{ "metadata": { "name": "", "signature": "sha256:1ed89d68741f5e390e8fd1c09a55c0f77b1c405551af1981288ec865002f9662" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "CHAPTER04:INCOMPRESSIBLE FLOW OVER AIRFOILS" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E01 : Pg 126" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# All the quantities are expressed in SI units\n", "import math\n", "c = 0.64; # chord length of the airfoil\n", "V_inf = 70.; # freestream velocity\n", "L_dash = 1254.; # lift per unit span L'\n", "rho_inf = 1.23; # density of air\n", "mu_inf = 1.789*10.**-5.; # freestream coefficient of viscosity\n", "q_inf = 1./2.*rho_inf*V_inf*V_inf; # freestream dynamic pressure\n", "\n", "# thus the lift coefficient can be calculated as\n", "c_l = L_dash/q_inf/c;\n", "\n", "# for this value of C_l, from fig. 4.10\n", "alpha = 4.;\n", "\n", "# the Reynold's number is given as\n", "Re = rho_inf*V_inf*c/mu_inf;\n", "\n", "# for the above Re and alpha values, from fig. 4.11\n", "c_d = 0.0068;\n", "\n", "# thus the drag per unit span can be calculated as\n", "D_dash = q_inf*c*c_d;\n", "\n", "print\"c_l =\",c_l\n", "print\"\\nfor this c_l value, from fig. 4.10we get alpha =\",alpha\n", "print\"\\nRe =\",Re/1000000. \n", "print\"\\nfor this value of Re, from fig. 4.11 we get c_d =\",c_d\n", "print\"\\nD=\",D_dash,\"N/m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "c_l = 0.650199104032\n", "\n", "for this c_l value, from fig. 4.10we get alpha = 4.0\n", "\n", "Re = 3.08015651202\n", "\n", "for this value of Re, from fig. 4.11 we get c_d = 0.0068\n", "\n", "D= 13.114752 N/m\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E02 : Pg 126" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# All the quantities are expressed in SI units\n", "\n", "c = 0.64; # chord length of the airfoil\n", "V_inf = 70.; # freestream velocity\n", "rho_inf = 1.23; # density of air\n", "q_inf = 1./2.*rho_inf*V_inf*V_inf; # freestream dynamic pressure\n", "c_m_ac = -0.05 # moment coefficient about the aerodynamic center as seen from fig. 4.11\n", "\n", "# thus moment per unit span about the aerodynamic center is given as\n", "M_dash = q_inf*c*c*c_m_ac;\n", "\n", "print\"The Moment per unit span about the aerodynamic center is is M=\",M_dash,\"Nm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Moment per unit span about the aerodynamic center is is M= -61.71648 Nm\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E04 : Pg 127" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# All the quantities are expressed in SI units\n", "import math\n", "from math import pi\n", "alpha = 5.*pi/180.; # angle of attack in radians\n", "\n", "# from eq.(4.33)according to the thin plate theory, the lift coefficient is given by\n", "c_l = 2.*pi*alpha;\n", "\n", "# from eq.(4.39) the coefficient of moment about the leading edge is given by\n", "c_m_le = -c_l/4.;\n", "\n", "# from eq.(4.41)\n", "c_m_qc = 0;\n", "\n", "# thus the coefficient of moment about the trailing can be calculated as\n", "c_m_te = 3./4.*c_l;\n", "\n", "print\"(a)Cl =\", c_l\n", "print\"(b)Cm_le =\",c_m_le\n", "print\"(c)m_c/4 =\",c_m_qc\n", "print\"(d)Cm_te =\",c_m_te" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)Cl = 0.548311355616\n", "(b)Cm_le = -0.137077838904\n", "(c)m_c/4 = 0\n", "(d)Cm_te = 0.411233516712\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E06 : Pg 131" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# All the quantities are expressed in SI units\n", "\n", "alpha1 = 4.;\n", "alpha2 = -1.1;\n", "alpha3 = -4.;\n", "cl_1 = 0.55; # cl at alpha1\n", "cl_2 = 0; # cl at alpha2\n", "c_m_qc1 = -0.005; # c_m_qc at alpha1\n", "c_m_qc3 = -0.0125; # c_m_qc at alpha3\n", "\n", "# the lift slope is given by\n", "a0 = (cl_1 - cl_2)/(alpha1-alpha2);\n", "\n", "# the slope of moment coefficient curve is given by\n", "m0 = (c_m_qc1 - c_m_qc3)/(alpha1-alpha3);\n", "\n", "# from eq.4.71\n", "x_ac = -m0/a0 + 0.25;\n", "\n", "print\"The location of the aerodynamic center is x_ac =\",x_ac" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The location of the aerodynamic center is x_ac = 0.241306818182\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E07 : Pg 139" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# All the quantities are expressed in SI units\n", "import math \n", "c = 1.5; # airfoil chord\n", "Re_c = 3.1e6; # Reynolds number at trailing edge\n", "\n", "# from eq.(4.84), the laminar boundary layer thickness at trailing edge is given by\n", "delta = 5*c/math.sqrt(Re_c);\n", "\n", "# from eq(4.86)\n", "Cf = 1.328/math.sqrt(Re_c);\n", "\n", "# the net Cf for both surfaces is given by\n", "Net_Cf = 2*Cf;\n", "\n", "print\"(a)delta =\",delta,\"m\"\n", "print\"(b)Cf =\",Cf*10000 \n", "print\"Net Cf =\",Net_Cf" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)delta = 0.00425971375685 m\n", "(b)Cf = 7.5425331588\n", "Net Cf = 0.00150850663176\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E08 : Pg 150" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# All the quantities are expressed in SI units\n", "import math \n", "c = 1.5; # airfoil chord\n", "Re_c = 3.1e6; # Reynolds number at trailing edge\n", "\n", "# from eq.(4.87), the turbulent boundary layer thickness at trailing edge is given by\n", "delta = 0.37*c/(Re_c**0.2);\n", "\n", "# from eq(4.86)\n", "Cf = 0.074/(Re_c**0.2);\n", "\n", "# the net Cf for both surfaces is given by\n", "Net_Cf = 2*Cf;\n", "\n", "print\"(a)delta =\",delta,\"m\"\n", "print\"(b)Cf =\",Cf\n", "print\"Net Cf =\",Net_Cf" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)delta = 0.0279267658904 m\n", "(b)Cf = 0.00372356878539\n", "Net Cf = 0.00744713757078\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E09 : Pg 162" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# All the quantities are expressed in SI units\n", "import math \n", "from math import sqrt\n", "c = 1.5; # airfoil chord length\n", "Rex_cr = 5e5; # critical Reynold's number\n", "Re_c = 3.1e6; # Reynold's number at the trailing edge\n", "\n", "# the point of transition is given by\n", "x1 = Rex_cr/Re_c*c;\n", "\n", "# the various skin friction coefficients are given as\n", "Cf1_laminar = 1.328/sqrt(Rex_cr);\n", "Cfc_turbulent = 0.074/(Re_c**0.2);\n", "Cf1_turbulent = 0.074/(Rex_cr**0.2);\n", "\n", "# thus the total skin friction coefficient is given by\n", "Cf = x1/c*Cf1_laminar + Cfc_turbulent - x1/c*Cf1_turbulent;\n", "\n", "# taking both sides of plate into account\n", "Net_Cf = 2*Cf;\n", "\n", "print\"The net skin friction coefficient is Net Cf=\",round(Net_Cf,5)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The net skin friction coefficient is Net Cf= 0.00632\n" ] } ], "prompt_number": 7 } ], "metadata": {} } ] }