{ "metadata": { "name": "", "signature": "sha256:7c7e50fa2880e870c4aa1630bafd7d049a3cb3c4e646a0d88068a55be4a3d00f" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 16:INTRODUCTION TO PHASE AND CHEMICAL EQUILIBRIUM" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex16.2:PG-681" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#ques2\n", "#to determine change in gibbs free energy\n", "\n", "#1-H2\n", "#2-O2\n", "#3-H2O\n", "\n", "#at T=298 K\n", "T1=298.0;#K\n", "Hf1=0;#Enthalpy of formation of H2 at 298 K\n", "Hf2=0;#Enthalpy of formation of O2 at 298 K\n", "Hf3=-241826;#enthalpy of formation of H2O at 298 K in kJ\n", "dH=2*Hf1+Hf2-2*Hf3;#Change in enthalpy in kJ\n", "Sf1=130.678;#Entropy of H2 at 298 K n kJ/K\n", "Sf2=205.148;#Entropy of O2 at 298 K in kJ/K\n", "Sf3=188.834;#entropy of H2O at 298 K in kJ/K\n", "dS=2*Sf1+Sf2-2*Sf3;#Change in entropy in kJ/K\n", "dG1=dH-T1*dS;#change n gibbs free energy in kJ\n", "print\" Change in gibbs free energy at\",T1,\"kelvin is\",round(dG1),\"kJ \"\n", "#at T=2000 K\n", "T2=2000.0;#K\n", "Hf1=52942-0;#Enthalpy of formation of H2 at 2000 K\n", "Hf2=59176-0;#Enthalpy of formation of O2 at 2000 K\n", "Hf3=-241826+72788;#enthalpy of formation of H2O at 2000 K in kJ\n", "dH=2*Hf1+Hf2-2*Hf3;#Change in enthalpy in kJ\n", "Sf1=188.419;#Entropy of H2 at 2000 K n kJ/K\n", "Sf2=268.748;#Entropy of O2 at 2000 K in kJ/K\n", "Sf3=264.769;#entropy of H2O at 2000 K in kJ/K\n", "dS=2*Sf1+Sf2-2*Sf3;#Change in entropy in kJ/K\n", "dG2=dH-(T2*dS);#change n gibbs free energy in kJ\n", "print\" Change in gibbs free energy at\",T2,\"kelvin is\",round(dG2),\" kJ \"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Change in gibbs free energy at 298.0 kelvin is 457179.0 kJ \n", " Change in gibbs free energy at 2000.0 kelvin is 271040.0 kJ \n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex16.3:PG-683" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#ques3\n", "#calculating equilibrium constant \n", "\n", "dG1=-457.166;#change in gibbs free energy at temp 298 K from example2 in kJ\n", "dG2=-271.040;#change in gibbs free energy at temp 2000 K from example2 n kJ\n", "T1=298;#K\n", "T2=2000;#K\n", "R=8.3145;#gas constant\n", "K1=dG1*1000/(R*T1);\n", "K2=dG2*1000/(R*T2);\n", "print\" Equilibrium constant at \",T1,\"K = \",round(K1,2)\n", "print\" Equilibrium constant at \",T2,\"K = \",round(K2,3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " Equilibrium constant at 298 K = -184.51\n", " Equilibrium constant at 2000 K = -16.299\n" ] } ], "prompt_number": 6 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }