{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter15:Air Capacity and SuperCharging" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.1 page no: 474" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Input data\n", "Vs=0.0028 #Swept volume in m**3\n", "N=3000 #Speed of the engine in rpm\n", "ip=12.5 #The average indicated power developed in kW/m**3\n", "nv=85 #Volumetric efficiency in percent\n", "p1=1.013 #The atmospheric pressure in bar\n", "T1=288 #The atmospheric temperature in K\n", "ni=74 #Isentropic efficiency in percent\n", "pr=1.6 #The pressure ratio\n", "nm=78 #All mechanical efficiencies in percent\n", "g=1.4 #Adiabatic index\n", "R=287 #Real gas constant in J/kgK\n", "Cp=1.005 #The specific heat of gas in kJ/kgK\n", "\n", "#Calculations\n", "Vs1=(Vs*(N/2.0)) #Volume swept by the piston per minute in m**3/min\n", "Vi=(nv/100.0)*Vs1 #Unsupercharged induced volume in m**3/min\n", "p2=pr*p1 #Blower delivery pressure in bar\n", "T21=T1*(p2/p1)**((g-1)/g) #Temperature after isentropic compression in K\n", "T2=T1+((T21-T1)/((ni/100.0))) #Blower delivery temperature in K\n", "Ve=(Vs1*p2*T1)/(T2*p1) #Equivalent volume at 1.013 bar and 15 degree centigrade in m**3/min\n", "nv1=(Ve/Vs1)*100 #Volumetric efficiency of supercharged engine in percent\n", "Vii=Ve-Vi #Increase in induced volume in m**3/min\n", "ipa=ip*Vii #Increase in ip from air induced in kW\n", "ipi=((p2-p1)*10**5*Vs1)/(60*1000) #Increase in ip due to increased induction pressure in kW\n", "ipt=ipa+ipi #Total increase in ip in kW\n", "bp=ipt*(nm/100.0) #Increase in engine bp in kW\n", "ma=(p2*(Vs1/60.0)*10**5)/(R*T2) #Mass of air delivered per second by blower in kg/s\n", "P=ma*Cp*(T2-T1) #Power input to blower in kW\n", "Pd=P/(nm/100.0) #Power required to drive the blower in kW\n", "bpn=bp-Pd #Net increase in bp in kW\n", "bpu=ip*Vi*(80/100.0) #The bp of unsupercharged engine in kW\n", "bpp=(bpn/(bpu))*100 #Percentage increase in bp in percent\n", "\n", "#Output\n", "print\"The volumetric efficiency of supercharged engine = \",round(nv1,0),\"percent\"\n", "print\"The increase in brake power by supercharging = \",round(bpn,1),\" kW \"\n", "print\"The percentage increase in brake power = \",round(bpp,1),\" percent \"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The volumetric efficiency of supercharged engine = 134.0 percent\n", "The increase in brake power by supercharging = 15.1 kW \n", "The percentage increase in brake power = 42.3 percent \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.2 page no: 477" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Input data\n", "p=1.013 #The pressure at the sea level in bar\n", "T=283 #The temperature at the sea level in K\n", "bp=275.0 #Brake power in kW\n", "N=1800.0 #The speed of the engine in rpm\n", "a=20 #Air fuel ratio \n", "R=287 #The real gas constant in J/kgK\n", "bsfc=0.24 #Brake specific fuel consumption in kg/kWh\n", "nv=80 #Volumetric efficiency in percent\n", "p2=0.75 #The atmospheric pressure at altitude in bar\n", "P=9 #The power consumed by supercharger of the total power produced by the engine in percent\n", "T2=303 #The temperature of air leaving the supercharger in K\n", "\n", "#Calculations\n", "mf=(bsfc*bp)/60.0 \n", "ma1=mf*a \n", "ma=(2/N)*ma1 \n", "dai=(p*10**5)/(R*T) \n", "Vd=(ma/(dai*(nv/100.0))) \n", "pmb=(bp*2*60*1000)/(Vd*N*10**5) \n", "GP=bp/(1-0.09) \n", "ma2=(ma1/bp)*GP \n", "ma1=(ma2*2)/N \n", "p21=((R*T2*ma1)/((nv/100.0)*Vd))/10.0**5 \n", "pi=p21-p2 \n", "\n", "#Output\n", "print\"(a) The engine capacity Vd = \",round(Vd,3),\"m**3\" \n", "print\"The bmep of the unsupercharged engine = \",round(pmb,3),\"bar\" \n", "print\"(b) Increase in air pressure required in the supercharged = \",round(pi,3),\"bar\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) The engine capacity Vd = 0.024 m**3\n", "The bmep of the unsupercharged engine = 7.483 bar\n", "(b) Increase in air pressure required in the supercharged = 0.442 bar\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.3 page no: 479" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Input data\n", "Vs=0.003 #Swept volume in m**3\n", "bmep=9 #Brake mean effective pressure in bar\n", "N=4000 #The speed of the engine in rpm\n", "ni=30.0 #Indicated thermal efficiency in percent\n", "nm=90 #Mechanical efficiency in percent\n", "bmep1=12 #The brake mean effective pressure of other engine in bar\n", "N1=4000 #The speed of other engine in rpm\n", "ni1=25 #The indicated thermal efficiency of other engine in percent\n", "nm1=91 #The mechanical efficiency of other engine in percent\n", "m=200 #The mass of naturally aspired engine in kg\n", "m1=220 #The mass of supercharged engine in kg\n", "CV=44000 #The calorific value of the fuel in kJ/kg\n", "\n", "#Calculations\n", "bp=(bmep*10**5*Vs*N)/(2.0*60.0*1000) \n", "ip=bp/(nm/100.0) \n", "mf=(ip)/((ni/100.0)*CV) \n", "bp1=(bmep1*10**5*Vs*N1)/(2.0*60.0*1000) \n", "ip1=bp1/(nm1/100.0) \n", "mf1=ip1/((ni1/100.0)*CV) \n", "mf2=mf*3600 \n", "mf3=mf1*3600 \n", "x=((200/90.0)-(220/120.0))/((43.2/120.0)-(27.27/90.0)) \n", "\n", "#Output\n", "print\"The maximum hours required for supply of sufficient fuel = \",round(x,3),\"hr\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The maximum hours required for supply of sufficient fuel = 6.823 hr\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.4 Page no 480" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Input data\n", "d=0.1 #The diameter of the bore in m\n", "L=0.12 #The length of the stroke in m\n", "N=3000 #The speed of the engine in rpm\n", "n=4 #Number of cylinders\n", "R=287 #Real gas constant in J/kgK\n", "t=120 #Output Torque in Nm\n", "nm=85 #The mechanical efficiency of the engine in percent\n", "T1=288 #The inlet temperature of air into compressor in K\n", "p1=1 #The inlet pressure of air into compressor in bar\n", "Q=1200 #Heat rejected rate in kJ/min\n", "T=328 #The outlet temperature of air in K\n", "p=1.7 #The outlet pressure of air in bar\n", "nv=90 #Volumetric efficiency in percent\n", "Cp=1.005 #Specific heat of gas in kJ/kg\n", "\n", "#Calculations\n", "import math\n", "bp=(2*math.pi*N*t)/(60.0*1000.0) #The brake power in kW\n", "ip=bp/(nm/100.0) #The indicated power in kW\n", "pmi=((ip*2*60*1000*4)/(L*(math.pi*d**2)*N*n))/10.0**5 #The mean effective pressure in bar\n", "Vs=(math.pi/4.0)*d**2*L #Swept volume in m**3\n", "Vs1=Vs*(N/2.0)*n #Volume swept by the piston per min \n", "V1=(nv/100.0)*Vs1 #Rate of volume flow of air into the engine in m**3/min\n", "me=((p*10**5*V1)/(R*T))*60 #Rate of mass flow of air into the engine in kg/h\n", "E=Q/60.0 #Energy balance in the after cooling in kJ/s\n", "T2=((bp/E)*T-T1)/((bp/E)-1) #The outlet temperature of air in K\n", "mc=((bp)/(Cp*(T2-T1)))*3600 #Mass flow rate in kg/h\n", "maf=mc-me #Rate of air flow available to the consumer in kg/h\n", "\n", "#Output\n", "print\"(a) The imep of the supercharged engine = \",round(pmi,3),\"bar\"\n", "print\"(b) The rate of air consumed by the engine = \",round(me,1),\"kg/h\" \n", "print\"(c) The rate of air flow available to the consumer = \",round(maf,1),\"kg/h\"\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) The imep of the supercharged engine = 4.706 bar\n", "(b) The rate of air consumed by the engine = 551.5 kg/h\n", "(c) The rate of air flow available to the consumer = 1033.5 kg/h\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.5 page no: 482" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Input data\n", "Vs=0.0045 #Swept volume in m**3\n", "N=4000.0 #The speed of the engine in rpm \n", "nv=150.0 #Overall volumetric efficiency in percent\n", "ni=90.0 #Isentropic efficiency of the compressor in percent\n", "nm=85.0 #Mechanical efficiency in percent\n", "T=330.0 #The temperature of compressed air after cooler in K\n", "p2=1.8 #The pressure of the compressed air in bar\n", "T1=290.0 #The ambient temperature of air in K\n", "p1=1.0 #The pressure of the ambient condition in bar\n", "R=287.0 #The real gas constant in J/kgK\n", "g=1.4 #Adiabatic index\n", "Cp=1.005 #The specific heat of gas in kJ/kgK\n", "\n", "#Calculations\n", "T21=T1*(p2/p1)**((g-1)/g) \n", "T2=T1+((T21-T1)/(ni/100.0)) \n", "Vs1=Vs*(N/(2*60)) # m**3/s\n", "Va=(nv/100)*Vs1 \n", "d=(p1*10**5)/(R*T1) # kg/m**3\n", "ma=d*Va # kg/s\n", "Q=ma*Cp*(T2-T) # kJ/s\n", "P=ma*Cp*(T2-T1) # kW\n", "Pa=P/(nm/100.0) \n", "\n", "#Output\n", "print \"(a) The rate of heat rejected from the engine after cooler = \",round(Q,2),\"kJ/s\" \n", "print\"(b) The power absorbed by the supercharger from the engine = \",round(Pa,1),\"kW\" \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) The rate of heat rejected from the engine after cooler = 5.14 kJ/s\n", "(b) The power absorbed by the supercharger from the engine = 18.8 kW\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.6 page no: 483" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Input data\n", "p1=0.98 #The inlet pressure of air in bar\n", "T1=290.0 #The inlet temperature of air in K\n", "p2=1.8 #The pressure of air delivered to the engine in bar\n", "a=20.0 #The air fuel ratio \n", "T3=850.0 #The temperature of the exhaust gases leaving the engine in K\n", "p3=1.6 #The pressure of the exhaust gases leaving the engine in bar\n", "p4=1.03 #The turbine exhaust pressure in bar\n", "nc=80.0 #The isentropic efficiency of compressor in percent\n", "nt=85.0 #The isentropic efficiency of turbine in percent\n", "Cpa=1.005 #The specific heat of air in kJ/kgK\n", "Cpg=1.15 #The specific heat of gas in kJ/kgK\n", "g=1.33 #isentropic index\n", "h=1.0 #Adiabatic index\n", "\n", "#Calculations\n", "T21=T1*(p2/p1)**(0.286) #value taken in book (g-1/g)=0.286 \n", "T2=T1+((T21-T1)/(nc/100.0)) \n", "T22=T2-273 \n", "T41=T3*(p4/p3)**((g-1)/g) \n", "T4=T3-((nt/100.0)*(T3-T41)) \n", "T44=T4-273 \n", "mf=1.0 # kg/s\n", "ma=mf*a # kg/s\n", "Wc=ma*Cpa*(T2-T1) # kW\n", "mg=ma+mf #Mass flow rate of gas in kg/s\n", "Wt=mg*Cpg*(T3-T4) \n", "Pt=(Wc/Wt)*100 \n", "\n", "#Output\n", "print\"(a) The temperature of the air leaving the compressor = \",round(T22,0),\"degree centigrade\" \n", "print\"(b) The temperature of gases leaving the turbine = \",round(T44,0),\"degree centigrade\" \n", "print\"(c) The mechanical power used to run the turbocharger = \",round(Pt,1),\"percent\" \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) The temperature of the air leaving the compressor = 86.0 degree centigrade\n", "(b) The temperature of gases leaving the turbine = 502.0 degree centigrade\n", "(c) The mechanical power used to run the turbocharger = 76.6 percent\n" ] } ], "prompt_number": 22 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 15.7 page no: 485" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Input data\n", "a=14.0 #Air fuel ratio \n", "T1=288 #The ambient temperature of air in K\n", "T2=(288-23) #The evaporation of fuel cause 23 degree C drop in mixture temperature in K\n", "p=1.3 #Pressure ratio \n", "nc=75 #The isentropic efficiency of the compressor in percent\n", "Cpm=1.05 #The specific heat of the mixture in kJ/kgK\n", "Cpa=1.005 #The specific heat of air in kJ/kgK\n", "g=1.33 #Adiabatic index\n", "h=1.4 #Isentropic index\n", "ma=1 #Mass flow rate of air in kg/s\n", "\n", "#Calculations\n", "T31=T2*p**((g-1)/g) \n", "T3=T2+((T31-T2)/(nc/100.0))\n", "mm=1+(1/a)\n", "Wc1=mm*Cpm*(T3-T2)\n", "T21=T1*p**((h-1)/h)\n", "T4=T1+((T21-T1)/(nc/100.0))\n", "T4_=317 #approx value taken in book of T4=317\n", "Wc2=ma*Cpa*(T4_-T1) \n", "T5=T4-23\n", "Ps=((Wc2-round(Wc1,0))*100)/Wc2\n", "\n", "#Output\n", "print\"(a) The power required by the compressor before the supercharger = \",round(Wc1,0),\"kW/kg of air per second\"\n", "print\"(b) The power required by the compressor after the supercharger = \",round(Wc2,1),\"kW/kg of air per second\" \n", "print\"Percentage of turbine power used to run the compressor = \",round(Ps,3),\"percent\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) The power required by the compressor before the supercharger = 27.0 kW/kg of air per second\n", "(b) The power required by the compressor after the supercharger = 29.1 kW/kg of air per second\n", "Percentage of turbine power used to run the compressor = 7.36 percent\n" ] } ], "prompt_number": 34 } ], "metadata": {} } ] }