{ "metadata": { "name": "", "signature": "sha256:2c6079d59907bdb19e3c7c545f331feab8b98bc306595300ef54457ff52405db" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "CHAPTER16:SOME SPECIAL CASES COUETTE AND POISEUILLE FLOWS" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E01 : Pg 524" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# All the quantities are expressed in SI units\n", "\n", "mue = 1.7894*10**5; # coefficient of viscosity\n", "ue = 60.96; # velocity of upper plate\n", "D = 2.54*10**4; # distance between the 2 plates\n", "T_w = 288.3; # temperature of the plates\n", "Pr = 0.71; # Prandlt number\n", "cp = 1004.5; # specific heat at constant pressure\n", "\n", "# (a)\n", "# from eq.(16.6)\n", "u = ue/2;\n", "\n", "# (b)\n", "# from eq.(16.9)\n", "tow_w = mue*ue/D;\n", "\n", "# (c)\n", "# from eq.(16.34)\n", "T = T_w + Pr*ue**2/8/cp;\n", "\n", "# (d)\n", "# from eq.(16.35)\n", "q_w_dot = mue/2*ue**2/D;\n", "\n", "# (e)\n", "# from eq.(16.40)\n", "T_aw = T_w + Pr/cp*ue**2/2;\n", "\n", "print\"(a)u =\",u,\"m/s\"\n", "print\"(b)tow_w =\",tow_w,\"N/m2\"\n", "print\"(c)T =\",T,\"K\"\n", "print\"(d)q_w_dot =\",q_w_dot,\"Nm-1s-1\"\n", "print\"(e)Taw =\",\"K\",T_aw\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)u = 30.48 m/s\n", "(b)tow_w = 429.456 N/m2\n", "(c)T = 288.628328315 K\n", "(d)q_w_dot = 13089.81888 Nm-1s-1\n", "(e)Taw = K 289.613313258\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E02 : Pg 524" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# All the quantities are expressed in SI units\n", "import math \n", "from math import sqrt\n", "mue = 1.7894*10**5; # coefficient of viscosity\n", "Me = 3.; # mach number of upper plate\n", "D = 2.54*10**4; # distance between the 2 plates\n", "pe = 101000.; # ambient pressure\n", "Te = 288.; # temperature of the plates\n", "Tw = Te;\n", "gam = 1.4; # ratio of specific heats\n", "R = 287; # specific gas constant\n", "Pr = 0.71; # Prandlt number\n", "cp = 1004.5; # specific heat at constant pressure\n", "tow_w = 72.; # shear stress on the lower wall\n", "# the velocity of the upper plate is given by\n", "ue = Me*sqrt(gam*R*Te);\n", "# the density at both plates is\n", "rho_e = pe/R/Te;\n", "# the coefficient of skin friction is given by\n", "cf = 2.*tow_w/rho_e/ue**2.;\n", "# from eq.(16.92)\n", "C_H = cf/2/Pr;\n", "# from eq.(16.82)\n", "h_aw = cp*Te + Pr*ue**2/2;\n", "h_w = cp*Tw;\n", "q_w_dot = rho_e*ue*(h_aw-h_w)*C_H;\n", "print\"The heat transfer is given by:q_w_dot =\",q_w_dot/1e4,\"W/m2\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The heat transfer is given by:q_w_dot = 3.67387998933 W/m2\n" ] } ], "prompt_number": 2 } ], "metadata": {} } ] }