{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter11:Two Stroke Engines" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.1 page no:367" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Input data\n", "nsc=75 #The scavenging efficiency of the two stroke engine in percent \n", "ns=20 #The scavenging efficiency is increased by in percent\n", "\n", "#Calculations\n", "import math\n", "Rsc=math.log(1/(1-(nsc/100.0)))\n", "nsc1=(nsc/100.0)+((nsc/100.0)*(ns/100.0))\n", "Rsc1=math.log(1/(1-(nsc1)))\n", "Rscr=((Rsc1-Rsc)/Rsc)*100 #Percentage increase in scavenging ratio in persent\n", "\n", "#Output\n", "print\"The percentage change in the scavenging ratio = \",round(Rscr,1),\"percent\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The percentage change in the scavenging ratio = 66.1 percent\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.2 page no:367" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Input data\n", "d=0.12 #The bore diameter of the engine in m\n", "l=0.15 #The stroke length of the engine in m\n", "r=16.0 #The compression ratio \n", "N=2000.0 #The speed of the engine in rpm\n", "mf=(240/60.0) #Actual air flow per min in kg/min\n", "T=300.0 #Air inlet temperature in K\n", "p=1.025 #Exhaust pressure in bar\n", "R=287 #Real gas constant in J/kg\n", "\n", "#Calculations\n", "import math\n", "da=(p*10**5)/(R*T)\n", "Vs=((math.pi)*(d**2)*l)/4.0\n", "V=(r/(r-1))*Vs\n", "m=da*V\n", "m1=m*N\n", "Rsc=mf/m1 #Scavenging ratio\n", "nsc=((1-math.exp(-Rsc))*100)\n", "ntr=((nsc/100.0)/Rsc)*100\n", "\n", "#Output\n", "print\"(a) The scavenging ratio = \",round(Rsc,2)\n", "print\"(b) The scavenging efficiency = \",round(nsc,1),\"percent \"\n", "print\"(c) The trapping efficiency = \",round(ntr,1),\" percent\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) The scavenging ratio = 0.93\n", "(b) The scavenging efficiency = 60.5 percent \n", "(c) The trapping efficiency = 65.1 percent\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.3 page no: 368" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Input data\n", "mf=6.5 #Mass flow rate of fuel in kg/h\n", "N=3000.0 #The speed of the engine in rpm\n", "a=15 #The air fuel ratio\n", "CV=44000 #The calorific value of the fuel in kJ/kg\n", "pm=9 #The mean piston speed in m/s\n", "pmi=4.8 #The mean pressure in bar\n", "nsc=85 #The scavenging efficiency in percent\n", "nm=80 #The mechanical efficiency in percent\n", "R=290.0 #Real gas constant in J/kgK\n", "p=1.03 #The pressure of the mixture in bar\n", "T=288.0 #The temperature of the mixture in K\n", "\n", "#Calculations\n", "import math\n", "ma=a*mf\n", "L=((pm*60)/(2*N))*100\n", "mac=mf+ma\n", "mi=(mac)/(nsc/100.0)\n", "da=(p*10**5)/(R*T)\n", "d=(((mi/da)*(4/math.pi)*(1/(L/100.0))*(1/(60*N)))**(1/2.0))*100\n", "ip=(pmi*10**5*(L/100)*((math.pi/4.0)*(d/100)**2)*N)/(60*1000)\n", "bp=ip*(nm/100.0)\n", "nth=(bp/((mf/3600.0)*CV))*100\n", "\n", "#Output\n", "print\"The diameter of the bore = \",round(d,2),\"cm\"\n", "print\"The length of the stroke = \",L,\" cm\" \n", "print\"The brake power = \",round(bp,2),\" kW\"\n", "print\"The brake thermal efficiency =\",round(nth,2),\" percent \"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The diameter of the bore = 8.83 cm\n", "The length of the stroke = 9.0 cm\n", "The brake power = 10.58 kW\n", "The brake thermal efficiency = 13.32 percent \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.4 page no: 369" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Input data\n", "d=0.08 #The diameter of the bore in m\n", "L=0.1 #The length of the stroke in m\n", "r=8.0 #The compression ratio \n", "o=60.0 #The exhaust port open before BDC in degrees\n", "v=60.0 #The exhaust port closes after BDC in degrees\n", "a=15.0 #Air fuel ratio \n", "T=300.0 #The temperature of the mixture entering into the engine in K\n", "p=1.05 #The pressure in the cylinder at the time of clomath.sing\n", "R=290.0 #Real gas constant in J/kgK\n", "ma=150.0 #Mass flow rate of air in kg/h\n", "N=4000.0 #The speed of the engine in rpm\n", "\n", "#Calculations\n", "import math\n", "mf=ma/a\n", "mac=ma+mf\n", "r=(L*100)/2.0\n", "Le=(r+(r*math.sin (math.pi/6.0)))/100.0\n", "Vse=(math.pi*d**2*Le)/4.0\n", "V=(r/(r-1))*Vse\n", "V=0.00043 #Value in book after approximation\n", "da=(p*10**5)/(R*T)\n", "m=V*da\n", "mi=m*60*N\n", "Rsc=mac/mi \n", "nsc=(1-(exp(-Rsc)))*100\n", "ntr=nsc/Rsc\n", "\n", "#Output\n", "print\"The scavenging ratio = \",round(Rsc,2)\n", "print\"The scavenging efficiency =\",round(nsc,2),\" percent \"\n", "print\"The trapping efficiency = \",round(ntr,2),\"percent\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The scavenging ratio = 1.28\n", "The scavenging efficiency = 72.32 percent \n", "The trapping efficiency = 56.3 percent\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.5 page no: 371" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#Input data\n", "d=8.25 #The diameter of the bore in cm\n", "L=11.25 #The length of the stroke in cm\n", "r=8.0 #The compression ratio \n", "N=2500.0 #The speed of the engine in rpm\n", "ip=17.0 #Indicated power in kW\n", "a=0.08 #Fuel air ratio \n", "T=345.0 #Inlet temperature mixture in K\n", "p=1.02 #Exhaust pressure in bar\n", "CV=44000.0 #The calorific value of the fuel in kJ/kg\n", "nth=0.29 #Indicated thermal efficiency\n", "M=114.0 #Molar mass of fuel \n", "R=8314.0 #Universal Gas constant in J/kgK\n", "\n", "#Calculations\n", "import math\n", "Vs=(math.pi*d**2*L)/4 #Displacement volume in cm**3\n", "V=(r/(r-1))*Vs #Total cylinder volume in m**3\n", "ps=((29*p*10**5)/(R*T))*(1/(1+a*(29/M))) #The density of dry air in kg/m**3\n", "nsc=((ip*1000)/((N/60)*V*10**-6*ps*a*CV*1000*nth))*100 #The scavenging efficiency in percent\n", "\n", "#Output\n", "print\"The scavenging efficiency = \",round(nsc,2),\" percent\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The scavenging efficiency = 57.54 percent\n" ] } ], "prompt_number": 21 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11.6 page no: 372" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#given\n", "S=15.0 #The speed of the math.piston in m/s\n", "ps=0.35 #The scavenging pressure in bar\n", "pa=1.03 #Atmospheric pressure in bar\n", "r=18.0 #The compression ratio \n", "t=35.0 #The inlet temperature in degree centigrade\n", "Rsc=0.9 #The scavenging ratio \n", "ta=15.0 #The atmospheric temperature in degree centigrade\n", "nc=0.75 #Compressor efficiency \n", "g=1.4 #Adiabatic index\n", "R=287.0 #Real gas constant in J/kgK\n", "Cp=1005.0 #Specific heat of gas in J/kgK\n", "\n", "#Calculations\n", "import math\n", "pi=ps+pa #The scavenging pressure in bar\n", "Ti=(273+ta)+t #The inlet temperature in K\n", "pr=pa/math.pi #The ratio of the pressure for calculations\n", "di=(pi*10**5)/(R*Ti) #The density in kg/m**3\n", "ai=(g*R*Ti)**(1/2.0) #The sonic velocity in m/s\n", "C=(Rsc)/(2*((r-1)/r)*(ai/S)*(pi/pa)*((2/(g-1))*(((pr)**(2/g))-((pr)**((g+1)/g))))**(1/2.0))\n", "ds=(pa*10**5)/(R*Ti) #The density in kg/m**3\n", "mep=(ds*Rsc*Cp*Ti*(((pi/pa)**((g-1)/g))-1))/((nc*((r-1)/r))*10**5) #Mean effective pressure in bar\n", "\n", "#Output\n", "print\"The flow coefficient = \",round(C,3) \n", "print\"The compressor mean effective pressure = \",round(mep,1),\"bar\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The flow coefficient = 0.028\n", "The compressor mean effective pressure = 0.4 bar\n" ] } ], "prompt_number": 33 } ], "metadata": {} } ] }