YEoEOHDkyaNIkTJ04wZMgQg2Mae+HEsjIoLh7GO+/AgQNxjBgB27cP\nIzwcDh/WHR8QUP/zN3Q7OTnZphZGs8R2BVuJR8or242xXbEkkq3EY47txl440eSuv/LycjZv3kxK\nSgrLli3j8uXLaLXaRhudV1BQQFlZGe7u7uTn5zNmzBhefPFFxowZUxl0I3b9abXwwQfw7rvQvj38\n4Q+6JS/c3Brl9EIIYfcsfo9q4cKFODg4cPDgQb7//nuys7MZM2YM33zzTb2DqColJYVJkyYBUFpa\nym9/+1v+93//1zDoBha6vBwOHOCX1hP85je6BNWvX4NCF0IIUQuLP0eVkJDAW2+9RetfVtjz8vKi\npKSk3gFU1717d5KTk0lOTubs2bM1klRDZGTA//2f7t7Sn/6kG0L+88+61pStJ6nq3UP2wN7KbG/l\nBSmzqBuTn6Nq0aKFwYq+mZmZODjY7ty2SulG7L3zjm5QxOTJsHkzREXJaD0hhGgKTO7627RpE9u2\nbSMxMZE5c+awY8cOXnrpJaZNm2auGGuoSzPyxg3YuFHXWnJy0nXtzZoFnp4WClIIIQRgpeeozp8/\nz4EDBwAYMWKExVf4vVuhlYKjR+Hvf4c9eyAmRpegBg6U1pMQQlhLs3zg15jaCn37ti4hlZbqktPs\n2XCXiS2apLi4OP3wT3thb2W2t/KClNleNDRR1fke1eDBgzly5Ih+1vTqQdy+fbveQTSGNm10XX0R\nEdJ6EkKI5qTOLaqZM2eyadMmXnvtNRYvXmzuuO6pqSzzIYQQwoLD00+dOsW1a9f44IMPyM7OrvES\nQgghzKHOiWrhwoWMHDmSH374gX79+tV4NaZ9+/bRu3dvevbsyerVqxv13E2VPT57YW9ltrfygpRZ\n1E2dE9VTTz3F+fPnmTdvHikpKTVejaWsrIw//vGP7Nu3j3PnzrFlyxbOnz/faOdvqirmB7Mn9lZm\neysvSJlF3Zj8pO7f//53c8Shd+LECXr06EG3bt1wdnZmxowZfPbZZ2a9ZlNQMcGjPbG3MttbeUHK\nLOrG5qaUuHr1Kl26dNFv+/n5cfXqVStGJIQQwppsLlFpZGx5rRpjqvymxt7KbG/lBSmzqCNlY77+\n+ms1duxY/fbKlSvVqlWrDI7x9/dXgLzkJS95yasJvPz9/RuUF2xuZorS0lICAgI4cOAAnTp1Iioq\nii1bthAYGGjt0IQQQliBybOnm5uTkxMbNmxg7NixlJWVsWDBAklSQghhx2yuRSWEEEJUZXODKe6l\nuT4IPH/+fHx8fAgODtbvy87OZvTo0fTq1YsxY8YYDGl95ZVX6NmzJ71792b//v3WCLnB0tLSGD58\nOH369KFv3768/vrrQPMud1FREdHR0YSFhREUFKRfFLQ5lxl0z0aGh4czfvx4oPmXt1u3boSEhBAe\nHk5UVBTQ/Muck5PD1KlTCQwMJCgoiISEhMYtc4PucFlQaWmp8vf3VykpKaq4uFiFhoaqc+fOWTus\nRvHVV1+pU6dOqb59++r3/elPf1KrV69WSim1atUq9dxzzymllPruu+9UaGioKi4uVikpKcrf31+V\nlZVZJe6GuH79ukpKSlJKKZWbm6t69eqlzp071+zLnZ+fr5RSqqSkREVHR6v4+PhmX+a1a9eqRx99\nVI0fP14p1fw/2926dVM3btww2Nfcyzx79mz1/vvvK6V0n+2cnJxGLXOTSVTHjh0zGA34yiuvqFde\necWKETWulJQUg0QVEBCgtFqtUkr3pR4QEKCUqjkKcuzYserrr7+2bLBmMGHCBPXFF1/YTbnz8/NV\nZGSkOnv2bLMuc1pamho5cqQ6ePCg+vWvf62Uav6f7W7duqmsrCyDfc25zDk5Oap79+419jdmmZtM\n15+9PQicnp6Oj48PAD4+PqSnpwNw7do1/Pz89Mc1h3pITU0lKSmJ6OjoZl/u8vJywsLC8PHx0Xd9\nNucyP/PMM/y///f/cHCo/KppzuUF3bOgo0aNIjIykvfeew9o3mVOSUmhQ4cOzJs3j4iICH7/+9+T\nn5/fqGVuMonKnh8E1mg09yx/U66bvLw8pkyZwvr162usddYcy+3g4EBycjJXrlzhq6++4tChQwbv\nN6cy79mzB29vb8LDw++6xENzKm+Fo0ePkpSUxN69e3nzzTeJj483eL+5lbm0tJRTp07x+OOPc+rU\nKVxdXVm1apXBMQ0tc5NJVJ07dyYtLU2/nZaWZpCVmxsfHx+0Wi0A169fx9vbG6hZD1euXKFz585W\nibGhSkpKmDJlCrNmzWLixImAfZQbwMPDg3HjxpGYmNhsy3zs2DF2795N9+7deeSRRzh48CCzZs1q\ntuWt0LFjRwA6dOjApEmTOHHiRLMus5+fH35+fvTv3x+AqVOncurUKXx9fRutzE0mUUVGRnLx4kVS\nU1MpLi7m008/JSYmxtphmU1MTAwbN24EYOPGjfov8piYGLZu3UpxcTEpKSlcvHhRP7KoKVFKsWDB\nAoKCggwW4mzO5c7KytKPfCosLOSLL74gPDy82ZZ55cqVpKWlkZKSwtatWxkxYgQff/xxsy0vQEFB\nAbm5uQDk5+ezf/9+goODm3WZfX196dKlCxcuXADgyy+/pE+fPowfP77xytxod9QsIDY2VvXq1Uv5\n+/urlStXWjucRjNjxgzVsWNH5ezsrPz8/NQHH3ygbty4oUaOHKl69uypRo8erW7evKk//uWXX1b+\n/v4qICBA7du3z4qR1198fLzSaDQqNDRUhYWFqbCwMLV3795mXe7Tp0+r8PBwFRoaqoKDg9X//d//\nKaVUsy5zhbi4OP2ov+Zc3p9++kmFhoaq0NBQ1adPH/33VHMus1JKJScnq8jISBUSEqImTZqkcnJy\nGrXM8sCvEEIIm9Zkuv6EEELYJ0lUQgghbJokKiGEEDZNEpUQQgibJolKCCGETZNEJYQQwqZJohJC\nCGHTJFEJIYSwaTa3FL0QtuzGjRuMGjUKAK1Wi6OjIx06dECj0ZCQkICzs7PVYrtw4QJPP/00EydO\nZKX/nOoAAAL5SURBVPv27XTt2pWoqCjeffddTp48aTCDuRBNiSQqIUzQrl07kpKSAFixYgXu7u4s\nWbKkzr9fMRGMOWbITk5OZvfu3Tg7O7Nz506WLl1KQEAAHh4ekqREkyafXiEaoPoMZK+++irBwcEE\nBwezfv16QLfeVkBAAHPmzCE4OJi0tDRefvllAgICGDJkCI8++ihr167l559/Jjg4WH+uNWvWsGLF\nCv32pk2biI6OJjw8nIULF1JeXm5w7Z49e+pbdBcuXCAgIACA3r17m6XsQliKJCohGkliYiL//Oc/\nOXHiBMePH+e9994jOTkZgEuXLvHEE09w9uxZMjMz+fTTT/n222+JjY3l5MmTtbawqu47f/4827Zt\n49ixYyQlJeHg4MDmzZsNjg8PDwfg4sWL+Pv76/eHhYWZo7hCWIx0/QnRSI4cOcLkyZNp3bo1AJMn\nTyY+Pp6YmBj9/SKA+Ph4Jk+eTKtWrWjVqhUxMTF3XViwwoEDB0hMTCQyMhLQLRPi6+tb67EnTpxo\ncktFCHEvkqiEaCQajcYg4Sil9K0iV1dXo8c5OTkZdOcVFhYanH/OnDmsXLnSaBwnT55k5MiR9S6H\nELZGuv6EaCRDhgxh165dFBYWkp+fz65duxgyZEiN1tLQoUPZtWsXRUVF5ObmsmfPHkC3unFGRgbZ\n2dncuXOHPXv26BPdyJEj2bFjB5mZmQBkZ2dz+fLlWuM4efKkfrVVIZoDaVEJ0QBV7yOFh4czd+5c\nfbfb73//e0JDQ0lNTa1x3PTp0wkNDcXb25v+/fujlMLJyYlly5YRFRVF586dCQoK0v9OYGAgL730\nEmPGjKG8vBxnZ2feeust7rvvPv0x3377Lfv37+f06dPs3LmTKVOm6Jf/FqIpk4UThbCyFStW4Obm\nxrPPPmvtUISwSdL1J4QNMMdzVUI0F9KiEkIIYdOkRSWEEMKmSaISQghh0yRRCSGEsGmSqIQQQtg0\nSVRCCCFsmiQqIYQQNk0SlRBCCJsmiUoIIYRN+/8lqmVUy9mHIwAAAABJRU5ErkJggg==\n", "text": [ "<matplotlib.figure.Figure at 0x7ff4f028dc10>" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "From the plot we can see that when the torque is 400 N-m, \n", "the field current is If=19.3 A, and Ke*flux=1.898 when If=19.3 A\n", "Hence the required speed in is : 1005.0 rpm\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No:5.6,Page No:71" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "from array import array\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "\n", "#variable declaration\n", "#the motor rating is same as that of Ex-5.5\n", "N=600 #value of the speed given from the magnetization curve in Ex-5.5\n", "\n", "Ra=0.04 #armature resistance\n", "Rf=10 #field resistance\n", "T=400 #load torque in N-m\n", "N1=1200 #given speed in rpm to hold the overhauling torque\n", "\n", "#calculation\n", "Wm=2*math.pi*N1/60 #angular speed at the given speed N1\n", "\n", "#magnetisation curve at N=600rpm\n", "If=[2.5,5,7.5,10,12.5,15,17.5,20,22.5,25] #field current\n", "E =[25,50,73.5,90,102.5,110,116,121,125,129] #value of the back emf as given in Ex-5.5 for the speed N\n", "\n", "#magnetisation curve at N=1200rpm\n", "If=[2.5,5,7.5,10,12.5,15,17.5,20,22.5,25] #field current\n", "E1=[N1/N*E for E in E] #back emf at the speed N1\n", "print\"Hence the magnetization curve at 1200rpm is\"\n", "print\"Field current If:\",If,\"A\"\n", "print\"Back emf is E1:\",E1,\"V\"\n", "\n", "Pd=round(T*Wm,2) #power developed\n", "x=round(Pd*Ra,1)\n", "V=[(E1-Pd*Ra/E1) for E1 in E1] #terminal voltage\n", "V=[round(V,2) for V in V]\n", "print\"Terminal voltage V:\",V,\"V\"\n", "\n", "\n", "#results\n", "#plotting the values of V vs If\n", "plt.subplot(2,1,1)\n", "plt.plot(V,If)\n", "plt.xlabel('Terminal voltage $V$')\n", "plt.ylabel('Field current $I_f$')\n", "plt.title('$V vs If$')\n", "plt.grid()\n", "\n", "#plotting the values of E vs If\n", "If=[2.5,5,7.5,10,12.5,15,17.5,20,22.5,25] #field current\n", "E =[25,50,73.5,90,102.5,110,116,121,125,129] #value of the back emf as given in Ex-5.5 for the speed N\n", "E1=[N1/N*E for E in E] #back emf at the speed N1\n", "\n", "plt.subplot(2,1,2)\n", "plt.plot(E1,If,'y')\n", "plt.xlabel('$E$')\n", "plt.ylabel('Field current $I_f$')\n", "plt.title('$E vs If$')\n", "plt.grid()\n", "plt.tight_layout()\n", "plt.show()\n", "print\"\\nFrom the plot we can see that when the current If=25 A the terminal voltage is V=250 V with the back emf E=258V\"\n", "\n", "E=258 #value of the back emf in V at from the plot \n", "V=250 #value of terminal voltage in V from the plot at E=258 V\n", "If=25 #value of If in A from the plot at E=258 V\n", "Ia=(E-V)/Ra #armature current\n", "If=V/Rf #field current\n", "Ir=Ia-If \n", "Rb=V/Ir #braking resistance\n", "\n", "print\"Hence the rquired braking resistance is \",round(Rb,3),\"ohm\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Hence the magnetization curve at 1200rpm is\n", "Field current If: [2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5, 25] A\n", "Back emf is E1: [50.0, 100.0, 147.0, 180.0, 205.0, 220.0, 232.0, 242.0, 250.0, 258.0] V\n", "Terminal voltage V: [9.79, 79.89, 133.32, 168.83, 195.19, 210.86, 223.33, 233.69, 241.96, 250.21] V\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEbCAYAAACP7BAbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xtc1FX++PHXgCAqqOAFSFSIFAEREIM2ljJNtPp6IVu1\ni+Itt/ra5trmpTaj3VLcb2Zs1taWtbaVm2sraqlrq6L83ALloqZmaqCIjKigAoLAcH5/TIzcQZgb\nzPv5eHwezOczzHze58zI23M+53OORimlEEIIIayMnaUDEEIIIRoiCUoIIYRVkgQlhBDCKkmCEkII\nYZUkQQkhhLBKkqCEEEJYJUlQQgghrJIkKCGEEFZJEpQQRnDu3DlmzJiBh4cHf//73w3HT548SWBg\nIIsWLaKwsLDF75ecnMzYsWOJiIhg3bp1tZ5bvXo1L730Eu+//77R4hfCGmlkJgkhjCM9PZ1f/epX\nnD592nAsNzeX/fv3M2XKlFt+v4kTJ/LYY48xdepUw7GrV68ybtw4EhIS6NatG4GBgUaJXQhrJC0o\nIYzE29ubnJwcqqqqDMc2bNjQquSk0+lITk5m5MiRtY6npKQQEhJCeHi4JCfR4UmCEsJI3Nzc6Nat\nG2fPngXgyy+/5M477yQxMdGQpFavXs0bb7wBwLVr11izZg3btm3jzTffrPVe6enpeHh44O7ubjiW\nkpJCQkIClZWVbNq0yUylEsJyJEEJYUS33347WVlZ5OXlUVFRQXl5OSEhIWi1WgCmTZuGnZ3+n11i\nYiI5OTncfffdHDt2rNb77N69m1GjRtU6FhERQZcuXViwYAExMTHmKZAQFiQJSggjuv322zl9+jTr\n169n2rRpjBo1io8++oiZM2cCUFBQwP333w/AAw88wKVLlwgKCiIsLKzW+yQlJXHffffVe//jx48T\nEBBg8nIIYQ0kQQlhRN7e3vz1r3+t1cJJS0sjIiICgIyMDIYNG0ZKSgovvfQSa9euJS0tjb179xp+\nv6Kigv3799e7/nThwgV69+6NRqMxS1mEsLROlg5AiI5k8ODB+Pj44OPjYzg2bdo0EhMTOXHiBHff\nfTcAffv2JSwsjC1btvDTTz+xatUqQH+d6fPPP8fe3p5NmzYxd+5cw/ukpKQQGRlp3gIJYUFmHWae\nk5PDjBkzyM/PR6PRMG/ePH7zm98QFxfHhx9+SJ8+fQBYsWIF48aNM1dYQli1tLQ0PvjgA9zc3Jg6\ndSrBwcGWDkkIszBrC8rBwYHVq1cTEhJCcXExYWFhjBkzBo1Gw8KFC1m4cKE5wxGiXbC3t8fLy4uu\nXbtKchI2xawJysPDAw8PDwCcnZ3x9/cnNzcXALlfWIiGhYSEEBISYukwhDA7iw2SyM7OJiMjg7vu\nuguAt99+m+DgYObMmcOVK1csFZYQQggrYZEEVVxczCOPPEJCQgLOzs48/fTTZGVlkZmZiaenJ88/\n/7wlwhJCCGFNlJmVl5er6OhotXr16gafz8rKUkOHDm3wudtuu00Bsskmm2yytYPN19e3TfnCrC0o\npRRz5swhICCABQsWGI7n5eUZHm/atImgoKAGX3/+/HmUUja1vfLKKxaPQcorZZYyt247flwxaJDi\nt79VvPyybZS55lZz4uTWMOsgif379/Ppp58ybNgwQkNDAVi+fDnr168nMzMTjUaDj4+PLCNQQ3Z2\ntqVDMCtbKy9ImTuqf/8bpk+H+HiYPRtmzsy2dEjtjlkT1C9/+ctaMz1Xe+CBB8wZhhBCmIxS8Oc/\n6xPTv/4Fv/ylpSNqv2QmCStXPYebrbC18oKUuSMpL4f//V9ISYFvvwVv75vPddQym9ItzySRkJDA\nc889R35+Pn379jVVXA3SaDTcYrhCCGEWFy/C5Mng5gZ//zu4uFg6Istr69/sWx4k0bt3b+Li4li2\nbBlbt27l0qVLrT65aF5SUpKlQzArWysvSJk7giNHICICoqL03XoNJaeOVmZzuOUuvscffxyAU6dO\nUVpayubNm3F2dq61LLUQQtiKLVtg7lx46y147DFLR9OxGGWy2C+++MIsCUq6+IQQ1kIpWLkS1qzR\nt5rCwy0dkfVp69/sJhPURx99xOzZs1v95sYmCUoIYQ1KS/Wtph9/hMRE6NfP0hFZJ5Neg1qyZAmz\nZs3ivffeIz09HZ1OZ3jOFu5jsAa21m9ta+UFKXN7c/483HsvVFXBvn0tT07tucyW0uQ1qOeff56I\niAhSUlJYvnw5R44coXfv3oSHh6PValm/fr254hRCCIs7eBBiYuCpp+DFF0EWNzatJrv4lFL1lpfW\narWkpKSwZs0avvnmm1s6WWMLFhYUFDB16lTOnDmDt7c3GzZsoGfPnvWDlS4+IYSF/OMf8Oyz8Ne/\n6pOUaJ5Jr0E1Zd++fdxzzz239BqtVotWq621YGFiYiIff/wxvXv3ZtGiRaxcuZLCwkLi4+PrBysJ\nSghhZlVVsGwZfPYZbN4Mw4ZZOqL2w+z3QVW71eQE+gULqxdeq7lg4ZYtW4iNjQUgNjaWxMTE1obV\n4dhav7WtlRekzNasuFh/8+2+ffrZIdqSnNpLma2JxRcsjIiI4MKFC7i7uwPg7u7OhQsXLBWWEEIA\nkJ0NkZHQuzf85z9g5olzBEa6D+pWFRcXc++99/Lyyy8zadIkXF1dKSwsNDzv5uZGQUFBvddJF58Q\nwhy2bIFf/xqWLtVfd5LBEK3T1r/ZLZpJYvHixaxcubLZYy1RUVHB5MmTmT59OpMmTQL0rSatVouH\nhwd5eXlNzvE3c+ZMvH+egbFnz56EhIQwcuRI4GYTWvZlX/ZlvzX7V6/Chg0jSU2FJUuSGDYMNBrr\nic/a9zMzM7ly5QpgpFuRVAuEhITUO9bYqrdNqaqqUtOnT1cLFiyodfyFF15Q8fHxSimlVqxYoRYv\nXtzg61sYboeyZ88eS4dgVrZWXqWkzNbin/9UysNDqYULlSopMf77W2OZTa2tf7ObbEH95S9/4d13\n3+X06dO1VrktKioiMjLylpNhQwsWrlixgiVLljBlyhTWrl1rGGYuhBDmkJ+vXyLj++/1Uxb94heW\njkhUa/Ia1NWrVyksLGTJkiW1uvNcXFxwc3MzS4A1yTUoIYSxKAXr18NvfwuzZkFcHDg5WTqqjsUs\n90GVlZXx5Zdfkp2dTWVlpeHEy5Yta/WJW0MSlBDCGPLy9LNB/PQTfPQR3HmnpSPqmMxyH9TEiRPZ\nsmULDg4OODs74+zsTLdu3Vp9UtFy1RcibYWtlRekzOakFKxbB8HB+u3gQfMlJ1v8nNuqRaP4cnNz\n+fe//23qWIQQwmRycvRDx/PyYOdO+HnOAGHFWtTFN2/ePObPn88wC8/xIV18QohbVVkJH34IL78M\nzz0HixeDg4Olo7INZrkG5e/vz6lTp/Dx8aFz586GEx8+fLjVJ24NSVBCiJZSCrZt0yek3r31CwsO\nHWrpqGyLWRJU9Q1XdU9WfcOsudhigkpKSjLcCGcLbK28IGU2hQMHYNEiuHAB/vQneOghy88GYYuf\ns1kGSQwYMIDk5GTWrVuHt7c3dnZ25Ofnt/qkQghhCj/9BI8+CpMmwWOPweHD8D//Y/nkJFqnRS2o\np556Cjs7O3bv3s0PP/xAQUEB0dHRHDx48JZPOHv2bL7++mv69u3LkSNHAIiLi+PDDz+kT58+gP7m\n3XHjxtUP1gZbUEKI5l2+DK+9Bp98AgsWwMKFIAONLc8sLaiUlBTeffddunTpAugnc62oqGjVCWfN\nmsWOHTtqHdNoNCxcuJCMjAwyMjIaTE5CCFFXaSmsXAl+flBeDseO6QdDSHLqGFqUoBwdHdHpdIb9\nixcvYmfXupU6oqKicHV1rXdcWkYNs7V7J2ytvCBlbg2dTt9a8vPTr9O0fz+88w78vGqPVbLFz7mt\nWpRlnn32WWJiYsjPz+fFF18kMjKSpUuXGjWQt99+m+DgYObMmWOYDVcIIerauRPCwuC99/RTFf3r\nX/pEJTqeFq8Hdfz4cXbt2gXA6NGj8ff3b/VJs7OzGT9+vOEaVH5+vuH608svv0xeXh5r166tH6xc\ngxLCZmVm6kfmZWdDfDzExMjgB2tn8vWglFKcO3cOf3//NiWlptRc/2nu3LmMHz++0d+V9aBkX/Zt\nZ7+qCm7cGMlbb8GBA0lMnw5ffz0SBwfriE/2LbweVFVVlQoMDGzTmh51ZWVl1VpP6vz584bHb775\npnr00UcbfF0Lwu1wbG0NGVsrr1JS5oYUFSn1zjtK+fkpFRKi1McfK1VaapbQTMYWP+e2/s1utgWl\n0WgICwsjNTWV8PDwNifERx99lL1793Lp0iX69+/Pq6++asi8Go0GHx8f3n///TafRwjR/pw5o5/x\n4eOP4Z574P339T+lK882tegalJ+fH6dOnWLgwIGGWcxlqiMhhDEopR+F99ZbsGcPzJwJ8+eDj4+l\nIxNtZfKpjpRSJCcnM2DAgHrPyVRHQojWKi+HL76AhAS4ehV+8xt9cnJxsXRkwljMcqPuM888g7e3\nd71NmF71hUhbYWvlBdsrc34+zJqVhLe3/l6muDg4cQKefbZjJydb+5yNodkEVfMalBBCtFZmpn5p\ndT8/uHhRfz/TN9/o58qza919/6KDk2tQQgiT0elg61Z9N97Jk/DMMzBvnn75C9HxmWW5jTNnzjR4\nfODAga0+cWtIghLC+hUUwN69sHs3fPUV9O2rn8D1kUdkoUBbY/IbdQH+9re/1TqR5ucxn8uWLWv1\niUXLJNnYGjK2Vl5o/2UuLob/9//0CWnXLn1LKTISRo2CTZsaXlq9vZe5NWyxzG3VogTVrVs3Q1Iq\nLS3lq6++IiAgwKSBCSGs040b8N13NxNSZiaMGKFPSAkJEB4Ojo6WjlJ0BC2ei6+mGzduEB0dzd69\ne00RU6Oki08I89PpIC1Nn5B274ZvvwV/fxg9Wp+UIiOha1dLRymskVm6+OoqKSkhNze3VSdsaMHC\ngoICpk6dypkzZ/D29mbDhg307NmzVe8vhGgbpeDoUX3raPdu2LcPvLz0yWj+fNiwAeSfpzCHFg3u\nDAoKMmyBgYH4+fnx3HPPteqEDS1YGB8fz5gxY/jxxx8ZPXo08fHxrXrvjsjW7p2wtfKC5cusFJw+\nDR98ANOmgYeHfsn0o0f1y6f/8AMcOaLvvpswwTjJydJltgRbLHNbtagFtXXr1psv6NQJd3d3HFo5\nHCcqKqreLLdbtmwxdBfGxsYycuRISVJCmFBurn5aoepWUkWFvstu7Fj9CrVmHqArRINadQ2qrequ\nB+Xq6kphYSGgn1rJzc3NsF+TXIMSonUuX4akpJsDGy5ehPvu03fbjRqlv3lWJmQVxmaWqY5mzJhR\nK2EUFBQwe/bsVp+0KRqNxjBiUAhx66qq9EO9N2yA3/0Ohg/XT7y6di3cfrt+FdqLF2HjRv2Ns0OG\nSHIS1qlFXXyHDx/G1dXVsO/m5kZ6errRgnB3d0er1eLh4UFeXl6tBQzrsrUFCzMzM1mwYIHVxCPl\nNf5+9bHWvL6yEvr0GUlGBmzdmsTJk5CdPRJXV+jfPwk/P1izZiR33gn79+tfHxpq+fLXLbul4zHH\n/ltvvWUTf6+MuWBhi7r4goOD2bNnD25uboC+BXXvvfcauuhuVd0uvkWLFtGrVy8WL15MfHw8V65c\nafAalC128SXZ2M19tlZeaHmZr1+Hw4chPR0yMvTbsWP660XDh0NoqH4LCYFevUwfd1vI52wbzDLV\n0SeffMLrr7/OlClTUErxz3/+k5deeokZM2bc8glrLljo7u7OH/7wByZOnMiUKVM4e/Zsk8PMbTFB\nCdtUWKhPQDWTUXa2/v6j0NCbCWnYMPh5ekwhrI5ZEhTA0aNH2b17NxqNhlGjRllkJglJUKKjUQrO\nn7+ZhKoTUkEBBAfXTkb+/jJDg2hfzJagrIEtJihb6xboyOWtqtLfb1SdjKoTUnl5EhERIw1ddMOH\ng69vx16CoiN/zo2xxTJbZCYJIUTTKirg+PHaXXSHDoGr681rRf/7v/pk9OOP+iHfQojapAUlRBs1\nNnjB2/tmMqrefh5nJIRNMGkX36pVqxo8UfV9SgsXLmz1iVtDEpSwJKVAq9W3jGpeL8rOhoCA2olI\nBi8IYeIuvqKiIjQaDSdOnODAgQNMmDABpRRfffUV4eHhrT6paDlb67e2ZHmV0g9OyMrSJ52srNqP\nz5wBFxcYPFjfNTdmDCxapE9ObVmIz9Y+Y5Ayi5ZpMkHFxcUB+vnz0tPTcXFxAeDVV1/lwQcfNHlw\nQhhbUVH9xFPzsb29ftYFb2/9z4AAePDBm8ekVSSE+bToGpSfnx+HDh3CyckJgLKyMoKDgzlx4oTJ\nA6xJuvhEc0pL9S2dxpJQaak+2dRMQjUfyzISQhiPWUbxzZgxg/DwcB5++GGUUiQmJhIbG9vqkwrR\nWhUVkJNzM+nUTUKFhTBgQO3EExZ283GfPjLvnBDtRYtH8aWlpZGcnIxGoyEqKorhw4cbPRhvb2+6\nd++Ovb09Dg4OpKam1g7WBltQttZvvWtXEoMHj6yVdGomIa0WPD1vJqC6LSFPz/Z3/5CtfcYgZbYV\nZrsPKiwsjLCwsFafqCU0Gg1JSUmGOf9Ex6MU5OfXb/lU7585o2/l1Ew6UVEwY4b+sZdX2wYkCCHa\njyZbUM7Ozo0ufaHRaLh27ZpRg/Hx8eHgwYP0amSmS1tsQbU3SsGVKw13v1WPhOvatfFrQAMHws+X\nOoUQ7VyHmuro9ttvp0ePHtjb2/PrX/+aJ598stbzkqCsQ3FxwyPgqjdofCCCt7d+qLYQouMzSxdf\nVVUVn332GVlZWSxbtoyzZ8+i1WqNfi/U/v378fT05OLFi4wZM4YhQ4YQFRVl1HO0N+bst75xQ3+N\nJy/v5lZ3/+xZKCm5mXiqf0ZG3tx3dW39QARb7KeXMtsGWyxzW7UoQT3zzDPY2dmxe/duli1bhrOz\nM8888wwHDx40ajCenp4A9OnTh5iYGFJTU+slKFtcsLCt7zdixEjy8mDbtiQuXwY3N/1+RoZ+/8YN\n/f7Vq0m4uoKPz0g8PUGpJNzc4O679fvnzyfRpw/ExIxEo2n4fIcPW7687W2/mrXEI/um2c/MzLSq\neEyxb5EFC0NDQ8nIyDD8BP0ihocOHWpzANWuX7+OTqfDxcWFkpISoqOjeeWVV4iOjr4ZrHTxGVTP\nelCzddPYppR+dJunJ3h43Hxcd+vVq/2NgBNCWC+zdPE5Ojqi0+kM+xcvXsTOyH/JLly4QExMDACV\nlZU8/vjjtZKTrais1I9yq5tkGup669q1fpIZMAAiImofc3GRe3+EEO1Pi1pQn376KRs2bCAtLY3Y\n2Fg2btzIa6+9xpQpU8wRo0F7bkGVldVPMg1tly/rWzLVyQWSGD58ZL2Wj4cHdOli6VIZX5IN9tNL\nmW2DLZbZLC2oJ554grCwMHbt2gVAYmKiRVbUtTZK6ed2a0k32/Xr4O5ev8Vz11219/v2hU41PpWk\nJLCx77QQQgBWNsy8OeZqQVVV6VsyzXWz5eXpu84au6ZTs7XTq5d0swkhbItJ74OKjIxk//79Dd6w\na4obdZvT1sJWVDR8fafuduGC/rpNUwMKal7fEUIIUZ9JE9SZM2cYOHBgq9/c2FpaWKXg97+H8+dr\nJ57CQujdu2Utns6dzVCgFrC1fmtbKy9ImW2FLZbZpNegYmJiSE9PB2Dy5Ml8+eWXrT6ROWk00KPH\nzclDa17fsbe3dHRCCCFaoskWVM37nmo+tpT2PIpPCCFsTVv/ZsttmUIIIaxSkwnq8OHDuLi44OLi\nwpEjRwyPXVxc6N69u9GD2bFjB0OGDGHQoEGsXLnS6O/fHtWdDqejs7XygpTZVthimduqyQSl0+ko\nKiqiqKiIyspKw+OioiKjj+DT6XTMnz+fHTt2cOzYMdavX8/x48eNeo72qHr+Lltha+UFKbOtsMUy\nt5XVdPGlpqZyxx134O3tjYODA9OmTWPz5s2WDsviqidetBW2Vl6QMtsKWyxzW1lNgsrNzaV///6G\nfS8vL3Jzcy0YkRBCCEuymgTV2Mq9ts4YU9a3J7ZWXpAy2wpbLHObKSvx7bffqrFjxxr2ly9fruLj\n42v9jq+vrwJkk0022WRrB5uvr2+b8oLVzMVXWVmJn58fu3bt4rbbbiM8PJz169fj7+9v6dCEEEJY\nQItmMzeHTp06sWbNGsaOHYtOp2POnDmSnIQQwoZZTQtKCCGEqMlqBkk0xVZu4PX29mbYsGGEhoYS\nHh4OQEFBAWPGjGHw4MFER0e3+6Gqs2fPxt3dnaCgIMOxpsq4YsUKBg0axJAhQ9i5c6clQm6zhsoc\nFxeHl5cXoaGhhIaGsn37dsNz7b3MOTk53HfffQQGBjJ06FD+/Oc/Ax37c26szB35cy4rKyMiIoKQ\nkBACAgJYunQpYOTPuU1XsMygsrJS+fr6qqysLFVeXq6Cg4PVsWPHLB2WSXh7e6vLly/XOvbCCy+o\nlStXKqWUio+PV4sXL7ZEaEazb98+lZ6eroYOHWo41lgZjx49qoKDg1V5ebnKyspSvr6+SqfTWSTu\ntmiozHFxcWrVqlX1frcjlDkvL09lZGQopZQqKipSgwcPVseOHevQn3NjZe7In7NSSpWUlCillKqo\nqFAREREqOTnZqJ+z1begbO0GXlWnx3XLli3ExsYCEBsbS2JioiXCMpqoqChcXV1rHWusjJs3b+bR\nRx/FwcEBb29v7rjjDlJTU80ec1s1VGao/1lDxyizh4cHISEhADg7O+Pv709ubm6H/pwbKzN03M8Z\noGvXrgCUl5ej0+lwdXU16uds9QnKlm7g1Wg03H///YwYMYIPPvgAgAsXLuDu7g6Au7s7Fy5csGSI\nJtFYGc+fP4+Xl5fh9zraZ//2228THBzMnDlzDN0gHa3M2dnZZGRkEBERYTOfc3WZ77rrLqBjf85V\nVVWEhITg7u5u6OI05uds9QnKlm7g3b9/PxkZGWzfvp133nmH5OTkWs9rNJoOXx/NlbGjlP/pp58m\nKyuLzMxMPD09ef755xv93fZa5uLiYiZPnkxCQgIudZae7qifc3FxMY888ggJCQk4Ozt3+M/Zzs6O\nzMxMzp07x759+9izZ0+t59v6OVt9gurXrx85OTmG/ZycnFpZuCPx9PQEoE+fPsTExJCamoq7uzta\nrRaAvLw8+vbta8kQTaKxMtb97M+dO0e/fv0sEqOx9e3b1/CPd+7cuYaujo5S5oqKCiZPnsz06dOZ\nNGkS0PE/5+oyP/HEE4Yyd/TPuVqPHj146KGHSEtLM+rnbPUJasSIEZw8eZLs7GzKy8v54osvmDBh\ngqXDMrrr169TVFQEQElJCTt37iQoKIgJEyawbt06ANatW2f44nckjZVxwoQJ/OMf/6C8vJysrCxO\nnjxpGN3Y3uXl5Rkeb9q0yTDCryOUWSnFnDlzCAgIYMGCBYbjHflzbqzMHflzvnTpkqHLsrS0lG++\n+YbQ0FDjfs4mG95hRNu2bVODBw9Wvr6+avny5ZYOxyR++uknFRwcrIKDg1VgYKChnJcvX1ajR49W\ngwYNUmPGjFGFhYUWjrRtpk2bpjw9PZWDg4Py8vJSH330UZNlfP3115Wvr6/y8/NTO3bssGDkrVe3\nzGvXrlXTp09XQUFBatiwYWrixIlKq9Uafr+9lzk5OVlpNBoVHBysQkJCVEhIiNq+fXuH/pwbKvO2\nbds69Od8+PBhFRoaqoKDg1VQUJD605/+pJRq+m/WrZZZbtQVQghhlay+i08IIYRtkgQlhBDCKkmC\nEkIIYZUkQQkhhLBKkqCEEEJYJUlQQgghrJIkKCGEEFZJEpQQQgirJAlKtHuXL182LAjn6elpWCBu\n+PDhVFRUGP18kZGRrX6ts7OzUWKofp+rV6/yl7/8xSjv2Zhjx44RHh7O9OnTuXjxIgAZGRkEBgay\nbds2k55b2DaZSUJ0KK+++iouLi4sXLiwxa+p/idgjtmkXVxcDHMuGuN9srOzGT9+PEeOHDFCdI17\n9dVXGThwIDNnzgQgMzMTR0dHAgICTHpeYdukBSU6nLr/5/r000+JiIggNDSUp556iqqqKrKzs/Hz\n8yM2NpagoCCSk5MZMmQIs2bNws/Pj8cff5ydO3cSGRnJ4MGDOXDggOH9nJ2dOXPmDP7+/sybN4+h\nQ4cyduxYysrKDL8TExPDiBEjGDp0qGFtr8YsXbqUd99917AfFxfHqlWrAHjzzTcJCgoiKCiIhISE\neq9dsmQJp0+fJjQ0lMWLFzd57j/+8Y8MGTKEqKgoHnvsMcM5Gqqfury8vGrNRH306FFJTsL0TDCH\noBAWExcXp9544w3D/rFjx9T48eNVZWWlUkqpp59+Wn3yyScqKytL2dnZqZSUFKWUUllZWapTp07q\n+++/V1VVVSosLEzNnj1bKaXU5s2b1aRJkwzv6ezsrLKzs1WnTp3UoUOHlFJKTZkyRX366aeG3yko\nKFBKKXX9+nU1dOhQw76zs3O9mDMyMtS9995r2A8ICFDnzp1TBw8eVEFBQer69euquLhYBQYGqszM\nzFrvk52dXWsp+YbOffnyZZWamqpCQkLUjRs3VFFRkRo0aJBatWpVo/VT144dO9S8efOUUkr95z//\nUXl5eU18CkIYRydLJ0ghTGnXrl2kpaUxYsQIQL8sgIeHB/fccw8DBw6sNd2/j48PgYGBAAQGBnL/\n/fcDMHToULKzs+u9t4+PD8OGDQMgLCys1u8kJCQYlrrOyclpcmmBkJAQ8vPzycvLIz8/H1dXV/r1\n68fGjRt5+OGH6dKlCwAPP/ww+/btIzg42PBa1UAPfc1znzt3jpMnT/Ltt98yadIkHB0dcXR0ZPz4\n8Sil2L17d4P1U1d1C0qn05Gfn8/o0aMbLIsQxiQJSnR4sbGxLF++vNax7OxsunXrVutY586dDY/t\n7OxwdHQ0PK6srKz3vjV/397entLSUgCSkpLYtWsX3333HU5OTtx33321uv8a8qtf/YqNGzei1WqZ\nNm0aoL8mVjMBKaWavU7W2Lkbeq/qnw3VT11eXl6cO3eOzZs3d8j12IR1kmtQokMbPXo0GzduNIw+\nKygo4OwFbYPFAAAf0UlEQVTZsyY957Vr13B1dcXJyYkffviB7777rtnXTJ06lfXr17Nx40Z+9atf\nARAVFUViYiKlpaWUlJSQmJhIVFRUrdfVHXTR0Lk1Gg2RkZFs3bqVGzduUFxczNdff41Go2lx/fTo\n0YOCggLs7OzqJXYhTEVaUKLDqdnK8Pf357XXXiM6OpqqqiocHBx49913DUtxN/a6uvsNPW7s98eN\nG8d7771HQEAAfn5+/OIXv2j0HNUCAgIoLi7Gy8sLd3d3AEJDQ5k5c6aha/DJJ580dO9Vv0+vXr2I\njIwkKCiIBx98kD/+8Y8NnnvEiBFMmDCBYcOG4e7uTlBQED169Gi0fgYMGFAvxsjISGk9CbOSYeZC\n2IiSkhK6devG9evXuffee/nggw8ICQmxdFhCNEpaUELYiHnz5nHs2DHKysqYOXOmJCdh9aQFJYQQ\nwirJIAkhhBBWSRKUEEIIqyQJSgghhFWSBCWEEMIqSYISQghhlSRBCSGEsEqSoIQQQlglSVBCCCGs\nkiQoIYQQVkkSlBBCCKskCUoIIYRVkgQlhBDCKkmCEsJI0tLSeOihh/jFL37B2rVr+fDDD3njjTe4\n/fbbycrKuuX3S05OZuzYsURERLBu3bpaz61evZqXXnqJ999/31jhC2F1ZLkNIYwkLCwMFxcXHnvs\nMR5//HHDcWdnZ2677bZbfr+oqCicnJxYuHAhU6dONRy/evUqGzZsICEhQVa3FR2atKCEMKJ9+/Yx\nduxYAD777DMARo0aRefOnW/5vXQ6HcnJyYwcObLW8ZSUFEJCQggPDycwMLDNMQthrSRBCWEkR48e\nxcHBgY0bN/Lkk09y5MgRALp27UpiYiJTpkwB9N1zb7zxBgDXrl1jzZo1bNu2jTfffLPW+6Wnp+Ph\n4WFYAh70ySkhIYHKyko2bdpkppIJYRmSoIQwkj179jB58mSeeuopli5dyn333QfoW1WhoaFotVoA\npk2bhp2d/p9eYmIiOTk53H333Rw7dqzW++3evZtRo0bVOhYREUGXLl1YsGABMTExZiiVEJYjCUoI\nI0lKSiIyMhKAfv36MXr0aAoKCnB2dmbt2rXMnDkTgIKCAu6//34AHnjgAS5dukRQUBBhYWH13q86\nydV0/PhxAgICTFsYIayAJCghjEApxd69ew0JqnPnznTq1Ik333yTcePGkZaWRkREBAAZGRkMGzaM\nlJQUXnrpJdauXUtaWhp79+41vF9FRQX79++vd/3pwoUL9O7dG41GY7ayCWEpMopPiDY6fPgwn3/+\nOWVlZXz99dcAlJSUsH37doKCgnB0dGTatGkkJiZy4sQJ7r77bgD69u1LWFgYW7Zs4aeffmLVqlWA\n/jrT559/jr29PZs2bWLu3LmGc6WkpBiSoBAdnUYppcx1spycHGbMmEF+fj4ajYZ58+bxm9/8hri4\nOD788EP69OkDwIoVKxg3bpy5whLC6qWlpfHBBx/g5ubG1KlTCQ4OtnRIQpicWVtQDg4OrF69mpCQ\nEIqLiwkLC2PMmDFoNBoWLlzIwoULzRmOEO2Gvb09Xl5edO3aVZKTsBlmTVAeHh54eHgA+psX/f39\nyc3NBfR9+EKIhoWEhBASEmLpMIQwK4sNksjOziYjI4O77roLgLfffpvg4GDmzJnDlStXLBWWEEII\nK2GRBFVcXMwjjzxCQkICzs7OPP3002RlZZGZmYmnpyfPP/+8JcISQghhTZSZlZeXq+joaLV69eoG\nn8/KylJDhw5t8LnbbrtNAbLJJptssrWDzdfXt035wqwtKKUUc+bMISAggAULFhiO5+XlGR5v2rSJ\noKCgBl9//vx5lFKyNbG98sorFo/B2jepI6kjU9dRWVkehw6N4+DBcEpKTlo8Vkttp0+fblPOMOsg\nif379/Ppp58ybNgwQkNDAVi+fDnr168nMzMTjUaDj4+PLCHQBtnZ2ZYOwepJHTVP6qh5jdXRpUtf\n8eOPT+LpOZeBA5dhZ+dg3sA6ELMmqF/+8pdUVVXVO/7AAw+YMwwhhDA6ne46p0+/wOXLXxMQsIGe\nPaMsHVK7JzNJdDDV872JxkkdNU/qqHk166ioKJPjxx/D2TmEESMycXDoabnAOpBbnkkiISGB5557\njvz8fPr27WuquBqk0Wi4xXCFEMJklKri3LnVnD0bzx13vIW7++PNv8iGtPVv9i0PkujduzdxcXEs\nW7aMrVu3cunSpVafXBhfUlKSpUOwelJHzZM6at7Onf/k0KFoLl78F8OHp0pyMoFb7uKrXsr61KlT\nlJaWsnnzZpydnWstSS2EEB3ZxYubOHFiHoMHL2TAgKXY2cnVElMwymSxX3zxhVkSlHTxCSEsqbKy\nmNOnf0th4W78/T+jR4+7LB2SVTNpF99HH33UojeR1pMQoqO7du0AaWnDqaqqYMSITElOZtBkglqy\nZAmzZs3ivffeIz09HZ1OZ3hO7pOwTnLtoHlSR82TOrpJKR1nzqzgyJGH8PH5I/7+f6NTJxepIzNo\nsuP0+eefJyIigpSUFJYvX86RI0fo3bs34eHhaLVa1q9ff0sna2w9qIKCAqZOncqZM2fw9vZmw4YN\n9OwpwzSFEJZVVnaW48enAxrCwg7i5DTA0iHZlCavQSml6i0trdVqSUlJYc2aNXzzzTe3dDKtVotW\nq621HlRiYiIff/wxvXv3ZtGiRaxcuZLCwkLi4+PrByvXoIQQZpKf/wUnTz6Ll9dCBgx4AY3G3tIh\ntTtt/Zvd6kES+/bt45577mn1iQEmTZrE/PnzmT9/Pnv37sXd3R2tVsvIkSP54Ycf6gcrCUoIYWKV\nldc4efJZrl37Fn//z+nefYSlQ2q3zH4fVLW2Jqfq9aAiIiK4cOEC7u7uALi7u3PhwoU2vbctk37x\n5kkdNc9W6+jq1W85eDAUOztHwsLSm0xOtlpH5mSRwfvFxcVMnjyZhIQEXFxcaj2n0WjqdSsKIYQp\nVVVVcPbsCnJz32Hw4L/Qp8/Dlg5JYIEEVVFRweTJk5k+fTqTJk0CMHTteXh4kJeX1+QUSjNnzsTb\n2xuAnj17EhISwsiRI4Gb/6Ox9f1q1hKP7Le//ZEjR1pVPKbaV0oxbNh1Tp16nu+/707//msMyam5\n11cfs6byWHo/MzPTsCK6MUZ6t+ga1OLFi1m5cmWzx5qjlCI2NpZevXqxevVqw/FFixbRq1cvFi9e\nTHx8PFeuXJFBEkIIkyou/p7TpxdSVnaWO+5YhZvbg9J7Y2RmuQa1c+fOese2bdt2yyerXg9qz549\nhIaGEhoayo4dO1iyZAnffPMNgwcPZvfu3SxZsuSW31voVf+vRjRO6qh5HbmOyssv8uOPz3Do0Ch6\n9fof7rzzCL16PXTLyakj15G1aLKL7y9/+Qvvvvsup0+frrXKbVFREZGRkbd8ssbWgwL4z3/+c8vv\nJ4QQLVVVVU5u7tucObMCd/fHCQ//AQcHN0uHJZrQZBff1atXKSwsZMmSJbW681xcXHBzM/8HK118\nQohbpZTi8uUtnD79O7p0GYyv7xt06+Zv6bBsglnugyorK+PLL78kOzubyspKw4mXLVvW6hO3hiQo\nIcStKC4+xKlTv6W8/AJ33PEmbm5jLR2STTHLNaiJEyeyZcsWHBwccHZ2xtnZmW7durX6pMJ0pF+8\neVJHzWvvdVRefoETJ+Zx6FA0ffr8ihEjDhk9ObX3OmoPWjTMPDc3l3//+9+mjkUIIdpEpysjNzeB\ns2f/Dw+PWMLDT8jy6+1Yi7r45s2bx/z58xk2bJg5YmqUdPEJIRqi05Wi1X7E2bN/wtk5FF/f/6Nr\n10GWDsvmmeUalL+/P6dOncLHx4fOnTsbTnz48OFWn7g1JEEJIWqqrLxKbu67nDuXQPfuEQwYsFTW\nabIibf2b3aIuvu3btxvlZML0at7ZLhomddQ8a6+j8vJ8zp17i/Pn/0qvXg8QHPwfnJ2HmjUGa6+j\njqBFgyQGDBhAcnIy69atw9vbGzs7O/Lz800dmxBC1FJWdoaTJ58lNXUIlZVXCAs7gL//382enIR5\ntKiL76mnnsLOzo7du3fzww8/UFBQQHR0NAcPHrzlE86ePZuvv/6avn37cuTIEQDi4uL48MMP6dOn\nDwArVqxg3Lhx9YOVFpwQNqmk5Bhnz67k8uWv8PSci5fXb+nc2cPSYYlmmGWYeUpKCu+++y5dunQB\nwM3NjYqKiladcNasWezYsaPWMY1Gw8KFC8nIyCAjI6PB5CSEsD3Xrh3g++8fJjPzPrp0GURExCl8\nfVdKcrIRLUpQjo6O6HQ6w/7Fixexs2vdUlJRUVG4urrWOy4tI+OQezOaJ3XUPEvWkVKKwsLdZGbe\nz9GjD9Oz50juuusnvL1/j4ND/b8dliLfI9NrUZZ59tlniYmJIT8/nxdffJHIyEiWLl1q1EDefvtt\ngoODmTNnjmG6diGE7VCqiosXE0lPv4sff3wGd/fHiYg4jZfXb7C3l4kBbFGLl3w/fvw4u3btAmD0\n6NH4+7d+Lqvs7GzGjx9vuAaVn59vuP708ssvk5eXx9q1a+sHK9eghOhwKiqukJ//D3Jz38bOzokB\nA5bSp08MGo29pUMTbWTyYeZKKc6dO4e/v3+bklJTai5QOHfuXMaPH9/o78qChbIv++1/X6kqtm59\nk4KC7fj6puHmNgatdhYuLmH07XufxeOT/XayYKFSiqCgIL7//vs2n6xa3RZUXl4enp6eAKxevZoD\nBw7w+eef1w9WWlDNSpJ7M5olddQ8U9VRaelptNq/odWuw8GhNx4es3B3fwwHh15GP5epyfeoeSZv\nQWk0GsLCwkhNTSU8PLzVJ6r26KOPsnfvXi5dukT//v159dVXDZlXo9Hg4+PD+++/3+bzCCGsg05X\nwsWLG8nL+5jr14/St+/jBAVtxdk52NKhCSvXomtQfn5+nDp1ioEDBxpmMZepjoQQjVFKcfXqfrTa\nj7l06V907x6Jp+csevUaj52do6XDE2Zi8rn4lFIkJyczYMCAes9VXwsyF0lQQli3srJzXLjwCVrt\n39Bo7H/uwptO586elg5NWIBZEpSxr0G1liSo5km/ePOkjpp3K3Wk05Vx+fIWtNqPuXYthT59HsHD\nYzbdu0eg0WhMG6gFyfeoee3uGpQQov1TSlFcnE5e3sfk5/8DZ+dgPDxmERj4Jfb2XS0dnugg5BqU\nEKJFlFKUlp7k8uWv0Wo/RqcrwsNjJu7usXTp4m3p8IQVMst6UGfOnGnw+MCBA1t94taQBCWE+eh0\npRQVHeTatf9y9ep+rl79L/b23ejZ8z48PGLp2fNeNJrWTXkmbINZEtSrr75a60TV/crLli1r9Ylb\nQxJU86RfvHlSRw27cSOPq1f3c+3af9m1awf+/mfo1i2Q7t3vpkePu+ne/W6cnLwsHabVkO9R88yy\nYGG3bt0MSam0tJSvvvqKgICAVp9UCGFZVVWVlJR8z7Vr+pbRtWv/pbLymiER9es3j8jIeXI9SVhU\ni+fiq+nGjRtER0ezd+9eU8TUKGlBCdE6lZVXuXbtO0NXXVFRKp07e9VqHXXt6tehR90J8zNLC6qu\nkpIScnNzW3XChhYsLCgoYOrUqZw5cwZvb282bNhAz549W/X+Qtg6/WCG0z9fO/ov167tp7Q0CxeX\nEfToEUn//r+le/e72uX0QsK2tOgKZ1BQkGELDAzEz8+P5557rlUnbGjBwvj4eMaMGcOPP/7I6NGj\niY+Pb9V7C1mjpiU6Wh3pdGVcvbqfs2f/j++/j+G///UgM3Mkly9/TbduAfj5fcwvf1lIaGgSt9/+\nOr16PdRscupodWQKUkem16IW1NatW2++oFMn3N3dcXBwaNUJo6Ki6s1yu2XLFkN3YWxsLCNHjpQk\nJUQjbtzQ1mgd/Zfi4kN07epPjx5306fPVO644884OfW3dJhCtFmrrkG1Vd3ZzF1dXSksLAT03RNu\nbm6G/ZrkGpSwNUrpKCk5auiqu3r1v1RWFtK9+y8M1466dw+XBf2EVTLLNagZM2aQkJBgWKq9oKCA\n3/3ud3z00UetPnFjNBqNXKgVNkcpRXn5BUpKvv95O0JJyfdcv34MR8fb6NEjkh497mXAgKV07TpE\n7j8SNqFFCerw4cOG5ATg5uZGenq60YJwd3dHq9Xi4eFBXl5erQUM65IFC5tfMGzBggVWE4817lcf\ns9T5IyNDKCn5nm+++RdlZVkMHVpIScn3ZGRU0KWLD/feG0X37uGcOhWCk5MPUVH/U+P1+YwcGWDy\neOvWlTnrp73sv/XWW/L3p86+2RcsBAgODmbPnj24ubkB+hbUvffea+iiu1V1u/gWLVpEr169WLx4\nMfHx8Vy5cqXBa1DSxde8JLl5sFnmqiOd7jrXrx+v0SrSb5WVV+jaNZBu3YbW2hwd3a2m90C+R82T\nOmqeWWaS+OSTT3j99deZMmUKSin++c9/8tJLLzFjxoxbPmHNBQvd3d35wx/+wMSJE5kyZQpnz55t\ncpi5JChhjaqqKigtPVmve+7GjXN06TK4XiJychooXXTCJpglQQEcPXqU3bt3o9FoGDVqlEVmkpAE\nJSxJqSrKys7USkIlJd9TWnqSzp3710lEQXTpcgd2dq0b7SpER2C2BGUNJEE1T7odmtdcHekHLGjr\ndc1dv36MTp161kpC3boNpWvXIR1uSiD5HjVP6qh5FplJQoiOoqKikJKSo/WSESi6dQvC2TmI7t3D\n8fScTdeugTg4yAwnQpiLtKCETag5YKG4+Gb3nE531eoHLAjRXpm0i2/VqlUNnqj6H+7ChQtbfeLW\nkAQlGqOUorKykLKyM5SVneHGDf3P0tKfuH79qAxYEMICTNrFV1RUhEaj4cSJExw4cIAJEyaglOKr\nr76S5d+tVEftF1eqivJybb0EVHMf7HByGoiT00A6d9b/7N79F3TrFkiXLoMMAxY6ah0Zk9RR86SO\nTK/JBBUXFwfo589LT0/HxcUF0C9g+OCDD5o8OGE7qqrKuXHjXBMJ6BydOvWolYC6dvXHzW2cYV+u\nDwnRsbToGpSfnx+HDh3CyckJgLKyMoKDgzlx4oTJA6xJuvjaL52upF6Lp+Z+RUU+jo6e9VpAN/cH\nYG/fxdLFEELcArPNxRceHs7DDz+MUorExERiY2NbfdLGeHt70717d+zt7XFwcCA1NdXo5xDGp7/+\nU9BkAqqqKqFz5wG1EpCb2wOGfUfHftjZyaBSIcRNLR7Fl5aWRnJyMhqNhqioKIYPH270YHx8fEhL\nSzNMqVSXtKCaZ4p+cf31n7wmE5BG06lOi6d2C8jBoa/VjIqTawfNkzpqntRR88x2H1RYWBhhYWGt\nPlFLSQIyP/31n5xGE5D++o9rrYTTtWsgbm4PGvY7deph6WIIITqYJltQzs7Ojf6vV6PRcO3aNaMG\nc/vtt9OjRw/s7e359a9/zZNPPlnvnJLAbl1lZXGDo95uXv+5ROfOtzV43efm9R8nSxdDCNHOmLQF\nVVxc3Oo3bo39+/fj6enJxYsXGTNmDEOGDCEqKsqsMbQ3+u63fG7cyOHGjbOUlZ2tl4Cqqkrrdbs5\nO/+PYb9z59vQaOwtXRQhhKilRV18VVVVfPbZZ2RlZbFs2TLOnj2LVqs1+r1Qnp6eAPTp04eYmBhS\nU1PrJShbWg9qz5496HRF3HXXQMrKctiz5z9UVOQTEmLHjRs5fPvtj5SXX+bOO3vSuXN/Dh/uwunT\ndjz11CR69owiNfUSjo7u3H//RDQaTSPnO83Ikf2torzm2q8+Zi3xWON+3bqydDzWuC/rQdXft8h6\nUE899RR2dnbs3r2bH374gYKCAqKjozl48GCbA6h2/fp1dDodLi4ulJSUEB0dzSuvvEJ0dPTNYDtY\nF5++6y3HsJWVna3xWP9To3HAyak/nTvf3PT7A37e96rV/ZYkF26bJXXUPKmj5kkdNc8ss5mHhoaS\nkZFh+An6RQwPHTrU6hPXlZWVRUxMDACVlZU8/vjjLF26tHaw7ShBVVXd+PnG04YT0I0bOVRV3aiT\ndGomIX0C6tTJxdJFEUKIVjHLKD5HR0d0Op1h/+LFi9jZGXf+Mh8fHzIzM436nqZSVVVJeXlevdaO\n/hqQ/nFlZSGdO/erlXScnYPo1etBw76DQy+rGXothBDWpkUJ6tlnnyUmJob8/HxefPFFNm7cyGuv\nvWbq2CxCKUVFRX6tls/NJKRvAZWXX8DBoXetlo6Tkzc9ekQZWkL62bDNP/BAuh2aJ3XUPKmj5kkd\nmV6LEtQTTzxBWFgYu3btAiAxMdEiK+q2lX7GgysNtHxqdsHlYm/vXKPLbQBOTv1xdg6t0Rq6DTs7\nR0sXRwghOrQOtR6Ufr63hlo+NxOQRmPXwHWfATUee3W41VGFEMISTDpIIjIykv379zd4w64pbtRt\njkajobAwqdEkVFV1nc6dvRod8ebk1F9mPBBCCDMxaYI6c+YMAwcObPWbG5tGoyEtLbLREW8ODr1t\nftCB9Is3T+qoeVJHzZM6ap5JR/HFxMSQnp4OwOTJk/nyyy9bfSJjGT78/1k6BCGEEGbQZAuq5n1P\nNR9bSnu6D0oIIWxdW/9mG/dmJiGEEMJImkxQhw8fxsXFBRcXF44cOWJ47OLiQvfu3Y0ezI4dOxgy\nZAiDBg1i5cqVRn9/W1BzDjXRMKmj5kkdNU/qyPSaTFA6nY6ioiKKioqorKw0PC4qKjL6CD6dTsf8\n+fPZsWMHx44dY/369Rw/ftyo57AF7WU2DkuSOmqe1FHzpI5Mz2q6+FJTU7njjjvw9vbGwcGBadOm\nsXnzZkuH1e5UzyQsGid11Dypo+ZJHZme1SSo3Nxc+vfvb9j38vIiNzfXghEJIYSwJKtJULZ+/5Kx\nGGMNlo5O6qh5UkfNkzoyvRbNxWcO/fr1Iycnx7Cfk5ODl5dXrd/x9fWVRNYC69ats3QIVk/qqHlS\nR82TOmqar69vm15vNXPxVVZW4ufnx65du7jtttsIDw9n/fr1+Pv7Wzo0IYQQFmA1LahOnTqxZs0a\nxo4di06nY86cOZKchBDChllNC0oIIYSoyWoGSdTl7e3NsGHDCA0NJTw8HICCggLGjBnD4MGDiY6O\ntrlhnrNnz8bd3Z2goCDDsabqZMWKFQwaNIghQ4awc+dOS4Rsdg3VUVxcHF5eXoSGhhIaGsr27dsN\nz9liHeXk5HDfffcRGBjI0KFD+fOf/wzId6mmxupIvks3lZWVERERQUhICAEBASxduhQw8vdIWSlv\nb291+fLlWsdeeOEFtXLlSqWUUvHx8Wrx4sWWCM1i9u3bp9LT09XQoUMNxxqrk6NHj6rg4GBVXl6u\nsrKylK+vr9LpdBaJ25waqqO4uDi1atWqer9rq3WUl5enMjIylFJKFRUVqcGDB6tjx47Jd6mGxupI\nvku1lZSUKKWUqqioUBERESo5Odmo3yOrbUEB9SYZ3LJlC7GxsQDExsaSmJhoibAsJioqCldX11rH\nGquTzZs38+ijj+Lg4IC3tzd33HEHqampZo/Z3BqqI6j/XQLbrSMPDw9CQkIAcHZ2xt/fn9zcXPku\n1dBYHYF8l2rq2lW/uGt5eTk6nQ5XV1ejfo+sNkFpNBruv/9+RowYwQcffADAhQsXcHd3B8Dd3Z0L\nFy5YMkSr0FidnD9/vtYwfVu/8fntt98mODiYOXPmGLocpI709/JkZGQQEREh36VGVNfRXXfdBch3\nqaaqqipCQkJwd3c3dIka83tktQlq//79ZGRksH37dt555x2Sk5NrPa/RaOSeqDqaqxNbra+nn36a\nrKwsMjMz8fT05Pnnn2/0d22pjoqLi5k8eTIJCQm4uLjUek6+S3rFxcU88sgjJCQk4OzsLN+lOuzs\n7MjMzOTcuXPs27ePPXv21Hq+rd8jq01Qnp6eAPTp04eYmBhSU1Nxd3dHq9UCkJeXR9++fS0ZolVo\nrE7q3vh87tw5+vXrZ5EYLa1v376Gfyhz5841dCvYch1VVFQwefJkpk+fzqRJkwD5LtVVXUdPPPGE\noY7ku9SwHj168NBDD5GWlmbU75FVJqjr169TVFQEQElJCTt37iQoKIgJEyYY7txet26d4Utjyxqr\nkwkTJvCPf/yD8vJysrKyOHnypGE0pK3Jy8szPN60aZNhhJ+t1pFSijlz5hAQEMCCBQsMx+W7dFNj\ndSTfpZsuXbpk6OIsLS3lm2++ITQ01LjfI5MN72iDn376SQUHB6vg4GAVGBioli9frpRS6vLly2r0\n6NFq0KBBasyYMaqwsNDCkZrXtGnTlKenp3JwcFBeXl7qo48+arJOXn/9deXr66v8/PzUjh07LBi5\n+dSto7Vr16rp06eroKAgNWzYMDVx4kSl1WoNv2+LdZScnKw0Go0KDg5WISEhKiQkRG3fvl2+SzU0\nVEfbtm2T71INhw8fVqGhoSo4OFgFBQWpP/3pT0qppv9O32odyY26QgghrJJVdvEJIYQQkqCEEEJY\nJUlQQgghrJIkKCGEEFZJEpQQQgirJAlKCCGEVZIEJYQQwipJghJCCGGVrGbJdyFs0fvvv8/vf/97\nli9fjkajISsrC61Wy9q1ay0dmhAWJwlKCAuKiIggOjqaJ5980nDM1tY5E6Ix0sUnhAV99913REZG\nAvD1118D+qQlhJAEJYRFHThwgMuXL/O73/2OY8eOATeXmhHC1kkXnxAWdPjwYT744APy8/M5ceIE\nN27coLy8vN4CgkLYImlBCWEhRUVF2NvbY2dnR69evYiMjGTPnj04OTlZOjQhrIIkKCEs5MCBAwQH\nBwPg4OCAnZ0dJ0+exMHBwcKRCWEdpItPCAs4cOAACQkJODo6snbtWkpLS9m4cSOLFy+2dGhCWA1Z\nsFAIIYRVki4+IYQQVkkSlBBCCKskCUoIIYRVkgQlhBDCKkmCEkIIYZUkQQkhhLBKkqCEEEJYJUlQ\nQgghrNL/B/LwApWB5UraAAAAAElFTkSuQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x7ff4f051ee90>" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "From the plot we can see that when the current If=25 A the terminal voltage is V=250 V with the back emf E=258V\n", "Hence the rquired braking resistance is 1.429 ohm\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No:5.7,Page No:72" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "from array import array\n", "import numpy \n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "\n", "#variable declaration\n", "#ratings of the DC series motor which operated under dynamic braking\n", "Ra=0.5 #total resistance of armature and field windings\n", "Rf=10 #field resistance\n", "T=500 #overhauling load torque in N-m\n", "N=600 #speed at the overhauling torque T\n", "\n", "#magnetisation curve at a speed of 500 rpm\n", "N1=500 #speed in rpm\n", "Ia=[20, 30, 40, 50, 60, 70, 80] #armature current\n", "E =[215,310,381,437,482,519,550] #back emf\n", "\n", "#calculation\n", "Wm1=2*math.pi*N1/60\n", "print\"\\nArmature current :\",Ia,\"A\"\n", "Ke_flux=[E / Wm1 for E in E] #Ke*flux=constant\n", "Ke_flux=[round(Ke_flux,3) for Ke_flux in Ke_flux] \n", "print\"\\nKe_flux :\",Ke_flux\n", "Ke_flux=numpy.array(Ke_flux)\n", "Ia=numpy.array(Ia)\n", "T=numpy.array(Ke_flux)*numpy.array(Ia) #torque\n", "T=[round(T,1) for T in T]\n", "print\"\\nTorque :\",T,\"N-m\"\n", "\n", "\n", "#results\n", "#plotting the values of Ke*flux vs Ia and T vs Ia\n", "plt.subplot(2,1,1)\n", "plt.plot(Ia,Ke_flux,'y')\n", "plt.xlabel('Armature current $I_a$')\n", "plt.ylabel('$Ke*flux$')\n", "plt.title('$Ke*flux vs Ia$')\n", "plt.grid()\n", "\n", "plt.subplot(2,1,2)\n", "plt.plot(T,Ia)\n", "plt.xlabel('Torque $T$')\n", "plt.ylabel('Armature current $I_a$')\n", "plt.title('$T vs Ia$')\n", "plt.grid(True)\n", "plt.tight_layout()\n", "plt.show()\n", "\n", "print\"\\nFrom the plot we can see that at the given torque T=500 N-m the current Ia is 56 A, and Ke*flux is 8.9 at Ia=56 A\"\n", "Ke_flux=8.9 #value of Ke*flux at T=500 N-m from the plot\n", "Ia=56 #value of Ia at at T=500 N-m from the plot\n", "Wm=2*math.pi*N/60\n", "E=Ke_flux*Wm #required emf\n", "x=E/Ia #x=Ra+Rb\n", "Rb=x-Ra #required braking resistance\n", "print\"Hence the rquired braking resistance is \",round(Rb,3),\"ohm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Armature current : [20, 30, 40, 50, 60, 70, 80] A\n", "\n", "Ke_flux : [4.106, 5.921, 7.277, 8.346, 9.206, 9.912, 10.504]\n", "\n", "Torque : [82.1, 177.6, 291.1, 417.3, 552.4, 693.8, 840.3] N-m\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAakAAAEbCAYAAABgLnslAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlclOX6+PEPIMqqgAiYG4YCsggoguKGopiZFWmoWVp+\nW051+pbfSq1+racSz2mzY3U6bcfUpFWPmpahoJSKiBDupIFgCqiAIjCs9++PkRFckmVgZpjr/XrN\nS56Z4bmva1Au7+W5HwullEIIIYQwQpaGDkAIIYS4FilSQgghjJYUKSGEEEZLipQQQgijJUVKCCGE\n0ZIiJYQQwmhJkRJCCGG0pEgJIYQwWlKkhNlLSUlh0qRJREREsGrVKt3zMTExTJ8+nc2bN+ulnbff\nfpvnnnuODz/8kC+++IIePXro5bzNkZyczKRJkwgPD2f58uXt3r4QzdXJ0AEIYWjh4eHY2Ngwb948\nZsyYAcDmzZtZtGgR4eHhemnj3LlzfPXVVyxduhR7e3uqq6uJjIzUy7mbY/To0djY2PB///d/ulyF\nMGbSkxJmr7a2luTkZCIjI6moqGDlypUEBQU1q0CdOXOG8+fPX/P1lJQUgoODCQsLw9/fny1btjB+\n/Hh9hN8sDXMVwhRIkRJmb+/evXh4eFBaWsqECRPo168f7u7ujd5z4MABFi5cyPfff88rr7xyxTkS\nExNJS0u76vlTUlJYunQpNTU1rFmzBoCkpCTGjx9PXl4e3333HbNmzQKgurqaCRMm6L533bp1fP/9\n9yxatIhVq1Zxzz33cPjwYU6cOMHatWuJjY0FtEOJb7zxBgDnz59n2bJlbNy4kbfeeuuqudbnl5WV\nxfPPP8/GjRu5++672bBhQ0s+QiHajBQpYfa2bt2Kk5MT+fn53Hrrrfzzn/9s9HphYSFTpkzhqaee\nYsqUKWg0Gt1r+fn5zJgxg/Lycs6ePcv06dO5cOFCo+8PDw/H1taWJ554gpiYGGprazl69Cg+Pj4c\nPnyYsLAw/vjjD0Bb0Pr16wdAbm4ufn5+TJkyhZ9++okpU6Ywc+ZM+vbtS1ZWFiEhIeTn5wMwc+ZM\nLC21/5zXrl1LXl4eERERHDx48Ipc63twZWVlxMbG8uSTT3LzzTdz8uRJwsLC9PjJCtF6UqSE2UtK\nSuKJJ55g1KhRPPDAA2zevJm8vDzd619//TX9+vUjPT2dVatW8dhjj+le8/Dw4MMPP2TFihXEx8ez\nYsUKHBwcrmjj0KFD+Pn5AZCamsqwYcMAmDhxIv/5z3+4++67AdiyZQsTJ04EoG/fvgwYMICCggIc\nHR1xcnJiypQp2NnZMX78eD755BPuvfdeAIqKinQ9sMmTJ3PmzBkCAwMZOnRoozgSExMZN24cAN99\n9x2BgYE4OTmh0Wi4cOECbm5u+vhIhdAbKVLCrFVXV/PLL7/oehcuLi7MmjWL9957T/ceW1tbJk+e\nTHR0NLNnz8bCwoLKykoATp06xSOPPMJ9993H3XffzZw5cygtLW3URkFBAa6urlhYWADo5oTqh/52\n7drFqFGjAEhISGDcuHH8+OOPHD58mIyMDDZu3MiYMWMA2Lhxo+68aWlpunmz9PR0Bg8eTEpKCs89\n9xyffPIJaWlpbNu2rVGuO3bs0M1HnTlzhqCgIF27w4cP54cfftDPByuEnli99NJLLxk6CCEMIT09\nnTfffJP09HQGDBhAcHAwpaWlrF27llWrVtGzZ0+Cg4Px9fVly5YtlJeXc/jwYXJzcwkICADA0dGR\nadOmcfToUbp3787TTz9Nly5dGrWzdetWLC0tiYqKArTF4bfffmPQoEF4enpSXl5Oeno6p06d4vTp\n01RXVzNy5EjWr1/P/v37cXBwID8/n7KyMnr27MkNN9wAQF1dHSkpKZw5c4Zhw4bh7OxMdXU1FRUV\nnDx5ku3btzN//ny6du1KSkoKb775Jvv27aNPnz4MGTKE/v37s3HjRpRSFBYWUlhYiKurqy43IYyB\nRXvf9HDevHl8//33uLm5sW/fPkA7nPLSSy9x+PBhUlNTGTJkSHuGJESbSEtL46OPPsLFxYUZM2bo\nei1CiKZr9+G+++6774ohhcDAQNasWaMb0hCiI7CysqJ37964urpKgRKihdr9Yt7Ro0eTk5PT6Dlf\nX9/2DkOINhccHExwcLChwxDCpMnCCSGEEEZLipQQQgijZTJ79/Xq1YuTJ08aOgwhhBDN5OXlxdGj\nR1v0vUbXk7rWYsOTJ0+ilDK7x9y5cw0eg+QsOUvOkndrHseOHWtxTWj3IjVr1iwiIiI4cuQIffr0\n4dNPP2Xt2rX06dOHXbt2MWXKFCZPntzeYQkhhDBC7T7ct3r16qs+f/vtt7dzJKbB09PT0CG0O8nZ\nPJhjzmC+ebeU0Q33icbM8ZYKkrN5MMecwXzzbimTWTghhBDCOCmlqK4+TWVlHhpNHpWVDR8nWnVu\nKVJCCCGuSSlFTU2JruhcXoQ0mjyqqv7A0tIeG5s+dOly6eHgEESXLn2AsS1uv1337rvavn1FRUXM\nmDGD48eP4+npyVdffYWTk9OVgVpY0I6hCiGEWaipKb1mAaqsPIFGk4eFhRVduvS5oghdOu6NlZXd\nNdtoze/vdi1SycnJODg4MGfOHF2RWrBgAa6urixYsIAlS5ZQXFxMXFzclYFKkRJCiGapra2gsvLE\nn/aClKq+ouBcXoQ6deraqjhMpkgB5OTkMHXqVF2R8vX1Zdu2bbi7u5Ofn09kZCSHDx++MlAzLVJJ\nSUlmN9EqOZsHc8wZ9Jd3XV0VlZV/XNHraViEampK6dKl15/2gjp1ctbd66yttOb3t8HnpAoKCnB3\ndwfA3d2dgoICA0ckhBCGpVQtlZWnruj1NDyurj5L584ejYqOnZ03zs5RumNr6x5YWJj2Im6D96Sc\nnZ0pLi7Wve7i4kJRUdEV32euPSkhRMeiVB1VVYW63s/VilBVVT7W1q5XmftpOBzXEwsLK0On0yQm\n3ZOqH+bz8PDg1KlTuLm5XfO99957r+5COCcnJ4KDg3Xd5qSkJAA5lmM5lmODH2/Z8j2VlScZNsyF\niopjJCX9TFXVHwQElFBZeYLMTBs6d3YjIsKPLl36kJ5ehbX1AMaPf5QuXfqwc+dvKGVNRMSftXfU\naPK9/Pidd94hIyNDLxcuG7wntWDBArp3787ChQuJi4ujpKREFk40kGSG4/aSs3kw5ZyVqqOy8iQa\nzTEqKo5RUfH7xa9/p6LiGHV1Gmxtb8TW1gsbm4Z/3sjOndlERU0ydArtymR6UrNmzWLbtm2cOXOG\nPn368Morr7Bo0SJiY2P55JNPdEvQhRDC0GprK9BoftcVHu3X2j81mhw6dXLWFSBb2xtxcZmiK0zW\n1m7XXIxgZSV3c2iOdu9JtZS59qSEEG2jfpeEhgWo4dfV1UXY2HjqipCNjVeD3lH/P70uSDRmUkvQ\nW0qKlBCiuerqqtBojjcoQpeG5TSa37Gw6HKNYTkvunS5wWQWJhg7KVIdmCmP27eU5Gwe9JVzdXVJ\no/mghr2iqqpTdOnSq8GwnFejIbpOnbq1PpFmMseftcnMSQkhRHNprxk6cdW5oYqKYyhVfXEoTlt4\nHByG0KPH9Iu9ob5YWlobOgXRCkbTk1q6dCkff/wxSikeeOABHn/88Uavm2tPSghzUFtbphuCazws\ndwyNJhdra9crhuXqv7a2dm3zHRNE65h8T2r//v18/PHHpKamYm1tzU033cQtt9yCl5eXoUMTQuhJ\nXV0NGs3vlJUdpLz8IOXlh3XDcrW157Cx6a8rPHZ23ri43HTx2BMrK1tDhy8MxCiK1OHDhwkPD8fG\nxgaAsWPH8t133/H0008bODLDM8fxa8nZtNXVVVFRcVRXjOr/rKj4jc6db8De3g87Oz8OHuxJVNT9\n2Np60blzT5PfvqepOtLPuj0YRZEKCAjgueeeo6ioCBsbG77//nvCwsIMHZYQ4k/U1VVSXp51sRAd\naFCMfsfGpi92dn7Y2/vj6joVO7uF2Nn5NFq2nZeXhJPTGANmIExBs4vU77//Ts+ePbG11V/329fX\nl4ULFxIdHY29vT0hISFYWl75vyrZFsk8jiMjI40qnvY4rn/OWOJpeFxbW86PP65Co8khOBjKyw+y\nffseqqsLGDFiAHZ2fuzbZ0eXLn5ER7+Ara03ycm7qKiAwMCG59t9xfkb5m4s+bb1sTn8/TbotkiP\nPvood955J5GRkfz8889YWFgwcuTIVgfS0LPPPkvfvn35y1/+cilQWTghRJuqqblAefmhRkN0ZWUH\nqao6ia3twIs9Iz/dn7a2A7C07GzosIUJaNeFE2FhYWRnZ9OvXz9GjRrFmjVrWtTw5QoLC3FzcyM3\nN5c1a9aQkpKil/Oauob/uzYXknPbqqk5R1nZlcWouroQOzsfXRHy8JiHvb0fNjZeWFrqf2bAHH/O\nYL55t1Sz/+bl5eVx44038tZbb7F//35GjhxJTExMqwOZPn06Z8+exdramvfff5+uXVt3J0ghzF11\nddEVixfKyg5SU1OCvf0gXTFycnr4YjHylB0WhNFp9nDfF198wbRp0+jSpQtnzpzhu+++48EHH2yr\n+HRkuE+Iq6uqKrxqMaqrK79siM4fe3vtrSHMZSWdMA7tOtw3Y8YMMjMzCQkJ4dChQ+Tn57eoYSFE\n0ymlqKrKv6IQlZcfRKka7Oz8dcXI1fVW7Oz86NKll1zkKkxes4vUvffei4ODAxEREQwZMgQnJ6e2\niEtcZI7j1+acs1KKysoTVy1GFhadGhQjf3r0uBM7Oz86d3Y3yWJkjj9nMN+8W6rZRWrFihVkZ2ez\nY8cOPvjgAzp10s+E6uLFi1m5ciWWlpYEBgby2Wef0aVLF72cWwhjVFtbxoULGZw/n0pu7g+kpS2k\nvPwQVlb2umE6B4chuLvffbEY9TB0yEK0u2bPSe3atQulFCNGjADg22+/Zdq0aa0KIicnh/Hjx3Po\n0CG6dOnCjBkzuPnmm5k7d+6lQGVOSpiw2loNZWWZlJbuobQ0ldLSPVRUHMPePgBHx1AcHIKxt/fH\nzm4Q1tYuhg5XCL1q1zmphIQErK2teeedd7C1taVPnz6tLlJdu3bF2tqa8vJyrKysKC8vp1evXq06\npxCGUldXTVnZ/osFSVuUyssPY2vrjaNjKF27DqdXr79ibx+ApaWMFgjxZ5rdk8rMzOTChQtERETo\nNZB///vfPPnkk9ja2jJp0iRWrFjROFAz7UmZ4/i1KeWsVC3l5YcpLd3D+fPaHlJZ2T5sbDxxdAy9\n+BiGg0PQn26Sako564s55gzmmXeb96Sef/55hg8fTnh4OIMHD9Y9n5iYSFBQEC4urRueOHbsGO+8\n8w45OTl069aNO++8k1WrVjF79uxWnVcIfVKqjoqKo416SBcuZNC5sweOjsNwdAzFzS0WB4cQOnVy\nNHS4QnQITSpSGo2G3NxcvvnmGwoLC3F2diYsLIzQ0FA+/vhjFixY0Kog9uzZQ0REBN27dwfgjjvu\nYMeOHVcUKdm7zzyOjWFvs8TERKqqCggJsaK0dA+JiT9RXp7FsGGuODqGsn+/C/b2t3PTTeuwtnYm\nKSmJwkKIjBzTovbqnzOGz789jxvmbgzxmMvf77Y+bve9+9auXUtwcLCuwXPnzpGamkpaWhpeXl5M\nnz69VUH8+uuvzJ49m9TUVGxsbLj33nsJCwvj0UcfvRSomQ73ifZRWfmHrodUP2xnadlZ10Oqf8gK\nOyGarzW/v5tUpObPn8/s2bMJDQ1l3bp13HrrrS1q7M/8/e9/Z/ny5VhaWjJkyBA+/vhjrK0v3fbZ\nXItUw/9dm4u2zrmqqrDBkJ32UVdXRdeuw3RzSI6OoXTpckObxXA5+TmbD3PMu83npKZOncprr72G\nRqOhoqKCI0eOMHjwYAICAvS2Cm/BggWtHjYU4nLV1cWUlqbpln2Xlu6hpuacrmfk7j6HAQPexcam\nn0leECtER9fs1X1vvvkmoaGhHDhwgP3793Py5El69+7NY489ho+PT1vFabY9KdF0NTWlXLiwt9Gw\nXXV1AQ4OIY16SLa2XrJ3nRDtqM2H+64nPj6evLy8Nr3duxQp0VBtbTkXLvzaqIek0RzHwWFwo6Xf\ndnY+srO3EAbWrhfzXk3nzp3x9fXVx6nEZcxx/PrynOvqKrlwYV+jpd8VFb9hZzcIR8dhdOs2ht69\n/w97e38sLa2vfWIjJj9n82GuebeUXorUHXfc0epzHDlyhJkzZ+qOf//9d/72t7/xv//7v60+tzAd\ndXU1VFQc49SpY7qiVFZ2AFvbAboe0g03PIS9fSBWVjaGDlcI0cZaNNxXUFCAg4MD+fn5eHl56T2o\nuro6evXqxe7du+nTp482UBnu65CUquPChUxKSrZQXLyVc+d+pnPnnhe3Dxqm29fOysre0KEKIVqo\n3Yf7lFKsXLmS/Px8XnzxxRY1/GcSEhLw8vLSFSjRcSilqKjIorh4K8XFWygpScLaujvOzuPx8LgP\nX9/ldO7saugwhRBGotlLnMrLy/n000/Ztm0bVlZWxMXF6T2o+Ph47rrrLr2f1xRdfmW+KdJocjl1\n6j8cOjSHnTv78OuvEzh/PgVX11sJDc0gPPwI3t4f4OY2nc6dXTtEzs0lOZsPc827pZrdk7Kzs2Pe\nvHmsXbuWwsJCFi1apNeAqqqqWL9+PUuWLNHreUX7qaoqpKQkkeLirZSUbKWmpgQnp/E4O4+nX7/n\nsbUdINckCSGapEXDfRYWFtxzzz2cOnVK3/GwadMmhg4dSo8eV24/I3v3GedxTc05vv/+PUpL9+Lj\nk4VGk8tvv2lv2Hfzzd9ibx/Atm3bOX0aIiMHXvd85rC32eXH9c8ZSzztddwwd2OIpz2OzeHvd7vv\n3deeZs6cyeTJkxvd8BBk4YQxqa0t59y5HZSUaOeVysoO0LXrcJydo3B2Ho+Dw1AsLfVzx2YhhOlr\nze/vZs9J5efnc/ToUUC7yk+j0bSo4aspKysjISFBL0vaO4rL/8dpCHV11Zw79ws5OX8jI2Mcv/zi\nRk7Oi1hYWHHjjUsYOfIMwcEJ9Ov3DF27hre6QBlDzu1NcjYf5pp3SzX7t8m3337LoEGDyMvLY8yY\nMaxevZq7775bL8HY29tz5swZvZxLtJx2WfivF1ffaZeF29oOwMlpPH36PE23bqPlfklCiHbR7CJV\nVVXF+PHj2bBhA1ZWVjg7O7dFXOKihnMWbUUpRXn5Ed3wnXZZeA+cnaPo2fN/GDRoBdbW3ds8jnrt\nkbOxkZzNh7nm3VLNLlK+vr6MHj2agQMHUlNTQ2ZmJlOmTGmL2EQb0miO61bfFRdvxcLCCmfnKFxd\nYxg48F26dNHP7vZCCNEaTZqT+te//qX7evLkyaxcuZKgoCAKCwt5/PHH2yw4ob/x66qqQgoK4jly\n5EF27RpAWtowiop+pFu3MYSEbGf48OP4+n6Gh8fdBi9Q5jhmLzmbD3PNu6Wa1JNaunQpd911F127\ndgWgX79+uuL022+/0a1bt1YHUlJSwv3338+BAwewsLDg008/Zfjw4a0+r7mqri7h3LntunkljSYP\nJ6exODuPp1ev/8Xe3l+uVRJCGL0mLUE/ceIEO3bs4Pbbb6dz586Adh7jp59+4sUXX2Tnzp2tDmTu\n3LmMHTuWefPmUVNTQ1lZWaPiJ0vQ/5x2Wfgvunml8vJDdO06QncRrYPDEFkWLoQwiHa5n1RdXR1f\nffUV3t7erFq1irVr1zJs2DDKy8tZt25dixqvd+7cOUJCQvj999+vHagUqUbq6qo4f363bk6ptHQP\nDg7BumuVunYdjqVlF0OHKYQQbX+d1IoVK7C0tCQmJoYXX3wRX19f0tLSiI+PJz4+vkUNN5SdnU2P\nHj247777GDJkCA888ADl5eWtPm9HUD9+rVQtpaV7yc39B5mZk/nlF1eOHn2c2tpS+vZdREREPkOG\n/Ez//i/j5DTWpAuUOY7ZS87mw1zzbqkmjf8sWLCArVu3Eh4ezvz58zl79ixOTk4AFBcXY2dn16og\nampq2Lt3L8uWLWPYsGE88cQTxMXF8corrzR6n7lti6TR5FJamsb+/e+SmPgTnTq5EBU1lZ49H6Cw\n8GFqa7sSGmo88cpxy48zMjKMKp72OM7IyDCqeOTYhLdFeuONNwgNDSUlJYXU1FRSU1Pp2bMnw4cP\nJz8/v9W9qfz8fEaMGEF2djYAP//8M3FxcWzYsOFSoGYy3FdR8TuFhV9SWLia6uoiXFwm4ew8Hien\ncXTpcoOhwxNCiGZr8/tJPfXUU0Dji9Dy8/NJSUnh/fffb1HDDXl4eNCnTx+ysrLw9vYmISEBf3//\nVp/XVFRWnuL06a8oKFiNRvM7PXpMZ+DA9+jWbSQWFs3euUoIITqMVm8wu2PHDiIiIlodyK+//sr9\n999PVVUVXl5efPbZZx16dV91dRGnT39LYeFqLlxIp3v323Bzm4mzcxSWlta69yUlJTX6z4E5kJzN\ngznmDOaZd7vfmbchfRQogKCgIFJTU/VyLmNVU3OBs2fXUVi4mpKS7bi4RNOr119xcbkZKysbQ4cn\nhBBGx+hu1XEtptqTqqur5OzZTRQWrqao6Ae6dRuFm9ssXF1vk01ahRBmoV2ukzI0UypSdXU1lJRs\npbAwnjNn1uLgEISb20xcXafRubOrocMTQoh21a73k2pLnp6eDB48mJCQEMLCwgwdTrMoVUdJyc9k\nZf2VnTt7kZ39PPb2gQwbto/g4ERuuOGhFhWo+qWd5kRyNg/mmDOYb94tZVT75FhYWJCUlISLi4uh\nQ2kSpRQXLmRQWLiawsIvsbJyxN19FkOG7MDW1svQ4QkhhMkzquG+/v37s2fPHrp3v/LeRcY03Fde\nfoSCgtUUFsajVBVubrNwc5uJg0OgoUMTQgij02HmpG688Ua6deuGlZUVDz30EA888IDuNUMXKY0m\nV3eRbVVVPj16xOLuPgtHxzDZTVwIIf5Eh5mT+uWXX0hPT2fTpk289957JCcnGzSeqqpC/vjjPfbu\nHcWePUOoqPgNL683GTEij4ED36Fr1/A2L1DmOH4tOZsHc8wZzDfvljKqOamePXsC0KNHD2JiYti9\nezejR4/Wvd4ee/eNHBnMmTNr+P779ykvP8SECbfTt+8iMjO7cOqUNT4++m3vesf1DL0Xlxy37bHs\n3Wf4eOTYhPfuaw/l5eXU1tbi6OhIWVkZ0dHRvPjii0RHRwNtO9xXW1vO2bMbKCxcTXHxVpydx+Pm\nNovu3W/Byqp1m+cKIYS5M+iOE/pSUFBATEwMoN0Vffbs2boC1Rbq6qooKtpMYeFqzp79nq5dw3Fz\nm4WPz2dYWzu1WbtCCCGazmh6Utejj56UUrWUlGynsHA1p09/h52dL+7us+jR4046d3bTU6T6lWSG\n+3xJzubBHHMG88y7Q/Sk2opSitLS3RQUrOb06a/o3NkDN7dZhIbuxcamr6HDE0II8Sc6bE/qwoV9\nFy+yjcfCojPu7tprmezsfNowSiGEEJfrMNdJ/ZmmJFlRcYzCwngKClZTW3seN7eZuLnNwsEhWK5l\nEkIIA+kw10nV1tYSEhLC1KlTm/w9lZUnyct7m7S0MPbujaCy8hQ+Ph8yfHgOXl5/x9ExxKQLVP3S\nTnMiOZsHc8wZzDfvljKqIrV06VL8/PyuW1Sqq89y8uSHZGSMIzU1gLKyffTv/xojRvyBt/eyDnVH\n2/rrZ8yJ5GwezDFnMN+8W8pofpOfOHGCjRs3cv/991+zW5ifv5LMzCns2uVFcXEivXo9TkTEKXx9\nP8XFZSKWlh1vHUhJSYmhQ2h3krN5MMecwXzzbimj+a0+f/58/vGPf3D+/Plrvuf06S9xd5+Nn9+X\ndOrk0I7RCSGEMASj6Elt2LABNzc3QkJC/nRyLTBwPe7ud5lVgcrJyTF0CO1OcjYP5pgzmG/eLWUU\nq/ueffZZVqxYQadOndBoNJw/f55p06bx+eef694zYMAAjh07ZsAohRBCtISXlxdHjx5t0fcaRZFq\naNu2bbzxxhusX7/e0KEIIYQwMKMY7rucKS8ZF0IIoT9G15MSQggh6hllTyovL49x48bh7+9PQEAA\n7777LgBFRUVMnDgRb29voqOjO9RSTo1GQ3h4OMHBwfj5+fHMM88AHTvnepdfxN3Rc/b09GTw4MGE\nhIQQFhYGdPycQbv0evr06QwaNAg/Pz9SUlI6dN5HjhwhJCRE9+jWrRvvvvtuh84ZYPHixfj7+xMY\nGMhdd91FZWVlq3I2yiJlbW3N22+/zYEDB9i1axfvvfcehw4dIi4ujokTJ5KVlUVUVBRxcXGGDlVv\nbGxsSExMJCMjg8zMTBITE/n55587dM71Lr+Iu6PnbGFhQVJSEunp6ezevRvo+DkDPP7449x8880c\nOnSIzMxMfH19O3TePj4+pKenk56eTlpaGnZ2dsTExHTonHNycvjoo4/Yu3cv+/bto7a2lvj4+Nbl\nrEzAbbfdpn766Sfl4+Oj8vPzlVJKnTp1Svn4+Bg4srZRVlamQkND1f79+zt8znl5eSoqKkpt3bpV\n3XLLLUop1eFz9vT0VGfOnGn0XEfPuaSkRPXv3/+K5zt63vV+/PFHNWrUKKVUx8757NmzytvbWxUV\nFanq6mp1yy23qM2bN7cqZ6PsSTWUk5NDeno64eHhFBQU4O7uDoC7uzsFBQUGjk6/6urqCA4Oxt3d\nXTfc2dFzrr+I29Ly0l/Fjp6zhYUFEyZMIDQ0lI8++gjo+DlnZ2fTo0cP7rvvPoYMGcIDDzxAWVlZ\nh8+7Xnx8PLNmzQI69s/axcWFJ598kr59+3LDDTfg5OTExIkTW5WzURepCxcuMG3aNJYuXYqjo2Oj\n1ywsLDrcKkBLS0syMjI4ceIE27dvJzExsdHrHS3nplzE3dFyBvjll19IT09n06ZNvPfeeyQnJzd6\nvSPmXFNTw969e3nkkUfYu3cv9vb2Vwz5dMS8Aaqqqli/fj133nnnFa91tJyPHTvGO++8Q05ODidP\nnuTChQusXLmy0Xuam7PRFqnq6mqmTZvGPffcw+233w5oK3B+fj4Ap06dws3NOO+m21rdunVjypQp\npKWldehfFplkAAAgAElEQVScd+zYwbp16+jfvz+zZs1i69at3HPPPR06Z4CePXsC0KNHD2JiYti9\ne3eHz7l379707t2bYcOGATB9+nT27t2Lh4dHh84bYNOmTQwdOpQePXoAHfv32J49e4iIiKB79+50\n6tSJO+64g507d7bq52yURUopxf/8z//g5+fHE088oXv+1ltvZfny5QAsX75cV7w6gjNnzuhWvFRU\nVPDTTz8REhLSoXN+/fXXycvLIzs7m/j4eMaPH8+KFSs6dM7l5eWUlpYCUFZWxubNmwkMDOzQOQN4\neHjQp08fsrKyAEhISMDf35+pU6d26LwBVq9erRvqg479e8zX15ddu3ZRUVGBUoqEhAT8/Pxa93Nu\nk9mzVkpOTlYWFhYqKChIBQcHq+DgYLVp0yZ19uxZFRUVpQYOHKgmTpyoiouLDR2q3mRmZqqQkBAV\nFBSkAgMD1d///nellOrQOTeUlJSkpk6dqpTq2Dn//vvvKigoSAUFBSl/f3/1+uuvK6U6ds71MjIy\nVGhoqBo8eLCKiYlRJSUlHT7vCxcuqO7du6vz58/rnuvoOS9ZskT5+fmpgIAANWfOHFVVVdWqnOVi\nXiGEEEbLKIf7hBBCCJAiJYQQwohJkRJCCGG0pEgJIYQwWlKkhBBCGC0pUkIIIYyWFCkhhBBGS4qU\nEEIIoyVFSnQYa9euxdLSkiNHjrTJ+c+dO8cHH3zQJuc2FtfLUSnFkiVLcHNz49NPP23HyIS5kiIl\nOozVq1dzyy23sHr16iteU0pdc6f1piouLub9999v9vfpo+3mttHSNq+Xo4WFBeHh4UyZMoV58+a1\nKFYhmkOKlOgQLly4QEpKCsuWLePLL78EtPci8/HxYe7cuQQGBpKcnIyvry/33XcfPj4+zJ49m82b\nNzNy5Ei8vb1JTU3VnS8mJobQ0FACAgJ093xatGgRx44dIyQkhIULF3L8+HECAwN13/PGG2/w8ssv\nX7XtvLw8Vq5cSXh4OCEhIfzlL3+hrq7uijw+//xzgoKCCA4OZs6cObpzXa2d48ePX5FfU9rMyclh\n0KBBPPjggwQEBDBp0iQ0Gs1Vc7yalJQUwsPDW/PjEqLp9L25oBCGsHLlSvXQQw8ppZQaPXq0SktL\nU9nZ2crS0lKlpKQopZTKzs5WnTp1Uvv371d1dXVq6NChat68eUoppf773/+q22+/XXe+oqIipZRS\n5eXlKiAgQBUVFamcnBwVEBCge092dnaj4zfeeEO99NJLutcatn3w4EE1depUVVNTo5RS6uGHH1af\nf/55oxz279+vvL291dmzZxvFcLV2Xn75ZZWTk3NFfk1ps/5z+PXXX5VSSsXGxqqVK1cqpdQVOV7N\ntGnTVFpa2p++Rwh96WToIimEPqxevZr58+cDcOedd7J69Wr++te/0q9fP8LCwnTv69+/P/7+/gD4\n+/szYcIEAAICAsjJydG9b+nSpaxduxaAEydO8NtvvzX7vj8N296yZQtpaWmEhoYC2tuxeHh4NHr/\n1q1biY2NxcXFBQBnZ+drnltdHMq7PL+mtDlmzBj69+/P4MGDARg6dKgud9WEIcJ9+/YRFBR03fcJ\noQ9SpITJKyoqIjExkf3792NhYUFtbS2WlpY8+uij2NvbN3pvly5ddF9bWlrSuXNn3dc1NTUAJCUl\nsWXLFnbt2oWNjQ3jxo3TDYc11KlTp0ZDdhUVFY1ev7ztuXPn8vrrr18zDwsLi6sWiT9r5/I2mtJm\nTk5Oo8/BysrqitivJT8/H1dXV6ysrJr0fiFaS+akhMn75ptvmDNnDjk5OWRnZ5Obm4unpye5ubkt\nOt/58+dxdnbGxsaGw4cPs2vXLgAcHR11NywE7R1WCwsLKSoqorKykg0bNlzznFFRUXzzzTecPn0a\n0BbWy+MbP348X3/9NUVFRbr3XKudptx+uyltXu7yHC+XkpLSqOcmRFuTIiVMXnx8PDExMY2emzZt\nGnFxcVf8Mv+z4/qvb7rpJmpqavDz8+OZZ55hxIgRAHTv3p2RI0cSGBjIwoULsba25oUXXiAsLIzo\n6Gj8/Pyuej6AQYMG8eqrrxIdHU1QUBDR0dG622nX8/Pz47nnnmPs2LEEBwfz1FNPAVy1nabk82dt\nXuv7Ls+xoe3bt7Ns2TLy8/N1/yGIj49n0aJFlJeXI0RbkJseCiFaZP78+bz55pssWbKEhQsXYmkp\n/+cV+id/q4QQLTJgwAD27NlDZWUlhw4dMnQ4ooOSnpQQQgijJT0pIYQQRkuKlBBCCKMlRUoIIYTR\nkiIlhBDCaEmREkIIYbSkSAkhhDBaUqSEEEIYLSlSQgghjJYUKSGEEEZLipQQQgijJUVKCCGE0ZIi\nJYQQwmhZvfTSSy8ZOgghOoKSkhIiIiIoLy/n4MGDjBkzhsrKSn777TdeeeUVampqmnXb9eTkZB58\n8EGWLVtG586dCQ4ObsPohTBOsgu6EHoSHx9PVFQUPXr0IC8vj+DgYM6ePQto72irlGL48OHNOudt\nt93GXXfdxYwZM9oiZCGMngz3CaEnffr0oUePHgAkJiYyduxY3Wt2dnaN7qjbFLW1tSQnJxMZGanP\nMIUwKVKkhNCTkSNH6r5OTExk/PjxumNnZ2e2bt1KbGwsAG+//TZvvPEGpaWlLFu2jI0bN/LWW281\nOt/evXvx8PDA3d0dgKysLJ5//nk2btzI3XffzYYNG9ohKyEMS4qUEG0gKSmJcePG6Y6zsrIICQkh\nPz8fgJkzZ2JpacmaNWvIy8sjIiKCgwcPNjrH1q1bdYWurKyM2NhYnnzySW6++WZOnjxJWFhY+yUk\nhIFIkRJCz7Kzs6moqMDf31/33Pjx4/nkk0+49957ASgqKmLChAlMnjyZM2fOEBgYyNChQxudJzEx\nUVfovvvuOwIDA3FyckKj0XDhwgXc3NzaLSchDKVVRaq8vJy6ujoOHDigr3iEMHmJiYlXnUdKS0sj\nPDwcgPT0dDQaDc899xyffPIJaWlpbNu2Tffe6upqduzYoTvPmTNndCsDExISGD58OD/88EOb5yKE\nobVqCfrzzz/Pnj17yMzMlMldYfYOHjzIt99+y4cffoiVlRUajYbg4GAsLCwAqKurIyUlhTNnzjBs\n2DDs7e2pqKjg5MmTbN++nfnz59O1a1dSUlJ488032bdvH3369GHIkCH079+fjRs3opSisLCQwsJC\nXF1dCQgIMHDWQrStVi1Bj4+PJzY2lj179jR5fHzx4sWsXLkSS0tLAgMD+eyzzygrK2PGjBkcP34c\nT09PvvrqK5ycnFoalhBCiA7iusN9n3766TVfCw8P58knnyQ1NbVJjeXk5PDRRx+xd+9e9u3bR21t\nLfHx8cTFxTFx4kSysrKIiooiLi6u6RkIIYTosK7bk3Jzc2PKlCmEh4cTFhZGUFAQVlZWgLboeHp6\nNrmxoqIiRowYwa5du3B0dCQmJob//d//5bHHHmPbtm24u7uTn59PZGQkhw8fblViQgghTN91i9SS\nJUsIDw8nJSWF1NRU9u3bh6urK2FhYeTn57N69epmNfjvf/+bJ598EltbWyZNmsSKFStwdnamuLgY\nAKUULi4uumMhhBDmq9P13rBgwQIsLCwaLYzIz88nJSWFZcuWNauxY8eO8c4775CTk0O3bt248847\nWblyZaP3WFhY6CaahRBCmLfrFqmrFQwPDw9uu+02nJ2dm9XYnj17iIiIoHv37gDccccd7Ny5Ew8P\nD/Lz8/Hw8ODUqVNXvf6jV69enDx5slntCSGEMDwvLy+OHj3aou9t1XVSY8aMadb7fX192bVrFxUV\nFSilSEhIwM/Pj6lTp7J8+XIAli9fzu23337F9548eRKllFE/5s6da/AYJEaJ0RTikxjbLsa6OkVW\nluI//1E8+KDC31/h4KAYN07x//6fYuNGRVFR+8Z47NixFteZ6/ak9CkoKIg5c+YQGhqKpaUlQ4YM\n4cEHH6S0tJTY2Fg++eQT3RJ0IYQQ11dbC7/8Ajt2XPrTxgYiImDkSHjwQQgKgk7t+ttef9o97AUL\nFrBgwYJGz7m4uJCQkNDeoehdc1Y6GorEqB/GHqOxxwcSY0sVFGgLUX1RSk315NAhbUGaNQv++U/o\n08fQUepPk4vUwoULWbJkyXWfM2emsOuGxKgfxh6jsccHEmNT1NXBgQONe0lnz8KIEdqi9NproNFE\nMnmyQcNsU02ek9q8efMVz23cuFGvwQghhDkrLYUtW+CVV+Cmm8DFBaZNg127YPRoWLdOW6Q2boTn\nnoNx48DW1tBRt63r9qQ++OAD3n//fY4dO0ZgYKDu+dLS0kb3zxFCCNF0SkFubuNeUlYWhIRo55Me\nfhhWrICL99E0W9e9mPfcuXMUFxezaNEilixZQv3bHR0ddUvJ24OFhQXXCVUIIYxWdTVkZFwqSDt2\nQE2NdtiufpFDSAh06WLoSPWvNb+/W7XBbHuSIiWEMCVFRbBz56WilJYGN96oLUj1Ral/fzCHvQta\n8/u7yXNSGo2GVatW8dprr/Hyyy/z8ssv88orrzSrsSNHjhASEqJ7dOvWjXfffZeioiImTpyIt7c3\n0dHRlJSUNDsRY5CUlGToEK5LYtQPY4/R2OODjhWjUnDkCHz6Kdx/P/j5gacnvPMOWFvDs8/CiRPw\n66/wwQdwzz3agqWPAmUKn2NrNHl132233YaTkxNDhw7FxsamRY35+PiQnp4OaO+t06tXL2JiYnS7\noC9YsIAlS5YQFxcnO6ELIYxWRQXs2dN46M7R8VIP6a9/hYAA0702yZg0ebgvICCA/fv3663hzZs3\n87e//Y3k5GR8fX2vuwu6DPcJIQzl1KnGF8zu368tQvVFKSICbrjB0FEar9b8/m5ynY+IiCAzM5PB\ngwe3qKHLxcfHM2vWLAAKCgpwd3cHwN3dnYKCAr20IYQQzVVbC/v2Nb5g9vz5S3NJ//gHhIaCnZ2h\nIzUPTZ6TSk5OZujQoXh7exMYGEhgYGCLC1ZVVRXr16/nzjvvvOI1U94F3RTGhiVG/TD2GI09PjCe\nGCsqYNs2ePVVmDRJe23SrFnahQ433JDEpk1w5gysXw/PPANjxhhXgTKWz7GtNLkntWnTJkA/w26b\nNm1i6NCh9Lh4AUD9MN+f7YIOcO+99+q2KXFyciI4OFh3RXj9D8qQxxkZGUYVz9WO6xlLPKZ6nJGR\nYVTxmFp8hvz3UlQE//pXEpmZkJsbSWYm9O2bRGAgPPJIJKtWwf792vcD+Poax+dlSsfvvPMOGRkZ\netlWqslzUnV1daxatYrs7GxeeOEFcnNzyc/PJywsrNmNzpw5k8mTJzN37lxAu59f9+7dWbhwIXFx\ncZSUlFyxcELmpIQQLXH8OPz8MyQna//MzYXhw7U7OIwaBeHhxtUz6oja5Tqpv/zlL1haWrJ161YO\nHz5MUVER0dHR7Nmzp1kNlpWV0a9fP7Kzs3F0dAS0t5WPjY0lNzdXtwu6k5NT40ClSAkhrqN+r7uG\nRamyUluQ6ouSKe8Ibqra5TqplJQU3n//fWwvbhTl4uJCdXV1sxu0t7fnzJkzugJVf66EhASysrLY\nvHnzFQXKVNR3eY2ZxKgfxh6jsccH+omxslK7uGHJEpg6FVxd4Y47IDUVJkzQ7oOXnw/ffAOPPw5D\nhzavQJnL52jMmvzj6ty5M7W1tbrj06dPY2nZqnsmCiFEs5w7p93Fob6XlJYGPj7aXtLcufDRR+Dh\nYegohT41ebhv5cqVfPXVV6SlpTF37ly++eYbXn31VWJjY9s6RkCG+4QwRydPNh66O3pUu/y7fuhu\nxAjtRbTCuLX5nJRSiry8PMrKytiyZQsAUVFRDBo0qEWNtoQUKSE6NqW0u4DXF6TkZCgp0Raj+qI0\nZAh07mzoSEVztUuRCgwM1OuOE81lCkUqKSlJtwTTWEmM+mHsMRp7fAAJCUl06xapK0o//6xdZVdf\nkEaP1i7/NuSsgil8jqYQY5vvOGFhYcHQoUPZvXt3i5acN1RSUsL999/PgQMHsLCw4LPPPmPgwIHM\nmDGD48ePX3N1nxDCtJWVaW/eV1+UduyAAQO0xejOO2Hp0o5123OhH02ek/Lx8eHo0aP069cPe3t7\n7TdbWJCZmdmsBufOncvYsWOZN28eNTU1lJWV8dprr+Hq6qrbYLa4uFiukxLCxJ0+famHlJwMBw9C\ncPClnlJEBDg7GzpK0R7aZbgvOTmZvn37XvFac64oPnfuHCEhIfz++++NnpcNZoUwbUpBdnbj+aT8\nfG0hqi9Kw4ZBC2+gIExcu1wn9cgjj+Dp6XnFozmys7Pp0aMH9913H0OGDOGBBx6grKysw2wwawrX\nK0iM+mHsMbZ1fLW12rvM/vOfMGMG9O6tLUabNmkvlv3ySzh7FjZu1O53N3r0lQXK2D9DkBiNQbvO\nSdXU1LB3716WLVvGsGHDeOKJJ646rGeqG8wK0VFVVsLu3doeUnKy9lqlnj21xWfKFIiL097kT/7p\nCn1r8sW8u3btYuXKla2ak+rduze9e/dm2LBhAEyfPp3Fixfj4eHRITaYbchY4jHF48jISKOK52rH\n9c8ZSzz6jm/z5iQOHoRz5yLZtg127kyib1+45ZZIHnoIHnooCSenxt9//Lj8e5F/L9pjg2wwe/z4\n8as+369fv2Y1OGbMGD7++GO8vb156aWXKC8vB5ANZoUwoPJy7cq7pCTtbSvS0rQ39YuMhLFjtTf2\n69rV0FEKU9UuG8y+/PLLjRqqH5J74YUXmtXgr7/+yv33309VVRVeXl589tln1NbWdogNZhv+z9VY\nSYz6YewxXi++sjLtEvBt27SFKSNDO5c0dqz2ERHR9js5GPtnCBKjvrTLnXnt7e11hamiooINGzbg\n5+fX7AaDgoJITU294vmEhIRmn0sI0TSlpdo7zG7bpn1kZkJIiLan9NJL2u2FLo7iC2FUmtyTulxl\nZSXR0dFs27ZN3zFdlSn0pIQwFufPa5eC1/eUDhzQ7nk3dqy2MA0fDhdvaCBEm2uXntTlysrK+OOP\nP1r67UIIPSop0a66q+8pHT6svS4pMhL+/nftjf3kGiVhipp8nVRgYKDu4e/vj4+PD48//nhbxmZy\nLl+xZIwkRv0wdIxFRfDf/8L8+dpNV/v0gXffBScnePtt+PbbJLZuhRde0PaejLFAGfozbAqJ0fCa\n3JNav379pW/q1Al3d3esra3bJCghRGNnzsD27ZeG77KztfNIkZGwbJl2KK9zg93BO/jvLWFGWjwn\n1d5kTkqYk8LCS0N327ZBbq52GXj9nNKQISD/RxSmol22RZozZw7FxcW646KiIubNm9fsBj09PRk8\neDAhISG63SuKioqYOHEi3t7eREdHU1JS0uzzCmHK8vO1Wwk9/DD4+YG3N3z+uXYXh08/vbTF0MKF\n2vklKVDCXDS5SGVmZuLcYMtiFxcX9u7d2+wGLSwsSEpKIj09nd27dwMQFxfHxIkTycrKIioq6ooL\neU2FKYwNS4z60doY//gDvvgCHnpIe/tzPz/tsbc3rFypLUrr18NTT2kXQHRq5hInc/gM24PEaHhN\n/quvlKKoqAgXFxdA2/upra1tUaOXd/vWrVunW8o+d+5cIiMjTbZQCXE1eXmX5pO2bdMufKi/cPbh\nhyEwEKysDB2lEManyXNSn3/+Oa+99hqxsbEopfj666957rnnmDNnTrMavPHGG+nWrRtWVlY89NBD\nPPDAAzg7O+uGEpVSuLi4NBpaBJmTEqYlJ+fSfFJSEly4AGPGXNpmyN/fsHecFaI9tct1UnPmzGHo\n0KFs3boVCwsL1qxZ06IdJ3755Rd69uzJ6dOnmThxIr6+vo1el13QhSk6dQq2bIGEBG1Rqqi4VJCe\negoGDZIdwoVoiWaNdPv7++Pv79+qBnv27AlAjx49iImJYffu3bqbHZr6LugZGRk88cQTRhPP1Y7r\nnzOWeK52fHmsho7naseLF7+DUsEUFESSkAC5uUkMGQIzZ0ayaBGcOpWEhYVhd6E2tn8flx/Lv5eO\n++/FILug60N5eTm1tbU4OjpSVlZGdHQ0L774IgkJCR1iF/QkE9joUWJsmaoq7S7hCQnaHtPevUmM\nHBnJhAkwYYJ2HzxjmlMyxs/wchKjfphCjO2yC7o+ZGdnExMTA2hvgDh79myeeeYZioqKOsQu6KLj\nqKuD/fu1RSkhQbsPno8PuqIUESF73wnRVO1SpOrq6li1ahXZ2dm88MIL5Obmkp+f36o79TaHFCnR\n1o4fv1SUtmzRbjEUFaUtSuPGwcWFrUKIZmqXi3kfeeQRdu7cyRdffAGAg4MDjzzySIsa7agajg0b\nK4nxkrNn4ZtvtEvABw6EsDBtcZo4EVJTISsLPvgApk27skAZ++do7PGBxKgvphBjazR54URKSgrp\n6emEhIQA2ot5q6ur2ywwIfStokJ7T6X63lJWFowere0pPfKI9k60sgJPCOPS5OG+8PBwduzYQWho\nKOnp6Zw+fZro6GjS09PbOkZAhvtE89XWwt69l4bvUlK0d5+tH8ILD2+8KasQom20y3VSjz32GDEx\nMRQWFvLss8/yzTff8Oqrr7aoUSHaglJw9OilnlJiItxwg7YgPfGE9mLarl0NHaUQojmaNCellGLM\nmDEsWbKEZ555hhtuuIH//ve/xMbGtnV8JsUUxoY7WowFBdo97+bNg379tAscdu+GmBjt3Wj374d3\n3oFbbtFvgTL2z9HY4wOJUV9MIcbWaHJP6uabb2b//v0MGjSo1Y3W1tYSGhpK7969Wb9+PUVFRcyY\nMYPjx49fcwm6EAClpdr7KtXv7pCXp93ZYcIE7Q7h3t4yryRER9LkOam5c+fy6KOP6mXJ+VtvvUVa\nWhqlpaWsW7eOBQsW4OrqyoIFC1iyZAnFxcUmeTGv0L/qam3PqH4ILyNDuyt4/fVKQ4Y0f4dwIUT7\napfrpHx8fDh69Cj9+vXD3t5e13BmZmazGjxx4gT33nsvzz33HG+99Rbr16/H19eXbdu26bZHioyM\n5PDhw40DlSJlFpTSDtPVL3bYvh0GDNAWpKgoGDUK7OwMHaUQojna5TqpH3/8kWPHjrF161bWr1/P\n+vXrWbduXbMbnD9/Pv/4xz+wtLzUdEFBAe7u7gC4u7tTUFDQ7PMaA1MYGzbGGPPy4D//gbvv1i50\niI5O4tAhmDMHjh2DtDRYsgSio42nQBnj59iQsccHEqO+mEKMrdHkgRJ9bBS4YcMG3NzcCAkJueYH\n+2e7oJvCBrPGFM/VjusZMp6aGnjvvSR27YLMzEgKCyEwMImhQ2HHjkiOHwfQvt/Vtf3ja8pxRkaG\nUcVjavHJv5eOfWyQDWZffvnlK7/ZwoIXXnihyY09++yzrFixgk6dOqHRaDh//jx33HEHqampJCUl\n6XZBHzdunAz3dTBnzsAPP8D338Pmzdrbok+Zol11Fxoq91YSoiNrl+E+e3t7HBwccHBwwMrKik2b\nNpGTk9Osxl5//XXy8vLIzs4mPj6e8ePHs2LFCm699VaWL18OwPLly7n99tubdV5hfJSCzEx4/XUY\nORK8vODbb7XzSvv2aYfwXnlFuxWRFCghxDWpFtJoNGrMmDEt/XaVlJSkpk6dqpRS6uzZsyoqKkoN\nHDhQTZw4URUXF1/x/laE2m4SExMNHcJ1tWWMZWVKrV+v1F/+olSfPkrdeKNSjz2m1I8/KqXRGEeM\n+mLsMRp7fEpJjPpiCjG25vd3ixfvlpWV8ccff7S4OI4dO5axY8cC2n0AExISWnwuYTjHj2uH8L7/\nHpKTYehQ7TDe5s3aW1vINUtCiNZo8pxUYGCg7uu6ujoKCwt54YUXeOyxx9osuIZkTso41NRob/73\n/fewYQPk58Pkydq5peho7e0thBCioXa5Tur48eO6Rjp16oS7uzvW1tYtarQlpEgZTlHRpUUPP/wA\nffteWvQwbJhx3ZFWCGF82mXhxPvvv4+npyeenp707t0ba2trFi5c2KJGO6rLl60ao6bEqJR2z7u4\nOO2tLDw94csvYexY+PVXSE+HV1+F4cPbpkB1lM/RkIw9PpAY9cUUYmyNJhepzZs3X/Hcxo0b9RqM\nMJyKCti4ER59VFuUpk6FEyfgueegsBD++1948EHo3dvQkQohzMl1h/s++OAD3n//fY4dO4aXl5fu\n+dLSUkaOHMmqVaua3JhGo2Hs2LFUVlZSVVXFbbfdxuLFi5u0wawM9+lfXt6lRQ/btkFIiHYYb8oU\n8POTRQ9CCP1o0zmpc+fOUVxczKJFi1iyZImuIUdHR7p3797sBsvLy7Gzs6OmpoZRo0bxxhtvsG7d\nOtlgth3U1mpv/Ldhg7Yw/fEH3HSTdm5p0iRwdjZ0hEKIjqhN56S6deuGp6cn8fHxdO3alcLCQnJz\nczlw4ADbt29vdoN2Fzdfq6qqora2FmdnZ9atW8fcuXMB7W7ra9eubfZ5jYExjg0XF0N8PNxzD7i7\nwz33JAHwwQfaezGtXAkzZxpXgTLGz/Fyxh6jsccHEqO+mEKMrdHk66Q++ugj3n33XU6cOEFwcDC7\ndu1ixIgRbN26tVkN1tXVMWTIEI4dO8bDDz+Mv79/h9lg1hgoBYcOXeotpadrFzxMmQKvvQa//669\n/5IQQpiCJi9BDwgIIDU1lREjRpCRkcHhw4d55plnWLNmTYsaPnfuHJMmTWLx4sXccccdFBcX615z\ncXGhqKiocaAy3HdNNTWQlKRd3LBhA9TVXVoiPm4c2NoaOkIhhDlrze/vJvekbGxssL34206j0eDr\n68uRI0da1ChohxGnTJlCWlqa7j5S9RvMurm5XfV7jH0X9PY8TkzU3s7i8OFIvvoKunVLYuxYWLcu\nkoAA2LZN+35bW+OIV47lWI7N51ifu6A3eUOl22+/XRUVFakXX3xRjRo1Sk2dOlVNnjy5WXswnT59\nWrcvX3l5uRo9erRKSEhQTz/9tIqLi1NKKbV48WK1cOHCK763GaEaTHvsobV/v1LPPqtU//5K+fgo\n9bnXpsMAAA7ASURBVMorSmVlNf37TWGfL4mx9Yw9PqUkRn0xhRhb8/u7yT2p+mG9l156icjISM6f\nP89NN93UrIJ46tQp5s6dS11dHXV1ddxzzz1ERUUREhJCbGwsn3zyiW4JurgkJ0e7+OGLL7QLIWbN\n0u4oHhwsy8SFEB1bk+ekDM3c5qQKC+Hrr7WFKSsLpk/XFqdRo+TWFkII09Iue/elpqby+uuvk5OT\nQ01Nja7hzMzMFjXcXOZQpM6fhzVrYPVq7Saut9yiLUwTJ0LnzoaOTgghWqZd9u6bPXs29913H99+\n+y3r169n/fr1rFu3rkWNdlT1k4fNodHAd9/BnXdCnz7ar++9V3uh7cqV2lV6+ixQLYmxvUmMrWfs\n8YHEqC+mEGNrNHlOqkePHtx6661tGYvZqKmBxERtj2ntWu3c0qxZ8OGH4OJi6OiEEMJ4NHm4b/Pm\nzXz55ZdMmDCBzhf/a29hYcEdd9zRpgHWM/XhPqW0WxKtXq3dUbxPH7jrLoiNhV69DB2dEEK0nXa5\nTmr58uUcOXKEmpoaLBvM3LdXkTJVBw5oC9Pq1WBtrS1M27eDt7ehIxNCCBPQ1LXq3t7eqq6ursVr\n3ZVSKjc3V0VGRio/Pz/l7++vli5dqpRS6uzZs2rChAlq4MCBauLEibprqRpqRqgGU3+9Qk6OUnFx\nSg0erFSvXko99ZRSaWlKtfLj0wtTuKZCYmw9Y49PKYlRX0whxtb8/m7ywomIiAgOHjzYqoJobW3N\n22+/zYEDB9i1axfvvfcehw4dIi4ujokTJ5KVlUVUVNQVO6CbgtOnYdmyDEaNgqFDITsb3n0XcnPh\nH/+AIUOM45qmjIwMQ4dwXRJj6xl7fCAx6ospxNgaTR7u27lzJ8HBwfTv358uXboAzV+C7uHhgYeH\nBwAODg4MGjSIP/74g3Xr1rFt2zZAuwt6ZGSkSRSq8+e1Cx9Wr4adO6FPnxIWL4boaONdMl5SUmLo\nEK5LYmw9Y48PJEZ9MYUYW6NJRUopxb///W/69u2rt4ZzcnJIT08nPDzcpHZB12hg0ybtRbabN2t3\nGJ8zB775RttjuuUWQ0cohBAdR5N7Uo888gj79+/XS6MXLlxg2rRpLF26FEdHx0avWVhYYGEM42JX\nsXixthAFBWmXjP/rX9Dwvo85OTkGi62pJEb9MPYYjT0+kBj1xRRibJWmTl7NmTNHpaSktHjyq15V\nVZWKjo5Wb7/9tu45Hx8fderUKaWUUidPnlQ+Pj5XfJ+Xl5cC5CEPechDHib28PLyanHNaPJ1Uj4+\nPhw9epR+/fphb28PNH9OSinF3Llz6d69O2+//bbu+QULFtC9e3cWLlxIXFwcJSUlJjEnJYQQom01\nuUjVdynrL8rKzc0lLi6OjRs3Nrmxn3/+mTFjxjB48GDdkN7ixYsJCwsjNjaW3Nxc3S7oTk5Ozc9G\nCCFEh9KsXdD37t3L6tWr+frrr/H09GTatGk89thjbRmfEEIIM3bd66SOHDnCSy+9xKBBg3jiiSfo\n27cvdXV1JCUltVuB+uGHH/D19WXgwIEsWbKkXdq8mnnz5uHu7k5gYKDuuaKiIiZOnIi3tzfR0dGN\nloMuXryYgQMH4uvry+bNm9s8vry8PMaNG4e/vz8BAQG8++67RhejRqMhPDyc4OBg/Pz8eOaZZ4wu\nxnq1tbWEhIQwdepUo4zR09OTwYMHExISQlhYmFHGWFJSwvTp0xk0aBB+fn6kpKQYTYxHjhwhJCRE\n9+jWrRvvvvuu0cTXsE1/f38CAwO56667qKysNLoYly5dSmBgIAEBASxduhTQ49/F605aWVioqVOn\nquPHj+ue8/T0bPEkWHPV1NQoLy8vlZ2draqqqlRQUJA6ePBgu7Xf0Pbt29XevXtVQECA7rmnn35a\nLVmyRCmlVFxcnO6uwgcOHFBBQUGqqqpKZWdnKy8vL1VbW9um8Z06dUqlp6crpZQqLS1V3t7e6uDB\ng0YVo1JKlZWVKaWUqq6uVuHh4So5OdnoYlRKqTfffFPdddddaurUqUop4/pZK6X9d3j27NlGzxlb\njHPmzFGffPKJUkr78y4pKTG6GJVSqra2Vnl4eKjc3Fyjii87O1v1799faTQapZRSsbGx6j//+Y9R\nxbhv3z4VEBCgKioqVE1NjZowYYI6evSo3mK8bpFas2aNio2NVf369VMPPfSQSkhIUP369dNPdk2w\nY8cONWnSJN3x4sWL1eLFi9ut/ctlZ2c3KlI+Pj4qPz9fKaUtEvUrE19//XUVFxf3/9u715Cmvz8O\n4O95AUPDSrzltERyNl3bahpE60GaEdnyUpSGWYnR5UEXoZ4FUgp2f1IPEqLISDNSbGip2WWl5rxM\nEQKtXE5NvAxJ52qG5/cg/JJ/jfyVbqff//N69v1ytr33nfPDOfuec4R2mzdvZrW1tXbNun37dlZZ\nWcltRovFwlQqFWtra+Muo8lkYtHR0ay6uprFxcUxxvj7rJcvX84GBwennOMp4/DwMAsODp52nqeM\nk548ecLWr1/PXb6hoSEWGhrKzGYzGx8fZ3FxcayiooKrjEVFRSw9PV04Pnv2LMvNzZ2zjL8c7ouP\nj0dhYSHa2tqgVqtx5coVDAwM4PDhw3bpSvb09CAwMFA4FovF6OnpmffXna2fTUTu7e2FWCwW2tk7\n92wmSzsq48TEBBQKBXx9fYXhSd4ynjhxAhcuXJiymDJvGUUiEWJiYqBSqZCXl8ddxs7OTnh7e2P/\n/v1YvXo1MjIyYLFYuMo4qaCgAMnJyQD4uoZLlixBZmYmgoKCsHTpUixatAibNm3iKmNERAR0Oh3M\nZjPGxsZQVlaG7u7uOcs467X7PDw8sGfPHmi1WphMJiiVSrvcJs7rxN6Z/Goisr3ey59MlrZHRicn\nJxgMBnR3d+Ply5d49uzZtAyOzKjVauHj4wOlUvnT7QUcnREAXr9+jebmZpSXl+PatWvQ6XTTMjgy\n47dv39DU1IQjR46gqakJ7u7u0/5nODojANhsNjx69Ag7d+6c8fUdme/9+/e4evUqjEYjent7MTo6\nivz8fK4yhoWF4fTp04iNjcWWLVugUCjg7Ow8ZxlnXaR+tGTJEhw8eBDV1dW/8/B/JSAgACaTSTg2\nmUxTqrCj+fr6oq+vDwDw6dMn+Pj4AJieu7u7GwF22DhqfHwcSUlJSE1NRXx8PJcZJ3l6emLr1q1o\nbGzkKmNNTQ1KS0sRHByM5ORkVFdXIzU1lauMAODv7w/g+4akCQkJqK+v5yqjWCyGWCxGZGQkAGDH\njh1oamqCn58fNxkBoLy8HGvWrIG3tzcAvr4vDQ0NWLduHby8vODi4oLExETU1tZydw0PHDiAhoYG\nvHjxAosXL0ZoaOicXcffKlL2pFKp0NHRAaPRCJvNhsLCQq52CNZoNLh9+zaA73tuTRYGjUaDgoIC\n2Gw2dHZ2oqOjQ7gDa74wxpCeng6pVIrjx49zmXFwcFC4y8dqtaKyshJKpZKrjDk5OTCZTOjs7ERB\nQQE2btyIO3fucJVxbGwMIyMjAACLxYKKigrIZDKuMvr5+SEwMBDt7e0AgKqqKoSHh2Pbtm3cZASA\ne/fuCUN9kzl4yRcWFoa6ujpYrVYwxlBVVQWpVMrdNezv7wcAdHV14eHDh0hJSZm76zgfP6TNtbKy\nMhYaGspCQkJYTk6Ow3Ls3r2b+fv7M1dXVyYWi9nNmzfZ0NAQi46OnnEvrOzsbBYSEsIkEgl7/Pjx\nvOfT6XRMJBIxuVzOFAoFUygUrLy8nKuMra2tTKlUMrlczmQyGTt//jxjjHGV8UfPnz8X7u7jKeOH\nDx+YXC5ncrmchYeHC98LnjIyxpjBYGAqlYqtWrWKJSQksOHhYa4yjo6OMi8vL/b582fhHE/5GGMs\nNzeXSaVSFhERwfbu3ctsNht3GdVqNZNKpUwul7Pq6mrG2Nxdx381mZcQQgixJ+6H+wghhPz/oiJF\nCCGEW1SkCCGEcIuKFCGEEG5RkSKEEMItKlKEEEK4RUWKEEIIt6hIEUII4ZaLowMQ8jcYGhpCTEwM\nAKCvrw/Ozs7w9vaGSCTCmzdv4Orq6rBs7e3tOHbsGOLj41FUVIRly5YhKioKN27cgF6vn7KSOyF/\nGypShMyCl5cXmpubAQBZWVlYuHAhTp48OevHTy7sMh8rUhsMBpSWlsLV1RXFxcU4deoUJBIJPD09\nqUCRvx79BRPyG/53NbHLly9DJpNBJpMJ22cbjUZIJBKkpaVBJpPBZDIhOzsbEokEarUaKSkpuHTp\nEj5+/AiZTCY818WLF5GVlSUc5+fnY+3atVAqlTh06BAmJiamvPaKFSuEnlx7ezskEgmA74uTEvK3\noyJFyB9qbGzErVu3UF9fj7q6OuTl5cFgMAAA3r17h6NHj6KtrQ0DAwMoLCxES0sLysrKoNfrZ+xZ\n/Xju7du3uH//PmpqatDc3AwnJyfcvXt3SnulUgkA6OjoQEhIiHBeoVDMx9slxK5ouI+QP/Tq1Ssk\nJiZiwYIFAIDExETodDpoNBrh9yEA0Ol0SExMhJubG9zc3KDRaH66qeKkp0+forGxESqVCsD37U38\n/PxmbFtfX2+XbRkIsScqUoT8IZFINKXYMMaE3pC7u/sv27m4uEwZwrNarVOePy0tDTk5Ob/Modfr\nER0d/dvvgxAe0XAfIX9IrVajpKQEVqsVFosFJSUlUKvV03pJGzZsQElJCb58+YKRkRFotVoA33eC\n7e/vh9lsxtevX6HVaoUiFx0djQcPHmBgYAAAYDab0dXVNWMOvV4v7IJLyH8F9aQI+Q0//m6kVCqx\nb98+YagtIyMDcrkcRqNxWrtdu3ZBLpfDx8cHkZGRYIzBxcUFZ86cQVRUFAICAiCVSoXHrFy5EufO\nnUNsbCwmJibg6uqK69evIygoSGjT0tKCiooKtLa2ori4GElJScJW3YT87WjTQ0IcJCsrCx4eHsjM\nzHR0FEK4RcN9hDjQfMybIuS/hHpShBBCuEU9KUIIIdyiIkUIIYRbVKQIIYRwi4oUIYQQblGRIoQQ\nwi0qUoQQQrhFRYoQQgi3qEgRQgjh1j9O3WMryW1X+AAAAABJRU5ErkJggg==\n", "text": [ "<matplotlib.figure.Figure at 0x7f989876da50>" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "From the plot we can see that at the given torque T=500 N-m the current Ia is 56 A, and Ke*flux is 8.9 at Ia=56 A\n", "Hence the rquired braking resistance is 9.486 ohm\n" ] } ], "prompt_number": 170 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No:5.8,Page No:74" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#variable declaration\n", "#ratings of the separately excited motor\n", "V=220 # rated voltage\n", "N=970 # rated speed\n", "Ia=100 # rated current\n", "Ra=0.05 # armature resistance\n", "N1=1000 # initial speed of the motor in rpm\n", "\n", "#calculation\n", "E=V-Ia*Ra\n", "E1=N1/N*E #value of back emf at the speed N1\n", "#(a)the resistance to be placed\n", "Ia1=2*Ia #value of the braking current is twice the rated current\n", "Rb=(E1+V)/Ia1-Ra #required resistance\n", "\n", "#(b)The braking torque\n", "Wm=(2*math.pi*N1)/60\n", "T=E1*Ia1/Wm\n", "\n", "#(c)when the speed has fallen to zero the back emf is zero\n", "E2=0\n", "Ia2=V/(Ra+Rb)\n", "T2=Ia2/Ia1*T #since the torque is directly proportional to the current\n", "\n", "\n", "#results \n", "print\"(a)Hence required resistance is :\",round(Rb,2),\"ohm\"\n", "#answer for the resistance in the book is wrong due to accuracy\n", "print\"\\n(b)Hence the required braking torque is :\",round(T,1),\"N-m\"\n", "print\"\\n(c)Hence the required torque is :\",round(T2,1),\"N-m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)Hence required resistance is : 2.16 ohm\n", "\n", "(b)Hence the required braking torque is : 423.3 N-m\n", "\n", "(c)Hence the required torque is : 210.9 N-m\n" ] } ], "prompt_number": 171 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No:5.9,Page No:84" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "import cmath\n", "\n", "#variable declaration\n", "#ratings of the separately excited motor which operates under rheostatic braking\n", "V=220 # rated voltage\n", "N=1000 # rated speed\n", "Ia=175 # rated current\n", "Ra=0.08 # armature resistance\n", "N1=1050 # initial speed of the motor in rpm\n", "J=8 # moment of inertia of the motor load system kg-m2\n", "La=0.12 # armature curcuit inductance in H\n", "\n", "#calculation\n", "E=V-Ia*Ra\n", "Wm=N*2*math.pi/60 #rated speed in rad/s\n", "\n", "#(a)when the braking current is twice the rated current\n", "Ia1=2*Ia\n", "E1=N1/N*E\n", "x=E1/Ia1 #x=Rb+Ra\n", "Rb=x-Ra #required braking resistance\n", "\n", "#(b)to obtain the expression for the transient value of speed and current including the effect of armature inductance\n", "Ra=x #total armature current\n", "K1=N1*2*math.pi/60 #initial speed in rad/s\n", "K=E/Wm\n", "B=0\n", "ta=La/Ra #time constant in sec\n", "Trated=E*Ia/Wm #rated torque\n", "Tl=0.15*Trated #load torque is 15% of the rated torque\n", "tm1= float('inf') #tm1=J/B and B=0 which is equal to infinity\n", "tm2=J*Ra/(B*Ra+K**2)\n", "\n", "a = ta\n", "b = -(1+ta/tm1)\n", "c = 1/tm2\n", "# calculate the discriminant\n", "d = (b**2) - (4*a*c)\n", "# find two solutions\n", "alpha1 = (-b-cmath.sqrt(d))/(2*a)\n", "alpha2 = (-b+cmath.sqrt(d))/(2*a)\n", "\n", "K3=tm2*Tl/J\n", "K4=tm2*K*Tl/J/Ra\n", "\n", "#transient value for speed\n", "x1=((J*alpha2-B)*K1-(Tl-J*alpha2*K3))/(J*(alpha2-alpha1))\n", "y1=((J*alpha1-B)*K1-(Tl-J*alpha1*K3))/(J*(alpha1-alpha2))\n", "\n", "#transient value for the current\n", "x2=(K*K1+alpha2*La*K4)/(La*(alpha2-alpha1))\n", "y2=(K*K1+alpha1*La*K4)/(La*(alpha1-alpha2))\n", "\n", "\n", "#(c) to calculate the time taken by braking operation and the maximum value of the armature current\n", "#now Wm=0 for the braking operation and hence 151.5 exp(-0.963*t1)- 8.247 = 0 from the previous answer in (b)\n", "a=K3/x1 #a=exp(-0.963*t1)\n", "t1=-alpha1*math.log(a.real) #take log base e on both sides\n", "#now d/dt(ia)=0 for themaximum current and hence d/dt(26.25-593.1exp(-0.963*t)+566.8exp(-4.19*t) = 0 from the previous answer in (b)\n", "b=abs(alpha2*y2)/abs(alpha1*x2) #b=exp(-0.963*t)/exp(-4.19*t)\n", "t2=math.log(b)/(-alpha1+alpha2) #take log base e on both sides\n", "t2=abs(t2)\n", "ia=K4-x2.real*math.exp(-alpha1.real*t2)-y2.real*math.exp(-alpha2.real*t2)\n", "\n", "\n", "#results\n", "print\"(a)Hence the braking resistance is :\",round(Rb,3),\"ohm\"\n", "print\"\\nb)The value of alpha1 :\",round(alpha1.real,3),\"and alpha2 :\",round(alpha2.real,3)\n", "print\"\\nHence the expression for the transient value for the speed is\"\n", "print\"Wm=\",round(x1.real,1),\"exp(\",-round(alpha1.real,3),\"*t)\",round(y1.real,1),\"exp(\",-round(alpha2.real,2),\"*t)\",\"-\",round(K3,3)\n", "print\"\\nHence the expression for the transient value for the current is\"\n", "print\"ia=\",round(K4,2),\"-\",round(x2.real,1),\"exp(\",-round(alpha1.real,3),\"*t) +\",-round(y2.real,1),\"exp(\",-round(alpha2.real,2),\"*t)\"\n", "print\"\\n(c)Hence the time taken is :\",round(t2,2),\"sec\"\n", "print\" Hence the maximum current is: \",round(ia,2),\"A\"\n", "print\"\\n Note : There is a slight difference in the answers due to more number of the decimal place \"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)Hence the braking resistance is : 0.538 ohm\n", "\n", "b)The value of alpha1 : 0.963 and alpha2 : 4.187\n", "\n", "Hence the expression for the transient value for the speed is\n", "Wm= 151.5 exp( -0.963 *t) -33.3 exp( -4.19 *t) - 8.247\n", "\n", "Hence the expression for the transient value for the current is\n", "ia= 26.25 - 593.1 exp( -0.963 *t) + 566.8 exp( -4.19 *t)\n", "\n", "(c)Hence the time taken is : 0.44 sec\n", " Hence the maximum current is: -272.23 A\n", "\n", " Note : There is a slight difference in the answers due to more number of the decimal place \n" ] } ], "prompt_number": 151 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No:5.10,Page No:86" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "import cmath\n", "import numpy as np\n", "\n", "#variable declaration\n", "#ratings of the separately excited motor of Ex-5.9 which operates plugging\n", "V=220 # rated voltage\n", "N=1000 # rated speed\n", "Ia=175 # rated current\n", "Ra=0.08 # armature resistance\n", "N1=1050 # initial speed of the motor in rpm\n", "J=8 # moment of inertia of the motor load system kg-m2\n", "La=0.12 # armature curcuit inductance in H\n", "\n", "#calculation\n", "E=V-Ia*Ra\n", "Wm=N*2*math.pi/60 #rated speed in rad/s\n", "#(a)when the braking current is twice the rated current\n", "Ia1=2*Ia\n", "E1=N1/N*E\n", "x=(V+E1)/Ia1 #x=Rb+Ra\n", "Rb=x-Ra #required braking resistance\n", "\n", "#(b)to obtain the expression for the transient value of speed and current including the effect of armature inductance\n", "#the values given below are taken from Ex-5.9\n", "ta=0.194 #time constant in sec\n", "B=0\n", "tm1= float('inf') #tm1=J/B and B=0 which is equal to infinity\n", "tm2=1.274\n", "K=1.967\n", "Trated=E*Ia/Wm #rated torque\n", "Tl=0.5*Trated #load torque is 50% of the rated torque\n", "Ra=Rb\n", "K1=N1*2*math.pi/60 #initial speed in rad/s\n", "#values of the coefficient of the quadratic equation for Wm\n", "x1=(1+ta/tm1)/ta\n", "x2=1/tm2/ta\n", "x3=-(K*V+Ra*Tl)/J/Ra/ta \n", "#values of the coefficient of the quadratic equation ia\n", "y1=(1+ta/tm1)/ta\n", "y2=1/tm2/ta\n", "y3=-B*V/J/Ra/ta+K*Tl/J/Ra/ta \n", "\n", "#solving the quadratic equation\n", "a = 1 \n", "b = x1\n", "c = x2\n", "# calculate the discriminant\n", "d = (b**2) - (4*a*c)\n", "# find two solutions\n", "alpha1 = (-b+cmath.sqrt(d))/(2*a)\n", "alpha2 = (-b-cmath.sqrt(d))/(2*a)\n", "\n", "K3=x3/x2\n", "K4=y3/y2\n", "\n", "Wm_0=K1 ;ia_0=0\n", "d_Wm_dt_0=(K*ia_0-B*Wm-Tl)/J ;d_ia_dt_0=(-V-Ra*ia_0-K*K1)/La #Wm=K1 at t=0 and during braking rated voltage V is equal to -V\n", "\n", "A = np.array([[1,1],[alpha1.real,alpha2.real]])\n", "B = np.array([Wm_0,d_Wm_dt_0])\n", "x = np.linalg.solve(A,B)\n", "C = np.array([[1,1],[alpha1.real,alpha2.real]])\n", "D = np.array([-K4,d_ia_dt_0])\n", "y = np.linalg.solve(C,D)\n", "\n", "#(c)to calculate the time taken for the speed to fall to zero value\n", "a=-K3/x[0] #a=exp(-0.966*t1)\n", "t1=alpha1*math.log(a) #take log base e on both sides\n", "\n", "\n", "#results\n", "print\"(a)Hence the braking resistance is :\",round(Rb,3),\"ohm\"\n", "print\"\\n(b)The solution for alpha are \",round(alpha1.real,3),\"and\",round(alpha2.real,3)\n", "print\" Wm=\",round(K3,2),\"+ A*exp(\",round(alpha1.real,3),\"*t) +\",\"+ B*exp(\",round(alpha2.real,2),\"*t)\"\n", "print\" ia=\",round(K4,2),\"+ C*exp(\",round(alpha1.real,3),\"*t) +\",\"+ D*exp(\",round(alpha2.real,2),\"*t)\"\n", "print\" We have to find the value of A,B,C and D in the linear equation using the initial condition\"\n", "print\" A=\",round(x[0],2),\"B=\",round(x[1],2), \"C=\",round(y[0],2),\"D=\",round(y[1],2)\n", "print\"\\nHence the expression for the transient value for the speed is\"\n", "print\" Wm=\",round(K3,2),\"+\",round(x[0],2),\"*exp(\",round(alpha1.real,3),\"*t)\",round(x[1],2),\"*exp(\",round(alpha2.real,2),\"*t)\"\n", "print\"\\nHence the expression for the transient value for the current is\"\n", "print\" ia=\",round(K4,2),round(y[0],2),\"*exp(\",round(alpha1.real,3),\"*t) +\",round(y[1],2),\"*exp(\",round(alpha2.real,2),\"*t)\"\n", "print\"\\n(c)Hence the time taken is :\",round(t1.real,2),\"sec\"\n", "print\"\\n Note :There is slight difference in the answers due to accuracy i.e more number of decimal place\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)Hence the braking resistance is : 1.167 ohm\n", "\n", "(b)The solution for alpha are -0.966 and -4.189\n", " Wm= -86.48 + A*exp( -0.966 *t) + + B*exp( -4.19 *t)\n", " ia= 46.22 + C*exp( -0.966 *t) + + D*exp( -4.19 *t)\n", " We have to find the value of A,B,C and D in the linear equation using the initial condition\n", " A= 136.24 B= -26.28 C= -1188.2 D= 1141.98\n", "\n", "Hence the expression for the transient value for the speed is\n", " Wm= -86.48 + 136.24 *exp( -0.966 *t) -26.28 *exp( -4.19 *t)\n", "\n", "Hence the expression for the transient value for the current is\n", " ia= 46.22 -1188.2 *exp( -0.966 *t) + 1141.98 *exp( -4.19 *t)\n", "\n", "(c)Hence the time taken is : 0.44 sec\n", "\n", " Note :There is slight difference in the answers due to accuracy i.e more number of decimal place\n" ] } ], "prompt_number": 50 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No:5.11,Page No:89" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "import cmath\n", "\n", "#variable declaration\n", "#ratings of the separately excited motor\n", "V=220 # rated voltage\n", "N=600 # rated speed\n", "Ia=500 # rated current\n", "Ra=0.02 # armature resistance\n", "Rf=10 # field resistance\n", "\n", "#calculation \n", "E1=V-Ia*Ra #rated back emf at rated operation\n", "Wm1=2*math.pi*N/60 #angular speed\n", "Trated=E1*Ia1/Wm1 #rated torque\n", "#(i) when the speed of the motor is 450rpm\n", "N1=450 #given speed in rpm\n", "Tl=2000-2*N1 #load torque is a function of the speed as given\n", "Ia2=Tl/Trated*Ia1 #for a torque of Tl as a function of current\n", "E2=N1/N*E1 #for a given speed of 450rpm\n", "V2=E2+Ia2*Ra #terminal voltage for a given speed of 450 rpm\n", "\n", "#(ii) when the speed of the motor is 750rpm\n", "N1=750 #given speed in rpm\n", "Tl=2000-2*N1 #load torque is a function of the speed as given\n", "Wm_=2*math.pi*N1/60\n", "Ke_phi1=E1/Wm1\n", "\n", "#Since we know that V=Ke*phi*Wm+Ia*Ra by solving we get that 0.02*(Ia_)**2 -220*Ia_ + 39270 = 0\"\n", "a = 0.02\n", "b = -220\n", "c = 39270\n", "# calculate the discriminant\n", "d = (b**2) - (4*a*c)\n", "# find two solutions\n", "Ia_1 = (-b-cmath.sqrt(d))/(2*a)\n", "Ia_2 = (-b+cmath.sqrt(d))/(2*a)\n", "\n", "Ke_phi=Tl/abs(Ia_1)\n", "V1=V*Ke_phi/Ke_phi1 #required field voltage\n", "\n", "#results\n", "print\"(i)Hence motor terminal voltage is :\",round(V2),\"V\"\n", "print\" And the armature current is :\",round(Ia2),\"A\"\n", "print\"\\n(ii)The solution for Ia_ are \",round(abs(Ia_1),1),\"A and\",round(abs(Ia_2)),\"A\"\n", "print\" We ignore \",round(abs(Ia_2)),\"A since it is unfeasible,\\n Hence armature current is :\",round(abs(Ia_1),1),\"A\"\n", "print\" Hence the required field voltage is :\",round(V1,1),\"V\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i)Hence motor terminal voltage is : 164.0 V\n", " And the armature current is : 329.0 A\n", "\n", "(ii)The solution for Ia_ are 181.5 A and 10819.0 A\n", " We ignore 10819.0 A since it is unfeasible,\n", " Hence armature current is : 181.5 A\n", " Hence the required field voltage is : 181.3 V\n" ] } ], "prompt_number": 67 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No:5.12,Page No:91" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import cmath\n", "from __future__ import division\n", "import numpy\n", "\n", "#variable declaration\n", "#ratings of the 2-pole separately excited DC motor with the fields coils connected in parallel\n", "V=220 # rated voltage\n", "N=750 # rated speed\n", "Ia1=100 # rated current\n", "Ra=0.1 # armature resistance\n", "\n", "#calculation\n", "E1=V-Ia1*Ra #rated back emf at rated operation\n", "Wm1=2*math.pi*N/60 #angular speed\n", "Trated=E1*Ia1/Wm1 #rated torque\n", "Ke_phi1=E1/Wm1\n", "#(i) when the armature voltage is reduced to 110V\n", "Wm2=2*math.pi*N2/60 #angular speed\n", "E2=Ke_phi1*Wm2\n", "#Now there are two linear equations...that we have to solve\n", "#They are given by 0.3*N2+2.674*Ia2=500 and 0.28*N2+0.1*Ia2=110\n", "a = np.array([[0.3,2.674], [0.28,0.1]])\n", "b = np.array([500,110])\n", "x = np.linalg.solve(a, b)\n", "N2=round(x[0],1) #let the motor speed be N2\n", "Ia2=round(x[1],1) #let the motor current be Ia2\n", "\n", "#(ii)when the field coils are connected in series\n", "K=Ke_phi1/2\n", "Wm3=2*math.pi*N3/60 #angular speed\n", "E3=K*Wm3\n", "#Now there are two linear equations...that we have to solve\"\n", "#They are given by 0.3*N3+1.337*Ia3=500 and 0.14*N3+0.1*Ia3=220\"\n", "a = np.array([[0.3,1.337], [0.14,0.1]])\n", "b = np.array([500,220])\n", "x = np.linalg.solve(a, b)\n", "N3=round(x[0],1) #let the motor speed be N3\n", "Ia3=round(x[1],2) #let the motor current be Ia3\n", "\n", "\n", "#results\n", "print\"(i)Hence the motor armature current is Ia2 :\",Ia2,\"A\"\n", "print\" And the required speed is N2 :\",N2,\"rpm\"\n", "print\"\\n(ii)Hence the motor armature current is Ia3 :\",Ia3,\"A\"\n", "print\" And the required speed is N3 :\",N3,\"rpm\"\n", " " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i)Hence the motor armature current is Ia2 : 148.9 A\n", " And the required speed is N2 : 339.7 rpm\n", "\n", "(ii)Hence the motor armature current is Ia3 : 25.45 A\n", " And the required speed is N3 : 1553.3 rpm\n" ] } ], "prompt_number": 173 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No:5.13,Page No:102" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#variable declaration\n", "#ratings of the separately excited motor\n", "V=200 # rated voltage\n", "N=875 # rated speed\n", "Ia=150 # rated current\n", "Ra=0.06 # armature resistance\n", "Vs=220 # source voltage\n", "f=50 # frequency of the source voltage\n", "\n", "#calculation\n", "E=V-Ia*Ra #back emf\n", "Vm=math.sqrt(2)*Vs #peak voltage\n", "\n", "#(i)when the speed is 750 rpm and at rated torque\n", "N1=750 #given speed in rpm\n", "E1=N1/N*E #back emf at the given speed N1\n", "Va=E1+Ia*Ra #terminal voltage\n", "cos_alpha=Va*math.pi/2/Vm\n", "alpha=math.acos(cos_alpha) #required firing angle in radian\n", "alpha1=math.degrees(alpha) #required firing angle in degrees\n", "\n", "#(ii)when the speed is -500rpm and at rated torque\n", "N1=-500 #given speed in rpm\n", "E1=N1/N*E #back emf at the given speed N1\n", "Va=E1+Ia*Ra #terminal voltage\n", "cos_alpha=Va*math.pi/2/Vm\n", "alpha=math.acos(cos_alpha) #required firing angle in radian\n", "alpha2=math.degrees(alpha) #required firing angle in degrees\n", "\n", "#(iii)when the firing angle is 160 degrees\n", "alpha=160 #firing angle in degrees\n", "Va=2*Vm/math.pi*math.cos(math.radians(alpha))\n", "E1=Va-Ia*Ra #since Va=E1+Ia*Ra\n", "N1=E1/E*N #the required speed at the given firing angle\n", "\n", "#results\n", "print\"(i)Hence the required firing angle is :\",round(alpha1,1),\"\u00b0\"\n", "print\"\\n(ii)Hence the required firing angle is :\",round(alpha2),\"\u00b0\"\n", "print\"\\n(iii)Hence the required speed is :\",round(N1,1),\"rpm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i)Hence the required firing angle is : 29.3 \u00b0\n", "\n", "(ii)Hence the required firing angle is : 120.0 \u00b0\n", "\n", "(iii)Hence the required speed is : -893.9 rpm\n" ] } ], "prompt_number": 81 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No:5.14,Page No:103" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#variable declaration\n", "#ratings of the separately excited motor is same as that of Ex-5.13\n", "V=200 # rated voltage\n", "N=875 # rated speed\n", "Ia=150 # rated current\n", "Ra=0.06 # armature resistance\n", "Vs=220 # source voltage\n", "f=50 #frequency of the source voltage\n", "La=0.85e-3 # armature curcuit inductance in H\n", "\n", "#calculation\n", "E=V-Ia*Ra #back emf\n", "Vm=math.sqrt(2)*Vs #peak voltage\n", "Wm=2*math.pi*N/60 #synchronous angular speed\n", "\n", "#(i)when the speed is 400 rpm and firing angle is 60 degrees\n", "N1=400 #given speed in rpm\n", "alpha=60 #firing angle in degrees\n", "W=2*math.pi*f \n", "x=W*La/Ra\n", "phi=math.atan(x)\n", "cot_phi=1/math.tan(phi)\n", "Z=math.sqrt(Ra**2+(W*La)**2)\n", "K=E/Wm\n", "\n", "y=Ra*Vm/Z/K\n", "a=(1+math.exp(-(math.pi*cot_phi)))/(math.exp(-(math.pi*cot_phi))-1)\n", "Wmc=y*math.sin(math.radians(alpha)-phi)*a #required angular speed in rps\n", "Nmc=Wmc*60/2/math.pi #required angular speed in rpm\n", "\n", "E1=N1/N*E \n", "\n", "#The equation Vm/Z*sin(beta-phi)-E/Ra+(E/Ra-Vm/Z*sin(alpha-phi))*exp(-(beta-alpha)*cot_phi)=0\n", "#can be solved using trial method such that beta=230 degrees\n", "beta=230 #in degrees\n", "beta=math.radians(beta) #in radians\n", "alpha=math.radians(alpha) #in radians\n", "\n", "Va=(Vm*(math.cos(alpha)-math.cos(beta))+(math.pi+alpha-beta)*E1)/math.pi\n", "Ia=(Va-E1)/Ra\n", "T1=K*Ia\n", "\n", "#(ii)when the speed is -400 rpm and firing angle is 120 degrees\n", "Le=2e-3 #external inductance added to the armature\n", "L=La+Le\n", "N2=-400 #given speed in rpm\n", "alpha=120 #firing angle in degrees\n", "x=W*L/Ra\n", "phi=math.atan(x)\n", "cot_phi=1/math.tan(phi)\n", "Z=math.sqrt(Ra**2+(W*L)**2)\n", "K=E/Wm\n", "\n", "y=Ra*Vm/Z/K\n", "a=(1+math.exp(-(math.pi*cot_phi)))/(math.exp(-(math.pi*cot_phi))-1)\n", "Wmc=y*math.sin(math.radians(alpha)-phi)*a #required angular speed in rps\n", "Nmc1=Wmc*60/2/math.pi #required angular speed in rpm\n", "#The motor is operating under discontinous condition\"\n", "E2=N2/N*E \n", "\n", "#The equation Vm/Z*sin(beta-phi)-E/Ra+(E/Ra-Vm/Z*sin(alpha-phi))*exp(-(beta-alpha)*cot_phi)=0\n", "#can be solved using trial method such that beta=281 degrees\n", "beta=281 #in degrees\n", "beta=math.radians(beta) #in radians\n", "alpha=math.radians(alpha) #in radians\n", "\n", "Va=(Vm*(math.cos(alpha)-math.cos(beta))+(math.pi+alpha-beta)*E2)/math.pi\n", "Ia=(Va-E2)/Ra\n", "T2=K*Ia\n", "\n", "#(iii)when the speed is -600 rpm and firing angle is 120 degrees\n", "N3=-600 #speed in rpm\n", "alpha=120 #firing angle in degrees\n", "Va=2*Vm/math.pi*math.cos(math.radians(alpha))\n", "E3=N3/N*E #since Va=E1+Ia*Ra\n", "Ia=(Va-E3)/Ra\n", "T3=K*Ia\n", "\n", "#results\n", "print\"(i)Hence the required torque is :\",round(T1),\"N-m \"\n", "print\"\\n(ii)Hence the required torque is :\",round(T2,1),\"N-m\"\n", "print\"\\n(iii)Hence the required torque is :\",round(T3),\"N-m\" \n", "print\"\\nNote : There is a slight difference in the answers because of accuracy i.e more number of decimal place\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i)Hence the required torque is : 1067.0 N-m \n", "\n", "(ii)Hence the required torque is : 336.4 N-m\n", "\n", "(iii)Hence the required torque is : 1110.0 N-m\n", "\n", "Note : There is a slight difference in the answers because of accuracy i.e more number of decimal place\n" ] } ], "prompt_number": 179 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No:5.15,Page No:105" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#variable declaration\n", "#ratings of the separately excited motor is same as that of Ex-5.13\n", "V=200 # rated voltage\n", "N=875 # rated speed\n", "Ia=150 # rated current\n", "Ra=0.06 # armature resistance\n", "Vs=220 # source voltage\n", "f=50 #frequency of the source voltage\n", "La=2.85e-3 # armature curcuit inductance in H\n", "\n", "#calculation\n", "E=V-Ia*Ra #back emf\n", "Vm=math.sqrt(2)*Vs #peak voltage\n", "Wm=2*math.pi*N/60 #angular speed\n", "W=2*math.pi*f\n", "\n", "alpha=120 #firing angle in degrees\n", "x=W*La/Ra\n", "phi=math.atan(x)\n", "cot_phi=1/math.tan(phi)\n", "Z=math.sqrt(Ra**2+(W*La)**2)\n", "K=E/Wm\n", "\n", "y=Ra*Vm/Z/K\n", "a=(1+math.exp(-(math.pi*cot_phi)))/(math.exp(-(math.pi*cot_phi))-1)\n", "Wmc=round(y,3)*math.sin(math.radians(alpha)-phi)*a #required angular speed in rps\n", "Nmc=Wmc*60/2/math.pi #required angular speed in rpm\n", "\n", "Va=2*Vm/math.pi*math.cos(math.radians(alpha))\n", "E1=Nmc/N*E #value of back emf at the critical speed of Nmc \n", "Ia=(Va-E1)/Ra\n", "Tc=K*Ia\n", "\n", "#(i)when the torque is 1200 N-m and firing angle is 120 degrees\n", "T2=1200 #given torque in N-m\n", "Ia2=T2/K #given terminal current for the given torque and the answer in the book is wrong\n", "E2=Va-Ia*Ra \n", "N2=E2/E*N\n", "\n", "#(ii)when the torque is 300 N-m and firing angle is 120 degrees\n", "T=300 #required torque in N-m\n", "beta=233.492 #required angle in degrees\n", "beta=math.radians(beta) #in radians\n", "alpha=math.radians(alpha) #in radians\n", "x=beta-alpha\n", "E1=(Vm*(math.cos(alpha)-math.cos(beta)))/x-(math.pi*Ra*T)/(K*x)\n", "N1=E1/E*N #required speed \n", "\n", "\n", "#results\n", "print\"The motor is operating under continuous condition\"\n", "print\"The torque Tc is :\",round(Tc),\"N-m\"\n", "print\"The answer for torque Tc in the book is wrong due to accuracy in the decimal place which leads to subsequent \"\n", "print\"incorrect answers\"\n", "print\"\\n(i)Hence the required speed is :\",round(N2),\"rpm\"\n", "print\"\\n(ii)The equation Vm/Z*sin(beta-phi)-sin(alpha-phi))*exp(-(beta-alpha)*cot_phi)=\"\n", "print\" (Vm*(cos(alpha)-cos(beta))/Ra/(beta-alpha)-pi*T/K/(beta-alpha) )*(1-exp(-(beta-alpha)*cot_phi)\"\n", "print\" can be solved using trial method such that beta=233.492 degrees\"\n", "print\"\\n Hence the required speed is :\",round(N1,1),\"rpm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The motor is operating under continuous condition\n", "The torque Tc is : 396.0 N-m\n", "The answer for torque Tc in the book is wrong due to accuracy in the decimal place which leads to subsequent \n", "incorrect answers\n", "\n", "(i)Hence the required speed is : -506.0 rpm\n", "\n", "(ii)The equation Vm/Z*sin(beta-phi)-sin(alpha-phi))*exp(-(beta-alpha)*cot_phi)=\n", " (Vm*(cos(alpha)-cos(beta))/Ra/(beta-alpha)-pi*T/K/(beta-alpha) )*(1-exp(-(beta-alpha)*cot_phi)\n", " can be solved using trial method such that beta=233.492 degrees\n", "\n", " Hence the required speed is : 5.6 rpm\n" ] } ], "prompt_number": 181 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No:5.16,Page No:110" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#variable declaration\n", "#ratings of the separately excited motor\n", "V=220 # rated voltage\n", "N=960 # rated speed\n", "Ia=12.8 # rated current\n", "Ra=2 # armature resistance\n", "Vs=230 # source voltage\n", "f=50 #frequency of the source voltage\n", "La=150e-3 # armature curcuit inductance in H\n", "\n", "#calculation\n", "E=V-Ia*Ra #back emf\n", "Vm=math.sqrt(2)*Vs #peak voltage\n", "Wm=2*math.pi*N/60 #angular speed\n", "W=2*math.pi*f\n", "\n", "#(i)when speed is 600rpm and the firing angle is 60 degrees\n", "alpha=60 #firing angle in degrees\n", "N1=600 #motor speed in rpm\n", "x=W*La/Ra\n", "phi=math.atan(x)\n", "cot_phi=1/math.tan(phi)\n", "Z=math.sqrt(Ra**2+(W*La)**2)\n", "K=E/Wm\n", "\n", "y=Ra*Vm/Z/K\n", "b=math.sin(phi)*math.exp(-(math.radians(alpha)*cot_phi))\n", "c=math.sin(math.radians(alpha)-phi)*math.exp(-(math.pi*cot_phi))\n", "a=1-math.exp(-(math.pi*cot_phi))\n", "Wmc=round(y,3)*(b-c)/a #required angular speed in rps\n", "Nmc=Wmc*60/2/math.pi #required angular speed in rpm\n", "\n", "Va=Vm/math.pi*(1+math.cos(math.radians(alpha)))\n", "E1=N1/N*E #value of back emf at the speed of N1\n", "Ia=(Va-E1)/Ra\n", "T=K*Ia\n", "\n", "#(ii)when the torque is 20 N-m and firing angle is 60 degrees\n", "T1=20 #required torque in N-m\n", "alpha=60 #required firing angle in degrees\n", "Ec=Nmc/N*E #motor back emf at critical speed of Nmc\n", "Tc=K*(Va-Ec)/Ra #torque at the critical speed\n", "\n", "Ia=T1/K\n", "E1=Va-Ia*Ra\n", "N1=E1/E*N #required speed \n", "\n", "\n", "#results\n", "if N1<Nmc :\n", " print\"(i)The motor is operating under continuous condition\"\n", "print\" Hence the required torque is :\",round(T,2),\"N-m\"\n", "if Tc<T1 :\n", " print\"\\n(ii)The motor is operating under continuous condition\"\n", "print\" Hence the required speed is :\",round(N1,1),\"rpm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i)The motor is operating under continuous condition\n", " Hence the required torque is : 32.68 N-m\n", "\n", "(ii)The motor is operating under continuous condition\n", " Hence the required speed is : 664.8 rpm\n" ] } ], "prompt_number": 182 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No:5.17,Page No:113" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#variable declaration\n", "#ratings of the separately excited motor\n", "V=220 # rated voltage\n", "N=1500 # rated speed\n", "Ia=50 # rated current\n", "Ra=0.5 # armature resistance\n", "Vl=440 # line voltage with 3-phase ac supply\n", "f=50 #frequency of the source voltage\n", "\n", "#calculation\n", "#(i) tranformer ratio\n", "alpha=0 #firing angle\n", "Va=V #motor terminal voltage is equal to the rated voltage when the firing angle is 0 degrees\n", "Vm=math.pi/3*Va/math.cos(alpha)\n", "Vrms=Vm/math.sqrt(2) #rms value of the converter input voltage\n", "a=(Vl/math.sqrt(3))/Vrms #required transformer ratio\n", "\n", "#(ii)value of the firing angle\n", "E=V-Ia*Ra #back emf at the rated speed\n", "\n", "#(a)when the speed of the motor is 1200 rpm and rated torque\n", "N1=1200 #speed of the motor\n", "E1=N1/N*E #back emf at the given speed N1\n", "Va=E1+Ia*Ra #terminal voltage at the given speed N1\n", "alpha=math.acos(math.pi/3*Va/Vm) #required firing angle in radians\n", "alpha1=math.degrees(alpha) #required firing angle in degrees\n", "\n", "#(b)when the speed of the motor is -800 rpm and twice the rated torque\n", "N1=-800 #speed of the motor\n", "E1=N1/N*E #back emf at the given speed N1\n", "Ia=2*Ia #torque is directly proportional to the current hence twice the rated current\n", "Va=E1+Ia*Ra #terminal voltage at the given speed N1\n", "alpha=math.acos(math.pi/3*Va/Vm) #required firing angle in radians\n", "alpha2=math.degrees(alpha) #required firing angle in degrees\n", "\n", "\n", "#results\n", "print\"(i)Hence the required transformer ratio is :\",round(a,3)\n", "print\"\\n(ii)(a)Hence the required firing angle is :\",round(alpha1,2),\"\u00b0\"\n", "print\"\\n (b)Hence the required firing angle is :\",round(alpha2,2),\"\u00b0\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i)Hence the required transformer ratio is : 1.559\n", "\n", "(ii)(a)Hence the required firing angle is : 34.64 \u00b0\n", "\n", " (b)Hence the required firing angle is : 104.21 \u00b0\n" ] } ], "prompt_number": 183 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No:5.18,Page No:117" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#variable declaration\n", "#ratings of the separately excited motor is same as that of Ex-5.17 but is fed from a circulating dual converter\n", "V=220 # rated voltage\n", "N=1500 # rated speed\n", "Ia=50 # rated current\n", "Ra=0.5 # armature resistance\n", "Vl=165 # line voltage \n", "f=50 # frequency of the source voltage\n", "\n", "#calculation\n", "E=V-Ia*Ra #back emf at the rated speed\n", "Vm=Vl*math.sqrt(2) #peak voltage\n", "\n", "#(i)during motoring operation when the speed is 1000 rpm and at rated torque\n", "N1=1000 #speed of the motor\n", "E1=N1/N*E #back emf at the given speed N1\n", "Va=E1+Ia*Ra #terminal voltage at the given speed N1\n", "alpha_A=math.acos(math.pi/3*Va/Vm) \n", "alpha_B=180-math.degrees(alpha_A) #required converter firing angle in degrees\n", "\n", "#(ii)during braking operation when the speed is 1000 rpm and at rated torque\n", "N1=1000 #speed of the motor in the book it is given as 100 rpm which is wrong\n", "E1=N1/N*E #back emf at the given speed N1\n", "Va=E1-Ia*Ra #terminal voltage at the given speed N1\n", "alpha_A1=math.acos(math.pi/3*Va/Vm) \n", "alpha_B1=180-math.degrees(alpha_A1) #required converter firing angle in degrees\n", "\n", "#(iii)during motoring operation when the speed is -1000 rpm and at rated torque\n", "N1=-1000 #speed of the motor\n", "E1=N1/N*E #back emf at the given speed N1\n", "Va=E1-Ia*Ra #terminal voltage at the given speed N1\n", "alpha_A2=math.acos(math.pi/3*Va/Vm) \n", "alpha_B2=180-math.degrees(alpha_A2) #required converter firing angle in degrees\n", "\n", "#(iv)during braking operation when the speed is -1000 rpm and at rated torque\n", "N1=-1000 #speed of the motor in the book it is given as 100 rpm which is wrong\n", "E1=N1/N*E #back emf at the given speed N1\n", "Va=E1+Ia*Ra #terminal voltage at the given speed N1\n", "alpha_A3=math.acos(math.pi/3*Va/Vm) \n", "alpha_B3=180-math.degrees(alpha_A3) #required converter firing angle in degrees\n", "\n", "\n", "#results\n", "print\"\\n(i)Hence the required firing angle is :\",round(alpha_B,1),\"\u00b0\"\n", "print\"\\n(ii)Hence the required firing angle is :\",round(alpha_B1,1),\"\u00b0\"\n", "print\"\\n(iii)Hence for negative speed during motoring operation the required firing angle are :\"\n", "print\" alpha_A :\",round(math.degrees(alpha_A2),1),\"\u00b0 and alpha_B :\",round(alpha_B2,1),\"\u00b0\"\n", "print\"\\n(iv)Hence for negative speed during braking operation the required firing angle are :\"\n", "print\" alpha_A :\",round(math.degrees(alpha_A3),1),\"\u00b0 and alpha_B :\",round(alpha_B3,1),\"\u00b0\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "(i)Hence the required firing angle is : 134.1 \u00b0\n", "\n", "(ii)Hence the required firing angle is : 118.1 \u00b0\n", "\n", "(iii)Hence for negative speed during motoring operation the required firing angle are :\n", " alpha_A : 134.1 \u00b0 and alpha_B : 45.9 \u00b0\n", "\n", "(iv)Hence for negative speed during braking operation the required firing angle are :\n", " alpha_A : 118.1 \u00b0 and alpha_B : 61.9 \u00b0\n" ] } ], "prompt_number": 184 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No:5.19,Page No:126" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#variable declaration\n", "#ratings of the separately excited motor\n", "V=230 # rated voltage\n", "N=960 # rated speed\n", "Ia=200 # rated current\n", "Ra=0.02 # armature resistance\n", "Vs=230 # source voltage\n", "\n", "#calculation\n", "E=V-Ia*Ra #back emf\n", "\n", "#(i) When the speed of motor is 350 rpm with the rated torque during motoring operation\n", "N1=350 #given speed in rpm\n", "E1=N1/N*E #given back emf at N1\n", "Va=E1+Ia*Ra #motor terminal voltage\n", "delta=Va/V #duty ratio\n", "\n", "#(ii) When the speed of motor is 350 rpm with the rated torque during braking operation\n", "Va=E1-Ia*Ra #motor terminal voltage\n", "delta1=Va/V #duty ratio\n", "\n", "#(iii)maximum duty ratio is 0.95\n", "delta2=0.95 #maximum duty ratio\n", "Va=delta2*V #terminal voltage\n", "Ia1=2*Ia #maximum permissable current\n", "E1=Va+Ia1*Ra #back emf\n", "N1=E1/E*N #maximum permissible speed\n", "Pa=Va*Ia1 #power fed to the source\n", "\n", "#(iv) if the speed of the motor is 1200 rpm and the field of the motor is also controlled\n", "N2=1200 #given speed\n", "#now the field current is directly proportional to the speed of the motor\n", "If=N/N2 #field current as a ratio of the rated current\n", "\n", "\n", "#results\n", "print\"(i) Duty ratio is :\",round(delta,3)\n", "print\"\\n(ii)Duty ratio is :\",round(delta1,2)\n", "print\"\\n(iii)Maximum permissible speed is :\",round(N1),\"rpm\"\n", "print\" Power fed to the source is :\",round(Pa/1000,1),\"kW\"\n", "print\"\\n(iv)Field current as a ratio of the rated current is :\",If" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) Duty ratio is : 0.376\n", "\n", "(ii)Duty ratio is : 0.34\n", "\n", "(iii)Maximum permissible speed is : 962.0 rpm\n", " Power fed to the source is : 87.4 kW\n", "\n", "(iv)Field current as a ratio of the rated current is : 0.8\n" ] } ], "prompt_number": 185 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No:5.20,Page No:127" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "\n", "#variable declaration\n", "#ratings of the separately excited motor when it is operated in dynamic breaking\n", "V=230 # rated voltage\n", "N=960 # rated speed\n", "Ia=200 # rated current\n", "Ra=0.02 # armature resistance\n", "Vs=230 # source voltage\n", "Rb=2 # braking resistance in ohm\n", "\n", "#calculation\n", "#when the motor speed is 600 rpm and the braking torque is twice the rated value\n", "Ia1=2*Ia #torque is directly proportional to current\n", "N1=600 #speed of the motor in rpm\n", "E=V-Ia*Ra #back emf\n", "E1=N1/N*E\n", "x=E1/Ia1-Ra #x=(1-delta)*Rb\n", "y=x/Rb #y=1-delta\n", "delta=1-y #duty ratio\n", "\n", "#(ii)if the duty ratio is 0.6 and and the braking torque is twice the rated value\n", "delta1=0.6 #duty ratio\n", "Ia1=2*Ia #torque is directly proportional to current\n", "E1=Ia1*((1-delta1)*Rb+Ra) #back emf\n", "N1=E1/E*N\n", "\n", "\n", "#results \n", "print\"(i)Duty ratio is :\",round(delta,2)\n", "print\"\\n(ii)Hence the motor speed is :\",round(N1,1),\"rpm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i)Duty ratio is : 0.83\n", "\n", "(ii)Hence the motor speed is : 1393.3 rpm\n" ] } ], "prompt_number": 140 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No:5.21,Page No:128" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "from array import array\n", "import numpy as np\n", "\n", "#variable declaration\n", "#ratings of the series motor\n", "N=600 #speed in rpm\n", "Vs=220 #source voltage\n", "Ra_Rf=0.12 #combine armature resistance field resistance\n", "#magnetisation curve at N\n", "If=[10, 20,30, 40, 50, 60, 70, 80] #field current\n", "E =[64,118,150,170,184,194,202,210] #terminal voltage\n", "\n", "#calculation\n", "#(i)when the duty ratio is 0.6 and motor current is 60 A\n", "delta=0.6 #duty ratio\n", "Ia1=60 #motor current\n", "Va1=delta*Vs #terminal voltage for the given duty ratio\n", "E1=Va1-Ia1*Ra_Rf #back emf for the given duty ratio\n", "\n", "#for Ia1=60 A the terminal voltage is 194 V as given in the magnetization curve\n", "N1=E1/E[5]*N #motor speed for the given duty ratio\n", "\n", "#(ii)when the speed is 400rpm and the duty ratio is 0.65\n", "delta=0.65 #duty ratio\n", "N2=400 #speed in rpm\n", "Va1=delta*Vs #terminal voltage for the given duty ratio\n", "\n", "#from the magnetization characteristic for the speed of 400rpm the current Ia=70 A\n", "E1=Va1-If[6]*Ra_Rf #back emf for the given duty ratio\n", "T=(E1*If[6])/N2/(2*math.pi/60) #required torque\n", "\n", "\n", "#results\n", "print\"(i)Hence the motor speed is :\",round(N1),\"rpm\"\n", "print\"\\n(ii)Hence the required torque is :\",round(T),\"N-m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i)Hence the motor speed is : 386.0 rpm\n", "\n", "(ii)Hence the required torque is : 225.0 N-m\n" ] } ], "prompt_number": 186 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No:5.22,Page No:129" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "from array import array\n", "import numpy as np\n", "\n", "#variable declaration\n", "#ratings of the series motor which is the same as that of Ex-6.21\n", "#The motor is operated using regenarative braking method\n", "N=600 #speed in rpm\n", "Vs=220 #source voltage\n", "Ra_Rf=0.12 #combine armature resistance field resistance\n", "#magnetisation curve at N\n", "If=[10, 20,30, 40, 50, 60, 70, 80] #field current\n", "E =[64,118,150,170,184,194,202,210] #terminal voltage\n", "\n", "#calculation\n", "#(i)when the duty ratio is 0.5 and the braking torque is equal to the motor torque\n", "delta=0.5 #duty ratio\n", "Va1=delta*Vs #terminal voltage\n", "Ia1=If[6] #current at rated motor torque\n", "E1=Va1+Ia1*Ra_Rf #back emf for the given duty ratio\n", "N1=E1/E[6]*N #for a current of 70 A E=202 V from the magnetization curve\n", "\n", "#(ii)when maximum permisssible duty ratio is 0.95 and current is 70A\n", "delta_max=0.95 #maximum duty ratio\n", "Va1=delta_max*Vs #terminal voltage\n", "Ia1=70 #maximum permissible current\n", "E2=Va1+Ia1*Ra_Rf #back emf for the given duty ratio\n", "N2=E2/E[6]*N #for a current of 70 A E=202 V\n", "\n", "#(iii)when the motor speed is 1000rpm and maximum current is 70A with duty ratio in the range of 0.05 to 0.95\n", "Ia1=70 #maximum permissible current\n", "N3=1000 #given speed in rpm\n", "delta_max=0.95 #maximum duty ratio\n", "E3=N3/N*E[6] #terminal voltage\n", "x=(E3-delta_max*Vs)/Ia1 #x=R+Ra_Rf where R is the required external resistance\n", "R=x-Ra_Rf #external resistance\n", "\n", "#(iv)when the motor is running at 1000rpm with current at 70 \n", "Ia1=70 #maximum permissible current\n", "N4=1000 #given speed in rpm\n", "Ra=Ra_Rf #total value of armature resistance is assumed to be the same\n", "E4=Va1+Ia1*Ra #back emf for the given speed N4\n", "E_=N/N4*E4\n", "ratio=E_/E[6] #fraction of the requuired number of turns to be reduced\n", "\n", "\n", "#results\n", "print\"(i)Hence the motor speed is :\",round(N1,1),\"rpm\"\n", "print\"\\n(ii)Hence the motor speed is :\",round(N2,1),\"rpm\"\n", "print\"\\n(iii)Hence the required external resistance is :\",round(R,1),\"ohm\"\n", "print\"\\n(iv)Hence fraction of the number of turns to be reduced is :\",round(ratio,3)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i)Hence the motor speed is : 351.7 rpm\n", "\n", "(ii)Hence the motor speed is : 645.7 rpm\n", "\n", "(iii)Hence the required external resistance is : 1.7 ohm\n", "\n", "(iv)Hence fraction of the number of turns to be reduced is : 0.646\n" ] } ], "prompt_number": 187 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example No:5.23,Page No:130" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "from __future__ import division\n", "from array import array\n", "import numpy as np\n", "\n", "#variable declaration\n", "#ratings of the series motor which is the same as that of Ex-6.21\n", "#The motor is operated using dynamic braking method\n", "N=600 #speed in rpm\n", "Vs=220 #source voltage\n", "Ra=0.12 # armature resistance\n", "delta_min=0.1 #manimum value of duty ratio\n", "delta_max=0.9 #maximum value of duty ratio\n", "#magnetisation curve at N\n", "If=[10, 20,30, 40, 50, 60, 70, 80] #field current\n", "E =[64,118,150,170,184,194,202,210] #terminal voltage\n", "\n", "#calculation\n", "#(i) maximum braking speed is 800rpm with armature current of 70 A\n", "N1=800 #maximum braking speed \n", "Ia=70 #armature current\n", "E1=N1/N*E[6] #at 70A motor back emf is 202V \n", "Rbe=E1/Ia-Ra #effective value of braking resistance\n", "Rb=Rbe/(1-delta_min) #required braking resistance\n", "\n", "#(ii)when the speed of the motor is 87 rpm\n", "#now torque is maximum when the duty ratio is maximum\n", "N1=87 #speed in rpm\n", "R=Rb*(1-delta_max)+Ra\n", "\n", "Ia=If[4] #value of armature current for the given value of E=184V \n", "Ke_phi=E[4]/(2*math.pi*N)*60\n", "T=Ke_phi*Ia #required torque\n", "\n", "\n", "#results\n", "print\"(i)Hence braking resistance is:\",round(Rb,2),\"ohm\"\n", "print\"\\n(ii)Hence the required torque is :\",round(T,1),\"N-m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i)Hence braking resistance is: 4.14 ohm\n", "\n", "(ii)Hence the required torque is : 146.4 N-m\n" ] } ], "prompt_number": 188 } ], "metadata": {} } ] }