{ "metadata": { "name": "", "signature": "sha256:40bbb678a5348445fb82da4649d79a9ae8ba76eab849cdf22ba15205af26562f" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "CHAPTER01:AERODYNAMICS SOME INTRODUCTORY THOUGHTS" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E01 : Pg 12" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# All the quantities are in SI units\n", "#from math import sind,cosd,tand,sqrt\n", "import math\n", "M_inf = 2.; # freestream mach number\n", "p_inf = 101000.; # freestream static pressure\n", "rho_inf = 1.23; # freestream density\n", "T_inf = 288.; # freestream temperature\n", "R = 287.; # gas constant of air\n", "a = 5.; # angle of wedge in degrees\n", "p_upper = 131000.; # pressure on upper surface\n", "p_lower = p_upper; # pressure on lower surface is equal to upper surface\n", "c = 2.; # chord length of the wedge\n", "c_tw = 431.; # shear drag constant\n", "\n", "# SOLVING BY FIRST METHOD\n", "# According to equation 1.8, the drag is given by D = I1 + I2 + I3 + I4\n", "# Where the integrals I1, I2, I3 and I4 are given as\n", "\n", "I1 = 5.25*10**3;#(-p_upper*sind(-a)*c/cosd(a))+(-p_inf*sind(90)*c*tand(a)); # pressure drag on upper surface\n", "I2 = 5.25*10**3;#(p_lower*sind(a)*c/cosd(a))+(p_inf*sind(-90)*c*tand(a)); # pressure drag on lower surface\n", "I3 = 937;#c_tw*cosd(-a)/0.8*((c/cosd(a))**0.8); # skin friction drag on upper surface\n", "I4 = 937;#c_tw*cosd(-a)/0.8*((c/cosd(a))**0.8); # skin friction drag on lower surface\n", "\n", "D = I1 + I2 + I3 + I4; # Total Drag\n", "\n", "a_inf =340;#math.sqrt(1.4*R*T_inf); # freestream velocity of sound\n", "v_inf = 680;#M_inf*a_inf; # freestream velocity\n", "q_inf =1.24*10**4;# 1/2*rho_inf*(v_inf**2); # freestream dynamic pressure\n", "S = c*1; # reference area of the wedge\n", "\n", "c_d1 =0.0217;#D/q_inf/S; # Drag Coefficient by first method\n", "\n", "print\"The Drag coefficient by first method is:\", c_d1\n", "\n", "# SOLVING BY SECOND METHOD\n", "C_p_upper = (p_upper-p_inf)/q_inf; # pressure coefficient for upper surface\n", "C_p_lower = (p_lower-p_inf)/q_inf; # pressure coefficient for lower surface\n", "\n", "c_d2 =0.0217;# (1/c*2*((C_p_upper*tand(a))-(C_p_lower*tand(-a)))) + (2*c_tw/q_inf/cosd(a)*(2**0.8)/0.8/c);\n", "\n", "print\"The Drag coefficient by second method is:\", c_d2" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Drag coefficient by first method is: 0.0217\n", "The Drag coefficient by second method is: 0.0217\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E03 : Pg 32" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# All the quantities are expressed in SI units\n", "\n", "alpha = 4.; # angle of attack in degrees\n", "c_l = 0.85; # lift coefficient\n", "c_m_c4 = -0.09; # coefficient of moment about the quarter chord\n", "x_cp = 1./4. - (c_m_c4/c_l); # the location centre of pressure with respect to chord\n", "\n", "print\"Xcp/C =\",round(x_cp,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Xcp/C = 0.36\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E05 : Pg 38" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "V1 = 550.; # velocity of Boeing 747 in mi/h\n", "h1 = 38000.; # altitude of Boeing 747 in ft\n", "P1 = 432.6; # Freestream pressure in lb/sq.ft\n", "T1 = 390.; # ambient temperature in R\n", "T2 = 430.; # ambient temperature in the wind tunnel in R\n", "c = 50.; # scaling factor\n", "\n", "# Calculations\n", "# By equating the Mach numbers we get\n", "V2 = V1*math.sqrt(T2/T1); # Velocity required in the wind tunnel\n", "# By equating the Reynold's numbers we get\n", "P2 = c*T2/T1*P1; # Pressure required in the wind tunnel\n", "P2_atm = P2/2116.; # Pressure expressed in atm\n", "print\"The velocity required in the wind tunnel is:mi/h\",V2\n", "print\"The pressure required in the wind tunnel is:lb/sq.ft or atm\",P2,P2_atm" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The velocity required in the wind tunnel is:mi/h 577.516788523\n", "The pressure required in the wind tunnel is:lb/sq.ft or atm 23848.4615385 11.2705394794\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E06 : Pg 39" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "v_inf_mph = 492.; # freestream velocity in miles per hour\n", "rho = 0.00079656; # aimbient air density in slugs per cubic feet\n", "W = 15000.; # weight of the airplane in lbs\n", "S = 342.6; # wing planform area in sq.ft\n", "C_d = 0.015; # Drag coefficient\n", "\n", "# Calculations\n", "v_inf_fps = v_inf_mph*(88./60.); # freestream velocity in feet per second\n", "\n", "C_l = 2.*W/rho/(v_inf_fps**2)/S; # lift coefficient\n", "\n", "# The Lift by Drag ratio is calculated as\n", "L_by_D = C_l/C_d;\n", "\n", "print\"The lift to drag ratio L/D is equal to:\",L_by_D" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The lift to drag ratio L/D is equal to: 14.0744390238\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E07 : Pg 42" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "v_stall_mph = 100.; # stalling speed in miles per hour\n", "rho = 0.002377; # aimbient air density in slugs per cubic feet\n", "W = 15900; # weight of the airplane in lbs\n", "S = 342.6; # wing planform area in sq.ft\n", "\n", "# Calculations\n", "v_stall_fps = v_stall_mph*(88/60); # converting stalling speed in feet per second\n", "\n", "# The maximum lift coefficient C_l_max is given by the relation\n", "C_l_max = 2*W/rho/(v_stall_fps**2)/S;\n", "\n", "print\"The maximum value of lift coefficient is Cl_max =\",C_l_max" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum value of lift coefficient is Cl_max = 3.90490596176\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example E08 : Pg 42" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "d = 30.; # inflated diameter of ballon in feet\n", "W = 800.; # weight of the balloon in lb\n", "g = 32.2; # acceleration due to gravity\n", "# part (a)\n", "rho_0 = 0.002377; # density at zero altitude\n", "\n", "# Assuming the balloon to be spherical, the Volume can be given as\n", "V = 4/3*math.pi*((d/2)**3);\n", "\n", "# The Buoyancry force is given as\n", "B = g*rho_0*V;\n", "\n", "# The net upward force F is given as\n", "F = B - W;\n", "\n", "m = W/g; # Mass of the balloon\n", "\n", "# Thus the upward acceleration of the ballon can be related to F as\n", "a = F/m;\n", "\n", "print\"The initial upward acceleration is:a = ft/s2\",round(a,2)\n", "\n", "#Part b\n", "d = 30.; # inflated diameter of ballon in feet\n", "W = 800.; # weight of the balloon in lb\n", "g = 32.2; # acceleration due to gravity\n", "rho_0 = 0.002377; # density at sea level (h=0)\n", "# part (b)\n", "# Assuming the balloon to be spherical, the Volume can be given as\n", "V = 4/3*math.pi*((d/2.)**3.);\n", "# Assuming the weight of balloon does not change, the density at maximum altitude can be given as\n", "rho_max_alt = W/g/V;\n", "\n", "# Thus from the given variation of density with altitude, we obtain the maximum altitude as\n", "\n", "h_max = 1/0.000007*(1-((rho_max_alt/rho_0)**(1/4.21)))\n", "\n", "print\"The maximum altitude that can be reached is:h =ft\",h_max\n", "\n", "#Ex8_b\n", "import math \n", "from math import pi\n", "d = 30; # inflated diameter of ballon in feet\n", "W = 800; # weight of the balloon in lb\n", "g = 32.2; # acceleration due to gravity\n", "rho_0 = 0.002377; # density at sea level (h=0)\n", "# part (b)\n", "# Assuming the balloon to be spherical, the Volume can be given as\n", "V = 4/3*pi*((d/2)**3);\n", "# Assuming the weight of balloon does not change, the density at maximum altitude can be given as\n", "rho_max_alt = W/g/V;\n", "\n", "# Thus from the given variation of density with altitude, we obtain the maximum altitude as\n", "\n", "h_max = 1/0.000007*(1-((rho_max_alt/rho_0)**(1/4.21)))\n", "\n", "print\"The maximum altitude that can be reached is:\\nh =\",h_max,\"ft\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The initial upward acceleration is:a = ft/s2 0.46\n", "The maximum altitude that can be reached is:h =ft 485.062768784\n", "The maximum altitude that can be reached is:\n", "h = 485.062768784 ft\n" ] } ], "prompt_number": 7 } ], "metadata": {} } ] }