{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 5: Junction Properties (Continued)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 5.1 Page No 191" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "When no external voltage is applied, Junction width is 3.9e-07 m\n", "When external voltage of -10 Volt is applied, Junction width is 1.5e-06 m\n" ] } ], "source": [ "#Exa 5.1\n", "#Estimate the junction width in two cases.\n", "\n", "#given data\n", "import math\n", "ND=10**17 #in atoms/cm**3\n", "NA=0.5*10**16 #in atoms/cm**3\n", "Vo=0.7 #in Volts\n", "V=-10.0 #in Volts\n", "ND=ND*10**6 #in atoms/m**3\n", "NA=NA*10**6 #in atoms/m**3\n", "epsilon=8.85*10**-11 #in F/m\n", "e=1.6*10**-19 #coulamb\n", "\n", "#Calculation\n", "#part (i)\n", "#print \"When no external voltage is applied i.e. V=0\"\n", "#print\"VB = 0.7 volts\"\n", "VB=0.7 #in Volts\n", "W1=math.sqrt(2*epsilon*VB*(1/NA+1/ND)/e) #in m\n", "\n", "#part (ii)\n", "#print\"When external voltage of -10 volt is applied\"\n", "#print\"VB = Vo-V volts\"\n", "VB=Vo-V #in Volts\n", "W2=math.sqrt(2*epsilon*VB*(1/NA+1/ND)/e) #in m\n", "\n", "#result\n", "print \"When no external voltage is applied, Junction width is \",round(W1,8),\"m\"\n", "print\"When external voltage of -10 Volt is applied, Junction width is \",round(W2,7),\"m\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 5.3 Page No 195" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Junction capacitance is 21.59 pF\n" ] } ], "source": [ "#Exa 5.3\n", "#Determine the junction capacitance\n", "\n", "#given data\n", "CTzero=50 #in pF\n", "VR=8 #in Volt\n", "VK=0.7 #in Volt\n", "n=1/3.0 #for Si\n", "\n", "#calculation\n", "CT=CTzero/((1+VR/VK)**n) #in pF\n", "\n", "#result\n", "print\"Junction capacitance is\",round(CT,2),\"pF\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 5.4 Page No.196" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The tuning range of circuit lies between 318.31 khz and 1007.0 Mhz\n" ] } ], "source": [ "#Example 5.4\n", "#Determine the tuning range of the circuit\n", "import math\n", "#Given\n", "L=12.5*10**-3 #mH inductance\n", "C1=4.0 #pF Capacitance\n", "C2=40.0 #pF Capacitance\n", "\n", "#Calculation\n", "Ctmin=(C1*C1)/(C1+C1) #Min value of total Capacitance\n", "Ctmax=(C2*C2)/(C2+C2) #Max value of total Capacitance\n", "Fmax=1/(2*math.pi*math.sqrt(L*Ctmin*10**-12))\n", "Fmin=1/(2*math.pi*math.sqrt(L*Ctmax*10**-12))\n", "\n", "#result\n", "print\"The tuning range of circuit lies between\",round(Fmin/1000,2),\"khz and\",round(Fmax/1000,0),\"Mhz\"\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }