{ "metadata": { "name": "", "signature": "sha256:50b271f93e8a365fc7786fed67e8c1b9727566cca589daf5682afce2ce0beb0c" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "CHAPTER10:COMPRESSIBLE FLOW THROUGH NOZZLES DIFFUSERS AND WIND TUNNELS" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E01 : Pg 345" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# All the quantities are expressed in Si units\n", "area_ratio = 10.25; # exit to throat area ratio\n", "p0 = 5; # reservoir pressure in atm\n", "T0 = 333.3; # reservoir temperature\n", "\n", "# from appendix A, for an area ratio of 10.25\n", "Me = 3.95; # exit mach number\n", "pe = 0.007*p0; # exit pressure\n", "Te = 0.2427*T0; # exit temperature\n", "\n", "print\"Me =\",Me\n", "print\"pe =\",pe,\"atm\"\n", "print\"Te =\",Te,\"K\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Me = 3.95\n", "pe = 0.035 atm\n", "Te = 80.89191 K\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E02 : Pg 346" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# All the quantities are expressed in Si units\n", "\n", "area_ratio = 2.; # exit to throat area ratio\n", "p0 = 1.; # reservoir pressure in atm\n", "T0 = 288.; # reservoir temperature\n", "\n", "# (a)\n", "# since M = 1 at the throat\n", "Mt = 1.;\n", "pt = 0.528*p0; # pressure at throat\n", "Tt = 0.833*T0; # temperature at throat\n", "\n", "# from appendix A for supersonic flow, for an area ratio of 2\n", "Me = 2.2; # exit mach number\n", "pe = 1./10.69*p0; # exit pressure\n", "Te = 1./1.968*T0; # exit temperature\n", "\n", "print\"At throat: Mt =\",Mt\n", "print\"\\nAt throat: pt =\",pt,\"atm\"\n", "print\"\\nAt throat: Tt = \",Tt,\"K\"\n", "print\"\\nAt throat: For supersonic exit:\",Me\n", "print\"\\nAt throat: pe =\",pe,\"atm\"\n", "print\"\\nAt throat: Te = \",Te,\"K\"\n", "\n", "# (b)\n", "# from appendix A for subonic flow, for an area ratio of 2\n", "Me = 0.3; # exit mach number\n", "pe = 1/1.064*p0; # exit pressure\n", "Te = 1/1.018*T0; # exit temperature\n", "\n", "print\"\\nFor subrsonic exit:\",Me\n", "print\"\\npe=\",pe,\"atm\"\n", "print\"\\nTe=\",Te,\"K\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "At throat: Mt = 1.0\n", "\n", "At throat: pt = 0.528 atm\n", "\n", "At throat: Tt = 239.904 K\n", "\n", "At throat: For supersonic exit: 2.2\n", "\n", "At throat: pe = 0.0935453695042 atm\n", "\n", "At throat: Te = 146.341463415 K\n", "\n", "For subrsonic exit: 0.3\n", "\n", "pe= 0.93984962406 atm\n", "\n", "Te= 282.907662083 K\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E03 : Pg 346" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# All the quantities are expressed in Si units\n", "\n", "area_ratio = 2.; # exit to throat area ratio\n", "p0 = 1.; # reservoir pressure in atm\n", "T0 = 288.; # reservoir temperature\n", "pe = 0.973; # exit pressure in atm\n", "\n", "p_ratio = p0/pe; # ratio of reservoir to exit pressure\n", "\n", "# from appendix A for subsonic flow, for an pressure ratio of 1.028\n", "Me = 0.2; # exit mach number\n", "area_ratio_exit_to_star = 2.964; # A_exit/A_star\n", "\n", "# thus\n", "area_ratio_throat_to_star = area_ratio_exit_to_star/area_ratio; # A_exit/A_star\n", "\n", "# from appendix A for subsonic flow, for an area ratio of 1.482\n", "Mt = 0.44; # throat mach number\n", "\n", "print\"Me =\",Me\n", "print\"Mt =\",Mt" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Me = 0.2\n", "Mt = 0.44\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E04 : Pg 352" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# All the quantities are expressed in SI units\n", "import math \n", "p0 = 30.*101000.; # reservoir pressure\n", "T0 = 3500.; # reservoir temperature\n", "R = 520.; # specific gas constant\n", "gam = 1.22; # ratio of specific heats\n", "A_star = 0.4; # rocket nozzle throat area\n", "pe = 5529.; # rocket nozzle exit pressure equal to ambient pressure at 20 km altitude\n", "\n", "# (a)\n", "# the density of air in the reservoir can be calculated as\n", "rho0 = p0/R/T0;\n", "\n", "# from eq.(8.46)\n", "rho_star = rho0*(2/(gam+1))**(1/(gam-1));\n", "\n", "# from eq.(8.44)\n", "T_star = T0*2/(gam+1);\n", "a_star = math.sqrt(gam*R*T_star);\n", "u_star = a_star;\n", "m_dot = rho_star*u_star*A_star;\n", "\n", "# rearranging eq.(8.42)\n", "Me = math.sqrt(2/(gam-1)*(((p0/pe)**((gam-1)/gam)) - 1));\n", "Te = T0/(1+(gam-1)/2*Me*Me);\n", "ae = math.sqrt(gam*R*Te);\n", "ue = Me*ae;\n", "\n", "# thus the thrust can be calculated as\n", "T = m_dot*ue;\n", "T_lb = T*0.2247;\n", "\n", "# (b)\n", "# rearranging eq.(10.32)\n", "Ae = A_star/Me*((2/(gam+1)*(1+(gam-1)/2*Me*Me))**((gam+1)/(gam-1)/2));\n", "\n", "print\"(a)The thrust of the rocket is:T =\" ,T/1e6, \"N\"\n", "print\"\\n(b)The nozzle exit area is\",T_lb \n", "\n", "print\"\\nAe =\",Ae, \"m2\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)The thrust of the rocket is:T = 2.1702872295 N\n", "\n", "(b)The nozzle exit area is 487663.540469\n", "\n", "Ae = 16.7097500627 m2\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E05 : Pg 353" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# All the quantities are expressed in SI units\n", "import math \n", "p0 = 30.*101000.; # reservoir pressure\n", "T0 = 3500.; # reservoir temperature\n", "R = 520.; # specific gas constant\n", "gam = 1.22; # ratio of specific heats\n", "A_star = 0.4; # rocket nozzle throat area\n", "\n", "# the mass flow rate using the closed form analytical expression\n", "# from problem 10.5 can be given as\n", "m_dot = p0*A_star*math.sqrt(gam/R/T0*((2/(gam+1))**((gam+1)/(gam-1))));\n", "\n", "print\"The mass flow rate is: m_dot =\",m_dot, \"kg/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The mass flow rate is: m_dot = 586.100122081 kg/s\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E06 : Pg 356" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# All the quantities are expressed in SI units\n", "M = 2.; # Mach number\n", "# for this value M, for a normal shock, from Appendix B\n", "p0_ratio = 0.7209;\n", "# thus\n", "area_ratio = 1./p0_ratio;\n", "print\"The diffuser throat to nozzle throat area ratio is: =\",area_ratio" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The diffuser throat to nozzle throat area ratio is: = 1.38715494521\n" ] } ], "prompt_number": 6 } ], "metadata": {} } ] }