{ "metadata": { "name": "", "signature": "sha256:96f5bd0fa542764d6a8f75d5a1a42e4b79791697476f4029d0fa0fea1de65bed" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter2:SOME CONCEPTS AND DEFINITIONS" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2.1:pg-19" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#example 1\n", "#weight of a person\n", "\n", "\n", "m=1 #kg\n", "g=9.75 #acc.due to gravity in m/s^2\n", "F=m*g #weight of 1 kg mass in N\n", "print\"\\n hence,weight of person is\",round(F,2),\" N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " hence,weight of person is 9.75 N\n" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2.1E:pg-20" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#example 2\n", "#weight of a person\n", "\n", "\n", "m=1 #lbm\n", "g=32 #acc.due to gravity in ft/s^2\n", "F=m*g/32.174 #weight of 1 lbm mass in lbf\n", "print\"\\n hence,weight of person is\",round(F,4),\" lbf\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " hence,weight of person is 0.9946 lbf\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2.2:pg-24" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#example 3\n", "#average volume and density\n", "\n", "Vliq=0.2 #volume of liquid in m^3\n", "dliq=997 #density of liquid in kg/m^3\n", "Vstone=0.12 #volume of stone in m^3\n", "Vsand=0.15 #volume of sand in m^3\n", "Vair=0.53 #vo;ume of air in m^3\n", "mliq=Vliq*dliq #mass of liquid in kg\n", "dstone=2750 #density of stone in kg/m^3\n", "dsand=1500 #density of sand in kg/m^3\n", "mstone=Vstone*dstone #volume of stone in m^3\n", "msand=Vsand*dsand #volume of sand in m^3\n", "Vtot=1 #total volume in m^3\n", "dair=1.1 #density of air in kg/m^3\n", "mair=Vair*dair #mass of air\n", "mtot=mair+msand+mliq+mstone #total mass in kg\n", "v=Vtot/mtot #specific volume in m^3/kg\n", "d=1/v #overall density in kg/m^3\n", "print\"\\n hence,average specific volume is\",round(v,6),\"m^3/kg\" \n", "print\"\\n and overall density is\", round(d),\"kg/m^3\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " hence,average specific volume is 0.001325 m^3/kg\n", "\n", " and overall density is 755.0 kg/m^3\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2.3:pg-26" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#example 4\n", "#calculating the required force\n", "import math\n", "\n", "Dcyl=0.1 #cylinder diameter in m\n", "Drod=0.01 #rod diameter in m\n", "Acyl=math.pi*Dcyl**2/4 #cross sectional area of cylinder in m^2\n", "Arod=math.pi*Drod**2/4 #cross sectional area of rod in m^2\n", "Pcyl=250000 #inside hydaulic pressure in Pa\n", "Po=101000 #outside atmospheric pressure in kPa\n", "g=9.81 #acc. due to gravity in m/s^2\n", "mp=25 #mass of (rod+piston) in kg\n", "F=Pcyl*Acyl-Po*(Acyl-Arod)-mp*g #the force that rod can push within the upward direction in N\n", "print\"\\n hence,the force that rod can push within the upward direction is\",round(F,1),\" N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " hence,the force that rod can push within the upward direction is 932.9 N\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2.4:pg-28" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#example 5\n", "#Calculating atmospheric pressure \n", "\n", "dm=13534 #density of mercury in kg/m^3\n", "H=0.750 #height difference between two columns in metres\n", "g=9.80665 #acc. due to gravity in m/s^2\n", "Patm=dm*H*g/1000 #atmospheric pressure in kPa\n", "print\"\\n hence, atmospheric pressure is\",round(Patm,2),\"kPa\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " hence, atmospheric pressure is 99.54 kPa\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2.5:pg-28" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#example 6\n", "#pressure inside vessel\n", "\n", "dm=13590 #density of mercury in kg/m^3\n", "H=0.24 #height difference between two columns in metres\n", "g=9.80665 #acc. due to gravity in m/s^2\n", "dP=dm*H*g #pressure difference in Pa\n", "Patm=13590*0.750*9.80665 #Atmospheric Pressure in Pa\n", "Pvessel=dP+Patm #Absolute Pressure inside vessel in Pa\n", "Pvessel=Pvessel/101325 #Absolute Pressure inside vessel in atm\n", "print\"\\n hence, the absolute pressure inside vessel is\",round(Pvessel,3),\"atm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " hence, the absolute pressure inside vessel is 1.302 atm\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2.5E:pg-28" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#example 7\n", "#pressure inside vessel\n", "\n", "dm=848 #density of mercury in lbm/ft^3\n", "H=9.5 #height difference between two columns in inches\n", "g=32.174 #acc. due to gravity in ft/s^2\n", "dP=dm*H*g #pressure difference in lbf/in^2\n", "Patm=848*9.5*32.174/(1728*32.174) #Atmospheric Pressure in lbf/in^2\n", "Pvessel=dP+Patm #Absolute Pressure inside vessel in lbf/in^2\n", "Pvessel=848*29.5*32.174/(1728*32.174)+Patm #Absolute Pressure inside vessel in lbf/in^2\n", "print\"\\n hence, the absolute pressure inside vessel is\",round(Pvessel,2),\"lbf/in^2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " hence, the absolute pressure inside vessel is 19.14 lbf/in^2\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2.6:pg-29" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#example 8\n", "#calculating pressure\n", "\n", "dg=750 #density of gaasoline in kg/m^3\n", "dR=1206 #density of R-134a in kg/m^3\n", "H=7.5 #height of storage tank in metres\n", "g=9.807 #acc. due to gravity in m/s^2\n", "dP1=dg*g*H/1000 #in kPa\n", "Ptop1=101 #atmospheric pressure in kPa\n", "P1=dP1+Ptop1\n", "print\"hence,pressure at the bottom of storage tank if fluid is gasoline is\",round(P1,1),\"kPa\" \n", "dP2=dR*g*H/1000 #in kPa\n", "Ptop2=1000 #top surface pressure in kPa\n", "P2=dP2+Ptop2\n", "print\"\\n hence, pressure at the bottom of storage tank if liquid is R-134a is\",round(P2),\"kPa\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "hence,pressure at the bottom of storage tank if fluid is gasoline is 156.2 kPa\n", "\n", " hence, pressure at the bottom of storage tank if liquid is R-134a is 1089.0 kPa\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2.7:pg-29" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#example 9\n", "#calculating balancing force\n", "\n", "Po=100#Outside atmospheric pressure in kPa\n", "F1=25 #net force on the smallest piston in kN\n", "A1=0.01 #cross sectional area of lower piston in m^2\n", "P1=Po+F1/A1 #fluid pressure in kPa\n", "d=900 #density of fluid in kg/m^3\n", "g=9.81 #acc. due to gravity in m/s^2\n", "H=6 #height of second piston in comparison to first one in m\n", "P2=P1-d*g*H/1000 #pressure at higher elevation on piston 2 in kPa\n", "A2=0.05 #cross sectional area of higher piston in m^3\n", "F2=(P2-Po)*A2 #balancing force on second piston in kN\n", "print\"\\n hence, balancing force on second larger piston is\",round(F2,1),\"N\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", " hence, balancing force on second larger piston is 122.4 N\n" ] } ], "prompt_number": 19 } ], "metadata": {} } ] }