{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter3 : Excess Carriers in Semiconductor" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 3.2 Page No 111" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Minimum required energy is 2.06 eV \n" ] } ], "source": [ "#Example 3.2\n", "#What is Minimum required energy \n", "\n", "#given data\n", "l=6000 #in Angstrum\n", "h=6.6*10**(-34) #Planks constant\n", "c=3*10**8 #speed of light in m/s\n", "e=1.602*10**(-19) #Constant\n", "\n", "#calculation\n", "phi=c*h/(e*l*10**(-10))\n", "\n", "#result\n", "print\"Minimum required energy is\",round(phi,2),\"eV \"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 3.3 Page No 112" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Work function of the cathode material is 2.39 eV\n" ] } ], "source": [ "#Exa 3.3\n", "#calculate Work function of the cathode material\n", "\n", "#given data\n", "Emax=2.5 #maximum energy of emitted electrons in eV \n", "l=2537.0 #in Angstrum\n", "\n", "#Calculation\n", "EeV=12400.0/l #in eV\n", "phi=EeV-Emax #in eV\n", "\n", "#result\n", "print \"Work function of the cathode material is \",round(phi,2),\"eV\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 3.4 Page No 115" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(i)Thus power absorbed is 0.009 J/s\n", "(ii)Energy converted into heat is 0.0026 J/s\n", "(iii)Number of photons per second given off from recombination events 2.81e+16\n" ] } ], "source": [ "#Example 3.4\n", "#Find (i)The fraction of each photon energy unit which is converted into heat\",f\n", "#(ii)Energy converted into heat in ,((2-1.43)/2)*0.009,\"J/s\"\n", "#(iii)Number of photons per second given off from recombination events \",0.009/(e*2)\n", "\n", "#given data\n", "t=0.46*10**-4 #in centi meters\n", "hf1=2 #in ev\n", "hf2=1.43\n", "Pin=10 #in mW\n", "alpha=50000 # in per cm\n", "e=1.6*10**-19 #constant\n", "Io=0.01 #in mW\n", "\n", "import math\n", "\n", "#Calculation\n", "It=Io*math.exp(-alpha*t) #in mW\n", "Iabs=Io-It\n", "f=(hf1-hf2)/hf1\n", "E=f*Iabs\n", "N=Iabs/(e*hf1)\n", "\n", "#result\n", "print\"(i)Thus power absorbed is \",round(Iabs,3),\"J/s\"\n", "print\"(ii)Energy converted into heat is\",round(E,4),\"J/s\"\n", "print\"(iii)Number of photons per second given off from recombination events \",round(N,-14)\n", "#In book there is calculation mistake in Number of photons." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 3.5 Page No 123" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Electron transit time in sec is 6.4e-09 s\n", "Photoconductor gain is 216.0\n" ] } ], "source": [ "#Example 3.5\n", "#What is Photoconductor gain \n", "#Electron transit time.\n", "\n", "#given data\n", "L=100 #in uM\n", "A=10&-7 #in cm**2\n", "th=10**-6 #in sec\n", "V=12 #in Volts\n", "ue=0.13 #in m**2/V-s\n", "uh=0.05 #in m**2/V-s\n", "\n", "#Calculation\n", "E=V/(L*10**-6) #in V/m\n", "tn=(L*10**-6)/(ue*E)\n", "Gain=(1+uh/ue)*(th/tn)\n", "\n", "#result\n", "print\"Electron transit time in sec is \",round(tn,10),\"s\"\n", "print\"Photoconductor gain is \",Gain" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 3.6 Page No128" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Current flowing through diode is 15.0 micra A\n" ] } ], "source": [ "#Example3.6\n", "#Calculate Current flowing through diode .\n", "\n", "#given datex\n", "import math\n", "Io=0.15 #in uA\n", "V=0.12 #in mVolt\n", "Vt=26 #in mVolt\n", "\n", "#calculation\n", "I=Io*10**-6*(math.exp(V/(Vt*10**-3))-1) #in A\n", "\n", "#result\n", "print\"Current flowing through diode is \",round(I*10**6,2),\"micra A\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 3.7 Page No 128" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Forward voltage is 0.43 V\n" ] } ], "source": [ "#Exa 3.7\n", "#Determine the Forward voltage \n", "\n", "#given data\n", "import math\n", "Io=2.5 #in uA\n", "I=10 #in mA\n", "Vt=26 #in mVolt\n", "n=2 #for silicon\n", "\n", "#Calculation\n", "V=n*Vt*10**-3*math.log((I*10**-3)/(Io*10**-6))\n", "\n", "#Result\n", "print \"Forward voltage is \",round(V,2),\"V\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 3.8 Page No 128" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Reverse saturation current density is 0.16 uA \n" ] } ], "source": [ "#Example 3.8\n", "#What is Reverse saturation current density \n", "\n", "#given data\n", "ND=10**21 #in m**-3\n", "NA=10**22 #in m**-3\n", "De=3.4*10**-3 #in m**2-s**-1\n", "Dh=1.2*10**-3 #in m**2-s**-1\n", "Le=7.1*10**-4 #in meters\n", "Lh=3.5*10**-4 #in meters\n", "ni=1.6*10**16 #in m**-3\n", "e=1.602*10**-19 #constant\n", "\n", "#calculation\n", "IoA=e*ni**2*(Dh/(Lh*ND)+De/(Le*NA))\n", "\n", "#Result\n", "print\"Reverse saturation current density is \",round(IoA*10**6,2),\"uA \"" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }