{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 1:Semiconductor Marerials and Crystal Properties" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 1.1 Page No.23" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Miller indices of the given plane are 3.0 2.0 3.0\n" ] } ], "source": [ "#Example 1.1\n", "#Find the miller indices for a plane.\n", "\n", "#Given\n", "#Length of intercept\n", "l1=2.0\n", "l2=3.0\n", "l3=2.0\n", "\n", "#Calcuation\n", "#reciprocal of intercept\n", "r1=1/l1\n", "r2=1/l2\n", "r3=1/l3\n", "m1=6*r1\n", "m2=6*r2\n", "m3=6*r3\n", "\n", "#Result\n", "print\"Miller indices of the given plane are\",m1,m2,m3\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 1.2 Page No.24" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Miller indices of the given plane are 2.0 1.0 0\n" ] } ], "source": [ "#Example 1.2\n", "#Find the miller indices for a plane.\n", "\n", "#Given\n", "#Length of intercept\n", "l1=1.0\n", "l2=2.0\n", "l3=0\n", "\n", "#Calcuation\n", "#reciprocal of intercept\n", "r1=1/l1\n", "r2=1/l2\n", "r3=0\n", "m1=2*r1\n", "m2=2*r2\n", "m3=2*r3\n", "\n", "#Result\n", "print\"Miller indices of the given plane are\",m1,m2,m3\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 1.3 Page No.24" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Lattice constant is 3.22 A\n", "radius of simple lattice is 1.61 A\n" ] } ], "source": [ "#Example 1.3\n", "#Obtain lattice constant and radius of the atom.\n", "\n", "#Given\n", "V=3*(10**22) #kg/m**3, density of SCC lattice\n", "p=(1/3.0)*10**-22\n", "\n", "#Calculation\n", "n=1 #no. of lattice point \n", "a=(n*p)**(1/3.0) #lattice constant\n", "r=(a*10**8/2)\n", "\n", "#Result\n", "print\"Lattice constant is\",round(a*10**8,2),\"A\"\n", "print\"radius of simple lattice is\",round(r,2),\"A\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 1.4 Page no.25" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Density of crystal is 8928.8 Kg/m**3\n" ] } ], "source": [ "#Exampe 1.4\n", "#Determine the density of crystal\n", "\n", "#given data\n", "import math\n", "r=1.278 #in Angstrum\n", "AtomicWeight=63.5 #constant\n", "AvogadroNo=6.023*10**23 #constant\n", "\n", "#Calculation\n", "#For FCC structure a=4*r/math.sqrt(2)\n", "a=4*r*10**-10/math.sqrt(2) #in meter\n", "V=a**3 #in meter**3\n", "#mass of one atom = m\n", "m=AtomicWeight/AvogadroNo #in gm\n", "m=m/1000 #in Kg\n", "n=4 # no. of atoms per unit cell for FCC structure\n", "rho=m*n/V #in Kg/m**3\n", "\n", "#Result\n", "print \"Density of crystal is\",round(rho,2),\"Kg/m**3\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 1.5 Page no.26" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Density of silicon crystal is 1249.0 Kg/m**3\n" ] } ], "source": [ "#Example 1.5\n", "#What is Density of silicon crystal .\n", "\n", "#given data\n", "n=4 # no. of atoms per unit cell of silicon\n", "AtomicWeight=28 #constant\n", "AvogadroNo=6.021*10**23 #constant\n", "\n", "#calculation\n", "m=AtomicWeight/AvogadroNo #in gm\n", "m=m/1000 #in Kg\n", "a=5.3 #lattice constant in Angstrum\n", "a=a*10**-10 #in meter\n", "V=a**3 #in meter**3\n", "rho=m*n/V #in Kg/m**3\n", "\n", "#result\n", "print\"Density of silicon crystal is\",round(rho,0),\"Kg/m**3\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 1.6 Page no.26" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Surface density in FCC on (111)Plane is %.e 1.02382271468e+13 atoms/mm**2\n" ] } ], "source": [ "#Example 1.5\n", "#What is Surface density in FCC .\n", "\n", "#given data\n", "a=4.75 #lattice constant in Angstrum\n", "a=a*10**-10 #in meter\n", "\n", "#Calculation\n", "dp=2.31/a**2 #in atom/m**2\n", "dp=dp/10**6 #in atom/mm**2\n", "\n", "#Result\n", "print \"Surface density in FCC on (111)Plane is %.e\",dp,\"atoms/mm**2\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 1.7 Page no. 28" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Interpolar distance in Angstrum 2.01 A\n" ] } ], "source": [ "#Example 1.7\n", "#find the Interpolar distance\n", "\n", "#given data\n", "import math\n", "l=1.539 #in Angstrum\n", "theta=22.5 #in degree\n", "n=1 #order unitless\n", "\n", "#Calculation\n", "d=n*l/(2*math.sin(theta*math.pi/180)) #in Angstrum\n", "\n", "#result\n", "print \"Interpolar distance in Angstrum \",round(d,2),\"A\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 1.8 Page no. 28" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "wavelength of X-rays in Angstrum 0.584 A\n" ] } ], "source": [ "#Example 1.8\n", "#Find the wavelength of X-rays \n", "\n", "#given data\n", "import math\n", "\n", "theta=16.8/2.0 #in degree\n", "n=2.0 #order unitless\n", "d=0.4 #in nm\n", "\n", "#Calculation\n", "l=(2*d*10**-9*sin(theta*math.pi/180.0))/n #in Angstrum\n", "\n", "#result\n", "print \"wavelength of X-rays in Angstrum \",round(l*10**10,3),\"A\"\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }