{ "metadata": { "name": "Chapter 2" }, "nbformat": 2, "worksheets": [ { "cells": [ { "cell_type": "markdown", "source": [ "#Chapter 2:- Energy and the First Law Of Thermodynamics" ] }, { "cell_type": "markdown", "source": [ "## Example 2.1 Page no-39" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "# Given:-", "p1 = 3*(10**5) # initial pressure of gas in pascal", "v1 = 0.1 # initial volumme of gas in meter^3", "v2 = 0.2 # final volume of gas in meter^3", "", "# calculations", "from scipy import integrate", "import math", "# Part (a) i.e. n=1.5", "#constant = p1*(v1**n) # p*(v^n) = constant", "constant1 = p1*(v1**1.5) ", "constant2 = p1*(v1**1) ", "constant3 = p1*(v1**0) ", "# function p ", "p1 = lambda v: constant1/(v**1.5) # expressing pressure as function of volume ", "p2 = lambda v: constant2/(v**1)", "p3 = lambda v: constant3/(v**0)", "# function [work1] ", "work1 = integrate.quad(p1,v1,v2) # integrating pdv from initial to final volume ", "w1 = work1[0]/1000 # divided by 1000 to convert to KJ", "print 'The work done for n=1.5 in KJ is',round(w1,2)", "", "#part(b) i.e. n = 1", "work2 = integrate.quad(p2,v1,v2)", "w2 = work2[0]/1000", "print 'The work done for n=1 in KJ is',round(w2,2)", "", "#part(c) i.e. n=0", "work3 = integrate.quad(p3,v1,v2)", "w3 = work3[0]/1000", "print 'The work done for n=0 in KJ is',round(w3,2)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The work done for n=1.5 in KJ is 17.57", "The work done for n=1 in KJ is 20.79", "The work done for n=0 in KJ is 30.0" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "source": [ "## Example 2.2 Page no-50" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "# Given:-", "p1 = 3*(10**5) # initial pressure in pascal", "v1 = 0.1 # initial volume in m3", "v2 = 0.2 # initial volume in m3", "m = 4.0 # mass of the gas in kg", "deltau = -4.6 # change in specific internal energy in KJ/Kg", "", "# Calculations", "from scipy import integrate", "import math", "constant = p1*(v1**1.5) # p*(v^n) = constant", "", "p = lambda v: constant/(v**1.5) # expressing pressure as function of volume ", "", "work = integrate.quad(p,v1,v2) # integrating pdv from initial to final volume ", "w=work[0]/1000 # divided by 1000 to convert to KJ", "", "deltaU = m*deltau # change in internal energy in KJ", "Q = deltaU + w # neglecting kinetic and potential energy changes", "", "# Result", "print 'net heat transfer for the process in KJ',round(Q,2)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "net heat transfer for the process in KJ -0.83" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "source": [ "## Example 2.3 Page no-52" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "# Given:-", "patm = 10**5 # atmospheric pressure in pascal.", "mp = 45.0 # mass of piston in Kg", "A = 0.09 # face area of piston in m2", "deltaV = 0.045 # increment of the volume of air in m3", "m = 0.27 # mass of air in kg", "deltau = 42.0 # specific internal energy increase of air in kJ/kg", "g = 9.81 # local acceleration of gravity", "", "", "# Part (a) i.e. air is system", "# Calculations", "p = (mp*g)/A + patm # constant pressure of air obtained from equilibrium of piston", "w = (p*deltaV)/1000 # work done in KJ", "deltaU = m*deltau # internal energy change of air in KJ", "Q = w + deltaU # applying first with air as system", "# Result", "print 'The answer given in book is incorrect.They have miscalculated deltaU.The correct heat transfer from resistor to air in KJ for air alone as system is: '", "print round(Q,2)", "", "# The answer given in book is incorrect. deltaU is incorrect in book. ", "", "# Part(b) i.e. (air+piston) is system", "# Calculations", "wd = (patm*deltaV)/1000 # work done in KJ", "deltaz = (deltaV)/A # change in elevation of piston", "deltaPE = (mp*g*deltaz)/1000 # change in potential energy of piston in KJ", "Qt = wd + deltaPE + deltaU # applying first law with air plus piston as system ", "# Result", "print 'The answer given in book is incorrect.They have miscalculated deltaU.The correct heat transfer from resistor to air in KJ for air + piston as system is:'", "print round(Qt,2)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The answer given in book is incorrect.They have miscalculated deltaU.The correct heat transfer from resistor to air in KJ for air alone as system is: ", "16.06", "The answer given in book is incorrect.They have miscalculated deltaU.The correct heat transfer from resistor to air in KJ for air + piston as system is:", "16.06" ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "source": [ "## Example 2.4 Page no-54" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "# Given:-", "w1dot = -60.0 # input work rate in KW", "h = 0.171 # heat transfer coefficient,unit in KW/m2 .K", "A = 1.0 # outer surface area of gearbox, unit in m2", "Tb = 300.0 # outer surface temperature in kelvin", "Tf = 293.0 # temperature of the sorrounding", "", "# Calculations", "Qdot = -h*A*(Tb-Tf); # rate of energy transfer by heat", "wdot = Qdot; # steady state energy equation", "w2dot = wdot-w1dot;", "", "# Results", "print 'The heat transfer rate in KW is:\\n\\tQdot = ',Qdot", "print 'The power delivered through output shaft in KW is: = ',w2dot" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The heat transfer rate in KW is:", "\tQdot = -1.197", "The power delivered through output shaft in KW is: = 58.803" ] } ], "prompt_number": 4 }, { "cell_type": "markdown", "source": [ "## Example 2.5 Page no-55" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "# Given:-", "s=5*(10**-3) # measurement on a side in meter", "wdot = -0.225 # power input in watt", "Tf = 293.0 # coolant temprature in kelvin", "h = 150.0 # heat transfer coefficient in w/m2 k", "A = s**2 # surface area", "", "# Calculation", "Tb = ((-wdot/(h*A)) + Tf - 273) # surface temperature in degree", "", "# Result", "print 'The surface temperature of the chip in degree celcius is: ',Tb" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The surface temperature of the chip in degree celcius is: 80.0" ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "source": [ "## Example 2.6 Page no-57" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib inline" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "", "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].", "For more information, type 'help(pylab)'." ] } ], "prompt_number": 6 }, { "cell_type": "code", "collapsed": false, "input": [ "", "# Given:-", "omega = 100.0 #motor rotation speed in rad/s", "tau = 18.0 #torque applied by shaft in N.m", "Welecdot = -2.0 #electric power input in KW", "", "Wshaftdot = (tau*omega)/1000 #shaft work rate in KW", "Wdot = Welecdot + Wshaftdot #net work rate in KW", "", "#function [Qdot]=f(t)", "#Qdot = (-0.2)* [1-2**(-0.05*t)]", "", "", "#function [Edot]=f1(t) #function for rate of change of energy", "#Edot = (-0.2)*[1-2**(-0.05*t)] - Wdot ", "", "#function [deltaE] =f2(t) #function for change in energy ", "from sympy import *", "x = symbols('x') # a = 0.2 b = 0.05", "f = (0.2)*(1-2**(0.05*(x))) - Wdot", "f2 = integrate(f,x)", "print f2 ", "", "Qd = []", "Wd = []", "dltaE = []", "from numpy import linspace ", "from pylab import plot, show ", "t = linspace(0,120,100);", "for i in range(0,100):", " Qd.append(i)", " Wd.append(i)", " dltaE.append(i)", " Qd[i] = (-0.2*(1-2**(-0.05*(120/99)*(i-1)))) ", " Wd[i] = Wdot", " dltaE[i] = -4.0*2**(0.05* (120/99)*(i-1))/log(2) + 0.4* (120/99)*(i-1)", " ", "plot(t,Qd)", "xlabel(\"Time (s)\")", "ylabel(\"Qdot (KW)\")", "show()", "plot(t,Wd)", "xlabel(\"Time (s)\")", "ylabel(\"Wdot (KW)\")", "show()", "plot(t,dltaE)", "xlabel(\"Time (s)\")", "ylabel(\"deltaE (KJ)\")", "show()", "", "", "", "", " " ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "-4.0*2**(0.05*x)/log(2) + 0.4*x" ] }, { "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEMCAYAAAAMMiuwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcVVX+//HX8W5qg6aiggoJ3kVwUCtLKUXLhLTMvPM1\nc5r6OVZWU81MZTUqfptyssuMUzlqV/3mjVFjtDG85B1xLC8DNpAoFx2Q0soQ3L8/1oCiHEU452zO\n4f18PPZDz2Gfsz+rRw/errX2WtthWZaFiIiIC9SyuwAREfEdChUREXEZhYqIiLiMQkVERFxGoSIi\nIi6jUBEREZexNVQSExPp3LkzoaGhzJkzp9xzpk2bRmhoKD179iQlJaX0/aCgIMLCwoiIiKBPnz6e\nKllERC6jjl0XLi4uZurUqXz22WcEBATQu3dvYmNj6dKlS+k5a9eu5fDhw6SlpbFjxw4eeughtm/f\nDoDD4SApKYlmzZrZ1QQREbmIbT2VnTt3EhISQlBQEHXr1mX06NGsWrWqzDkJCQnExcUB0LdvXwoK\nCsjNzS39udZtiohUL7b1VI4dO0bbtm1LXwcGBrJjx44rnnPs2DH8/f1xOBwMGjSI2rVr8+CDDzJl\nypQyn3U4HO5tgIiIj6rKP9ht66lU9Je+s8Zt2bKFlJQUPv30U9588002b95c7md99Xj++edtr0Ht\nU9vUPt87qsq2UAkICCAzM7P0dWZmJoGBgZc95+jRowQEBADQpk0bAFq0aMGIESPYuXOnB6oWEZHL\nsS1UIiMjSUtLIyMjg8LCQpYsWUJsbGyZc2JjY1m8eDEA27dvx8/PD39/f3744QdOnToFwPfff8+6\ndevo0aOHx9sgIiJl2TanUqdOHd544w2GDBlCcXExkydPpkuXLsyfPx+ABx98kKFDh7J27VpCQkJo\n1KgRf/3rXwHIycnh7rvvBqCoqIhx48YxePBgu5pii6ioKLtLcCtfbp8vtw3UvprOYbliEK0acjgc\nLhkfFBGpSar6u1Mr6kVExGUUKiIi4jIKFRERcRmFioiIuIxCRUREXEahIiIiLqNQERERl1GoiIiI\nyyhURETEZRQqIiLiMgoVERFxGYWKiIi4jEJFRERcRqEiIiIuo1ARERGXUaiIiIjLKFRERMRlFCoi\nIuIyChUREXEZhYqIiLiMQkVERFxGoSIiIi6jUBEREZdRqIiIiMsoVERExGUUKiIi4jIKFRERcRmF\nioiIuIxCRUREXEahIiIiLqNQERERl1GoiIiIy/h0qCxdancFIiI1i8OyLMvuItzB4XDQqpVFWho0\nbmx3NSIi3sHhcFCVWPDpnsptt8Grr9pdhYhIzWFrqCQmJtK5c2dCQ0OZM2dOuedMmzaN0NBQevbs\nSUpKylV99qWXYN48OHHCLeWLiMhFbAuV4uJipk6dSmJiIgcOHOCjjz7i4MGDZc5Zu3Ythw8fJi0t\njb/85S889NBDFf4swPXXw9ix8Pvfe6RJIiI1nm2hsnPnTkJCQggKCqJu3bqMHj2aVatWlTknISGB\nuLg4APr27UtBQQE5OTkV+myJ3/0OPvgA0tPd3iQRkRqvjl0XPnbsGG3bti19HRgYyI4dO654zrFj\nx8jKyrriZwFmzJgBQI8e8ItfRLF+fZRrGyEi4uWSkpJISkpy2ffZFioOh6NC51XlLoSSUDl1Cjp2\nhD17oFevSn+diIjPiYqKIioqqvT1Cy+8UKXvs234KyAggMzMzNLXmZmZBAYGXvaco0ePEhgYWKHP\nXqhJE5gxAx5/HHzzBmoRkerBtlCJjIwkLS2NjIwMCgsLWbJkCbGxsWXOiY2NZfHixQBs374dPz8/\n/P39K/TZi02eDMePw5o1bmuSiEiNZ9vwV506dXjjjTcYMmQIxcXFTJ48mS5dujB//nwAHnzwQYYO\nHcratWsJCQmhUaNG/PWvf73sZy9/PXj5ZdNbGTIE6tZ1exNFRGocn15Rf3HTLAuio+Gee+C/dyeL\niMgFqrqivkaFCsDevXD77ZCaCtdea0NhIiLVmLZpuUrh4XDHHTBrlt2ViIj4nhrXUwHIyoKwMNix\nAzp08HBhIiLVmHoqldCmjZmwf+IJuysREfEtNbKnAnDmDHTtCm+/DQMHerAwEZFqTD2VSmrQAP7w\nB3j0USgqsrsaERHfUGNDBWDECGjeHP7yF7srERHxDTV2+KvEvn1m7cqBA3DddR4oTESkGtM6FSeu\n5j/MtGlQWAh//rObixIRqeYUKk5czX+YggLo0gX+9jeIjHRzYSIi1Zgm6l3Az88shpw6Fc6ds7sa\nERHvpVD5r/8+YJKFC20tQ0TEq2n46wLJyXDnnXDwIDRt6qbCRESqMc2pOFHZ/zAPP2yGwDRpLyI1\nkULFicr+hykoMCvtly+HG25wQ2EiItWYJupdzM/PrLT/5S+10l5E5GopVMoxZoxZaf/663ZXIiLi\nXTT85URqKtx0k3moV2CgCwsTEanGNPzlJh07mnUrv/qV3ZWIiHgPhcplPPMMHDpkJu1FROTKNPx1\nBVu2wH33wf79ZhJfRMSX6ZZiJ1wVKmDWrhQXw/z5Lvk6EZFqS6HihCtD5dtvoXt3eP99GDDAJV8p\nIlItaaLeA372M3N78ZQp8OOPdlcjIlJ9qadyFe67D9q1g5dfdunXiohUGxr+csIdoXLiBPToAStX\nagsXEfFNGv7yoBYtYN48mDQJzpyxuxoRkepHPZWrZFkwcqRZHDl7tsu/XkTEVhr+csJdoQKQmwth\nYebxw336uOUSIiK20PCXDfz94bXXzNMidTeYiMh56qlUwX33QZs2MHeuWy8jIuIxGv5ywhOhkpdn\nhsE++ACiotx6KRERj9Dwl42uuw7eftvcDfbdd3ZXIyJiP/VUXGDKFLM32IIFHrmciIjbqKdSDbz6\nKmzaBMuW2V2JiIi91FNxke3b4a67YM8eCAjw2GVFRFzKK3sq+fn5REdH07FjRwYPHkxBQUG55yUm\nJtK5c2dCQ0OZM2dO6fszZswgMDCQiIgIIiIiSExM9FTpTt1wA/y//2duMz53zu5qRETsUeFQOXPm\nDD/99JNLLhofH090dDSpqakMHDiQ+Pj4S84pLi5m6tSpJCYmcuDAAT766CMOHjwImCSdPn06KSkp\npKSkcPvtt7ukrqr6zW/MuhXdYiwiNZXTUDl37hzLly/n3nvvJSAggODgYNq3b09AQAAjR45kxYoV\nle4iJSQkEBcXB0BcXBwrV6685JydO3cSEhJCUFAQdevWZfTo0axatar059Vx1K5OHfPMlfh4Mwwm\nIlLT1HH2g6ioKG655RaeeOIJwsPDqV+/PgA//fQTKSkpJCQkMHfuXDZt2nTVF83NzcXf3x8Af39/\ncnNzLznn2LFjtG3btvR1YGAgO3bsKH39+uuvs3jxYiIjI3nllVfwK+dZvzNmzCjTnigPLCYJDjbP\nXhk9GpKToUkTt19SRKTSkpKSSEpKctn3OZ2oLywspF69epf98E8//VQaNheLjo4mJyfnkvdnzpxJ\nXFwcJ0+eLH2vWbNm5Ofnlzlv2bJlJCYm8vbbbwPw/vvvs2PHDl5//XWOHz9OixYtAHj22WfJzs7m\n3XffLdswD0/UX2zyZCgqgkWLbCtBROSqVfV3p9OeypNPPkm/fv3o168fAU5uZ3IWKADr1693+jN/\nf39ycnJo1aoV2dnZtGzZ8pJzAgICyMzMLH2dmZlJYGAgQJnzH3jgAWJiYpxeyy7z5kFkJLz3HkyY\nYHc1IiKe4XROJSQkhJUrV9KvXz/at2/PmDFjeOONN0hJSeFcFW9vio2NZdF//wm/aNEihg8ffsk5\nkZGRpKWlkZGRQWFhIUuWLCE2NhaA7Ozs0vNWrFhBjx49qlSPOzRqBEuWwPTpkJpqdzUiIp5RoXUq\nx44dY9u2bWzdupVVq1Zx4sQJvqvCviT5+fmMGjWKI0eOEBQUxNKlS/Hz8yMrK4spU6awZs0aAD79\n9FMeffRRiouLmTx5Ms888wwAEydOZO/evTgcDoKDg5k/f37pHE1pw2we/irx5z/Dn/5k1rE0bGh3\nNSIil+fWDSUty2Lfvn1s3bqVrVu3cuDAAZo3b85NN93E888/X+mLekJ1CRXLgnHj4Jpr4J137K5G\nROTy3BYq0dHRfPfdd4SHh9O3b19uvPFGOnfujMPhqPTFPKm6hArAqVPQuzc884xZHCkiUl25bUX9\n9ddfj8PhIC0tjbS0NA4fPkxeXl6lL1STNWkCn3wCTzwBX31ldzUiIu5zxTmVb7/9lu3bt7Nt2za2\nbdvGf/7zH7p168bixYs9VWOlVKeeSolFi2DWLNi1C6691u5qREQu5fa9vxo0aMA111xDw4YNqV+/\nPpmZmezRcvFKiYuDW2+F//kfM9ciIuJrnPZUHnvsMbZu3UpqaioRERHcdNNN9OvXjxtvvLHc1evV\nTXXsqQD89BMMGADDh8PTT9tdjYhIWW5b/Ni0aVPeeustevbsSZ06ZU9bvXo1w4YNq/RFa7L69c38\nSp8+ZnHkoEF2VyQi4jpOh78++OADmjVrdkmgLFiwgGnTprm9MF8WGAgffgjjx0NGht3ViIi4jtNQ\nmTt3LoMHDyb1guXgs2fP5tVXX63UJpJSVlSUGf4aPhy+/97uakREXOOyd3/94x//4Be/+AWrVq3i\nnXfeYefOnaxZs4amTZt6ssZKqa5zKheyLJg0CX74wWzp4iVLgETEh7l1RT3Apk2bGDFiBP369WPp\n0qU0aNCg0hfzJG8IFYAzZ0yvJSYGfvtbu6sRkZrObaHSuHHj0tXzZ86coV69etSqVav0olXZ+8sT\nvCVUALKyzMT9W2/Bf/fMFBGxhdt7Kt7Km0IFYOdOGDYM1q+Hnj3trkZEaiq3LX48derUFT9ckXOk\nYvr0MU+MjI2Fcp5tJiLiFZz2VAYNGkSnTp246667iIyMpFmzZgDk5eWxe/duVq5cSVpaGp999plH\nC64ob+uplHjxRVizBpKStFW+iHieW4e/NmzYwIcffsgXX3xBVlYWAG3atOHmm29m3LhxHnnme2V5\na6iUbJVfXAwffQS1rriRjoiI62hOxQlvDRUwd4QNHAj9+8Ps2XZXIyI1ids3lBTPa9AAVq2CZctg\n/ny7qxERqTine3+JvZo3h7Vr4ZZboG1bGDrU7opERK5MPZVqLCQEVqwwW+YnJ9tdjYjIlV0xVCZM\nmFCh98Q9brgB3n7brLj/+mu7qxERubwrDn99ddHzb4uKikjWP5s9avhwOH4chgyBL74Af3+7KxIR\nKZ/TnsqsWbNo0qQJX375JU2aNCk9WrZsSaz2EvG4X/wCJkyAO+6Aar5DjojUYFe8pfjpp58mPj7e\nU/W4jDffUuyMZcHDD0Nqqlkg6SV7e4qIF/HIOpVVq1axadMmHA4HAwYMICYmptIX9BRfDBUwiyLH\njjWPJf7kE6ij+/dExIXcHipPP/00u3btYty4cViWxccff0xkZCSzq/mqPF8NFYDCQrjrLmjRAhYu\n1Kp7EXEdt4dKjx492Lt3L7Vr1waguLiY8PBwvvzyy0pf1BN8OVTAPNhr8GCIiIB58/SALxFxDbev\nqHc4HBQUFJS+LigoKH3Oitjnmmtg9WpzN9hvfmPmW0RE7HbFEflnnnmGXr16lW4euXHjRq+cuPdF\nfn6wbp15cmTDhvDcc3ZXJCI1XYUm6rOysti1axcOh4M+ffrQqlUrT9RWJb4+/HWh3FwYMMA87/6p\np+yuRkS8mdvmVJKTk8sMc5WcVvJer169Kn1RT6hJoQJw7JjZ1XjqVHjsMburERFv5bZQiYqKwuFw\n8OOPP5KcnExYWBgA+/btIzIykm3btlX6op5Q00IF4Jtv4NZbYdo0ePRRu6sREW/kton6pKQkPv/8\nc9q0acOePXtITk4mOTmZlJQU2rRpU+kLivu0b2+eGPn66zB3rt3ViEhNdMWJ+kOHDtGjR4/S1927\nd+fgwYNuLUoqr107+Pxz02OxLJg+3e6KRKQmuWKohIWF8cADDzB+/Hgsy+LDDz+kZ8+enqhNKqld\nO9Njue02s/L+mWfsrkhEaoor3v31448/8qc//YnNmzcD0L9/fx566CEaVPONp2rinMrFsrLMY4nv\nvRdeeEELJEXkyty+ov7MmTMcPnyYs2fPEhoaSuPGjSt9MU9SqBjHj0N0tFl9/7//q2ARkctz20T9\n2bNn+fWvf01gYCATJ05k8uTJBAcH88gjj3D27Nkqzavk5+cTHR1Nx44dGTx4cJkV+xe6//778ff3\nLzOnczWfF2jZ0syxJCWZHY6Li+2uSER8mdNQefLJJ8nPzyc9PZ09e/awZ88evv76a3744QfGjx/P\nvffeW+mLxsfHEx0dTWpqKgMHDnS6Qn/SpEkkJiZW+vNiNGsG//gHHDwI48ebDSlFRNzB6fBXSEgI\nqamp1LpoC9zi4mKaN2/O2rVrufHGGyt10c6dO7Nx40b8/f3JyckhKiqKQ4cOlXtuRkYGMTExZTaw\nrMjnNfx1qR9/hPvug6Iis23+NdfYXZGIVDdV/d3p9O6vWrVqXRIoALVr16ZFixaVDhSA3Nxc/P/7\nTFx/f39yc3Pd8vkZM2aU/j0qKqp0/7KaqmFDWLYMJk82cywJCaYXIyI1V1JSEklJSS77Pqeh0qVL\nFxYtWkRcXFyZ99977z26dOlyxS+Ojo4mJyfnkvdnzpxZ5rXD4ajSrseX+/yFoSJG3brmGSy//jXc\ncgskJkLbtnZXJSJ2ufgf3C+88EKVvs9pqLz55pvcfffdLFiwgJ///OeA2Q/shx9+YMWKFVf84vXr\n1zv9WcmwVatWrcjOzqZly5ZXVXRVP1/T1aoFf/gDtG4N/frBp59Ct252VyUivsDpRH1gYCA7duzg\nueeeIygoiODgYJ577jl27dpFYGBglS4aGxvLokWLAFi0aBHDhw/36OfFePxxmD3bLJJ0Ye9XRGqw\nCm1972r5+fmMGjWKI0eOEBQUxNKlS/Hz8yMrK4spU6awZs0aAMaMGcPGjRvJy8ujZcuWvPjii0ya\nNMnp58s0TBP1FbZhA4wZA6+8Yu4OE5Gay+2LH72VQuXq7N8Pd95pJvF/9zstkhSpqRQqTihUrl52\nNsTEmPmVv/wF6te3uyIR8TS3P6Neao7WrWHjRjh92uwZduKE3RWJiLdRqEgZjRrB//2feTxxnz7w\n1Vd2VyQi3kTDX+LU+++bRxO/8w7cdZfd1YiIJ2hOxQmFimvs3An33ANTppgJ/HI2WRARH6JQcUKh\n4jrZ2XD33dCmjVmN36SJ3RWJiLtool7crnVrsziyWTPo2xec7P0pIqJQkYqpXx/efts8875/f1i+\n3O6KRKQ60vCXXLXdu2HkSPOY4lmzzCaVIuIbNPwlHhcZaYJl/36IioKjR+2uSESqC4WKVErz5rB6\nNQwbZkKmnAd0ikgNpOEvqbKNG2HcOBg7Fn7/e6hXz+6KRKSyNPwlthswAFJSzHDYLbfAv/9td0Ui\nYheFirhEixZmOGz0aHPb8Ycf2l2RiNhBw1/icnv2mOGwiAh46y246FE3IlKNafhLqp1evSA52SyW\n7NlTT5UUqUnUUxG3WrvW7Bs2apRZ09Kwod0VicjlqKci1drQobBvn9k/LCLCbFApIr5LPRXxmCVL\nYNo0mDQJZsyABg3srkhELqaeiniN++6Df/4T0tJMr2XbNrsrEhFXU09FbPHJJ/CrX5mg+f3voXFj\nuysSEVBPRbzUyJHw5ZdQUADdu5sJfRHxfuqpiO0++wwefBB694a5c83zW0TEHuqpiNcbNMj0Wq6/\nHsLC4I03oLjY7qpEpDLUU5Fq5cABePhhOH0a3nzTbPkiIp6jnor4lK5d4fPP4ZFHYMQImDwZjh+3\nuyoRqSiFilQ7DgdMmACHDpl9w7p1g3nz4OxZuysTkSvR8JdUe/v3w2OPmSdMvvoq3H673RWJ+K6q\n/u5UqIhXsCyztf7jj0NICLz8sunBiIhraU5FagSHA2Ji4KuvIDoabr3V3Iack2N3ZSJyIYWKeJV6\n9cxQ2L/+BU2amN7KjBlw6pTdlYkIKFTESzVtCn/4A+zeDV9/DaGhZjL/p5/srkykZlOoiFcLDob3\n3oN16+Dvf4dOnWDBAigqsrsykZpJE/XiU7Zsgd/9DrKy4IUXzMPBate2uyoR76G7v5xQqNRclgUb\nNphw+e47ePZZuPdehYtIRXjl3V/5+flER0fTsWNHBg8eTEFBQbnn3X///fj7+9OjR48y78+YMYPA\nwEAiIiKIiIggMTHRE2WLl3A4YOBA2LrVrGt57TXo0QM+/FDDYiLuZkuoxMfHEx0dTWpqKgMHDiQ+\nPr7c8yZNmlRuYDgcDqZPn05KSgopKSncrtVwUg6HA4YMMeEydy786U/QuTO88w4UFtpdnYhvsiVU\nEhISiIuLAyAuLo6VK1eWe94tt9xC06ZNy/2ZhrakokrCZfNmM4m/dCl06AB//KPZuFJEXKeOHRfN\nzc3F398fAH9/f3Jzc6/6O15//XUWL15MZGQkr7zyCn5+fpecM2PGjNK/R0VFERUVVdmSxUf072/u\nFNu9G+bMgZkz4aGHYOpUaNnS7upEPC8pKYmkpCSXfZ/bJuqjo6PJKWe588yZM4mLi+PkyZOl7zVr\n1oz8/PxyvycjI4OYmBi+/PLL0veOHz9OixYtAHj22WfJzs7m3XffLfM5TdRLRaSlwSuvmN7LyJEw\nfboZIhOpqar6u9NtPZX169c7/Zm/vz85OTm0atWK7OxsWl7lPxEvPP+BBx4gJiam0nVKzRYaCn/+\nM7z0Erz1FgwYAJGR8Oij5uFhDofdFYp4F1vmVGJjY1m0aBEAixYtYvjw4Vf1+ezs7NK/r1ix4pK7\nw0SuVosW8PzzkJEBd99tNq7s3h3mz4fvv7e7OhHvYcs6lfz8fEaNGsWRI0cICgpi6dKl+Pn5kZWV\nxZQpU1izZg0AY8aMYePGjeTl5dGyZUtefPFFJk2axMSJE9m7dy8Oh4Pg4GDmz59fOkdT2jANf0kV\nWBYkJZnbkTdvhokTzRMpQ0PtrkzEvbT40QmFirjKN9+YIbJ334XwcPjlL82OyXXr2l2ZiOspVJxQ\nqIirnTkDy5aZIbHDh+H++83jjoOD7a5MxHW8ckW9iDdq0ADGjYNNm2D9erPdfu/eMHiwuXtMOySL\nqKciUiVnzsCKFWaV/r59MHo0TJoEERG6c0y8k4a/nFCoiKdlZMDixbBwITRqBBMmmJ5NQIDdlYlU\nnELFCYWK2OXcOfjiCxMwy5bBz39uwmXECPjZz+yuTuTyFCpOKFSkOvjxR/jb38wOyZ9/buZfRo+G\noUOhYUO7qxO5lELFCYWKVDcnT8Inn8CSJZCcDHfeCffdB9HR5iYAkepAoeKEQkWqs5wcMzS2ZAl8\n+aXpuYwcaXZTvuYau6uTmkyh4oRCRbxFTo65g+yTT8zuyQMHmq1i7rwTnDz5QcRtFCpOKFTEG+Xl\nmTmY5cvNNjG9e8Ndd0FsLAQF2V2d1AQKFScUKuLtvv/eLLJMSIDVq83zXoYNM8cNN0AdW56GJL5O\noeKEQkV8SXEx7NoFa9aYnsyRI2aCf+hQMw/TqpXdFYqvUKg4oVARX5aVBYmJsHYt/OMf0L69CZch\nQ6BfP6hf3+4KxVspVJxQqEhNUVQEO3aYxyT//e+wfz/cdJN5yNigQdCzJ9TSLn9SQQoVJxQqUlMV\nFJiFluvXw4YNcOIEREXBbbeZP7t21b5k4pxCxQmFiohx7JgJmQ0bYONGs7ty//7m0cn9+5snXNau\nbXeVUl0oVJxQqIiU78gREy6bN5tt/HNzzXDZzTeb+ZjevbWFTE2mUHFCoSJSMbm5ZgPMLVvMsX8/\n9OgBN95owuaGGyAwUENmNYVCxQmFikjlfP+9Wdm/bRts3Qrbt5s1MTfcAH37Qp8+Zufla6+1u1Jx\nB4WKEwoVEdewLPOsmO3bzV1mu3bBP/8J7dqZobKf/xwiIyE8XPuW+QKFihMKFRH3OXvWDJMlJ5te\nza5dcOAABAdDr17mCA83h/Yv8y4KFScUKiKeVVhogiU5Gfbsgb17zSOWr7vOrJUpOcLC4PrrdcdZ\ndaVQcUKhImK/c+fg8GEzXLZv3/k/T5ww62V69DC3NJccrVvrhgC7KVScUKiIVF/ffQdffWUCZv9+\nc3z1lRlW69rVHF26nD/atdOuAJ6iUHFCoSLifU6cgIMHzTDa/v1w6JB5ffIkhIZCp07nj44dzfGz\nn9ldtW9RqDihUBHxHd99B6mp8K9/maBJTYW0NPNno0YmcEJDISTEHB06mEM3CVw9hYoTChUR32dZ\nkJ1tAubw4fN/fv21+bNuXRMu119vjuDg83+2bQv16tndgupHoeKEQkWkZrMsM5z273+b4+uvIT39\n/JGdbR58FhRkjvbtzdxN+/bmaNvW9IJqGoWKEwoVEbmcs2fNZpvffGMWd37zzfkjM9PskXbNNSZc\nSo7AwLJHQIDvBY9CxQmFiohURUlP5+hREzIlx7Fj5r2jR83f69c34RIQYG6JbtPGHK1blz28ZZNO\nhYoTChURcTfLMnemZWWZgMnKOn9kZ5sjK8ts2lm/vgmXVq3A398crVqZITh//7J/2rndjULFCYWK\niFQXlmUenpaTY4ImN9ccOTlw/Lg5St47ccLsNtCixaVH8+bn/2ze3OxWcN115i43V+1QoFBxQqEi\nIt7IsuD0aRM0J06cP/7zH3OUvM7LO//ed9+Z9TolIdOs2fk/S46mTc1x4d/9/EwP6kIKFScUKiJS\nUxQVmWG4vDzIzz9/5OWZ90tel/z95ElzFBSY265LAsbPD7ZuVaiUS6EiInJ5lmWen3PyJHz7rQmZ\nW26p2u9O7abjpZKSkuwuwa18uX2+3DZQ+7yJwwGNG5vbpbt3N4+UripbQiU/P5/o6Gg6duzI4MGD\nKSgouOSczMxMbr31Vrp160b37t2ZN2/eVX3e1/nS/9jl8eX2+XLbQO2r6WwJlfj4eKKjo0lNTWXg\nwIHEx8dfck7dunWZO3cu+/fvZ/v27bz55pscOnSowp8XERHPsyVUEhISiIuLAyAuLo6VK1deck6r\nVq0IDw9va+WxAAAI/0lEQVQHoHHjxnTp0oVjx45V+PMiIuJ5tkzUN23alJMnTwJgWRbNmjUrfV2e\njIwMBgwYwP79+2ncuHGFPu/Qk35ERCqlKrFQx4V1lBEdHU1OTs4l78+cObPMa4fDcdkAOH36NCNH\njuS1116jcePGl/zc2ed155eIiOe5LVTWr1/v9Gf+/v7k5OTQqlUrsrOzadmyZbnnnT17lnvuuYfx\n48czfPjwq/68iIh4li1zKrGxsSxatAiARYsWlQmMEpZlMXnyZLp27cqjjz561Z8XERHPs2VOJT8/\nn1GjRnHkyBGCgoJYunQpfn5+ZGVlMWXKFNasWcOWLVvo378/YWFhpcNbs2fP5vbbb3f6eRERsZnl\ngz799FOrU6dOVkhIiBUfH293OVV25MgRKyoqyuratavVrVs367XXXrMsy7Ly8vKsQYMGWaGhoVZ0\ndLR18uRJmyutvKKiIis8PNwaNmyYZVm+1baTJ09a99xzj9W5c2erS5cu1vbt232qfbNmzbK6du1q\nde/e3RozZox15swZr27fpEmTrJYtW1rdu3cvfe9y7Zk1a5YVEhJiderUyfr73/9uR8lXpbz2PfHE\nE1bnzp2tsLAwa8SIEVZBQUHpz662fT4XKkVFRVaHDh2s9PR0q7Cw0OrZs6d14MABu8uqkuzsbCsl\nJcWyLMs6deqU1bFjR+vAgQPWk08+ac2ZM8eyLMuKj4+3nnrqKTvLrJJXXnnFGjt2rBUTE2NZluVT\nbZs4caL17rvvWpZlWWfPnrUKCgp8pn3p6elWcHCwdebMGcuyLGvUqFHWwoULvbp9mzZtsvbs2VPm\nl66z9uzfv9/q2bOnVVhYaKWnp1sdOnSwiouLbam7ospr37p160rrfuqpp6rUPp8Lla1bt1pDhgwp\nfT179mxr9uzZNlbkenfddZe1fv16q1OnTlZOTo5lWSZ4OnXqZHNllZOZmWkNHDjQ2rBhQ2lPxVfa\nVlBQYAUHB1/yvq+0Ly8vz+rYsaOVn59vnT171ho2bJi1bt06r29fenp6mV+6ztoza9asMqMhQ4YM\nsbZt2+bZYivh4vZdaPny5da4ceMsy6pc+3xu769jx47Rtm3b0teBgYGliyZ9QUZGBikpKfTt25fc\n3Fz8/f0Bc0dcbm6uzdVVzmOPPcbLL79MrVrn/3f0lbalp6fTokULJk2aRK9evZgyZQrff/+9z7Sv\nWbNmPP7447Rr1442bdrg5+dHdHS0z7SvhLP2ZGVlERgYWHqeL/y+WbBgAUOHDgUq1z6fCxVfXvR4\n+vRp7rnnHl577TWaNGlS5mdXWu9TXa1evZqWLVsSERHhdG2Rt7YNoKioiD179vDwww+zZ88eGjVq\ndMm2Qt7cvq+//po//vGPZGRkkJWVxenTp3n//ffLnOPN7SvPldrjzW2dOXMm9erVY+zYsU7PuVL7\nfC5UAgICyMzMLH2dmZlZJmm9VcmanQkTJpTeQl2yXgfw2vU6W7duJSEhgeDgYMaMGcOGDRuYMGGC\nT7QNzL/sAgMD6d27NwAjR45kz549tGrVyifat3v3bm666Sauu+466tSpw9133822bdt8pn0lnP3/\nePHvm6NHjxIQEGBLjVW1cOFC1q5dywcffFD6XmXa53OhEhkZSVpaGhkZGRQWFrJkyRJiY2PtLqtK\nLCdrdnxhvc6sWbPIzMwkPT2djz/+mNtuu4333nvPJ9oGZg+7tm3bkpqaCsBnn31Gt27diImJ8Yn2\nde7cme3bt/Pjjz9iWRafffYZXbt29Zn2lXD2/2NsbCwff/wxhYWFpKenk5aWRp8+fewstVISExN5\n+eWXWbVqFQ0aNCh9v1Ltc9G8T7Wydu1aq2PHjlaHDh2sWbNm2V1OlW3evNlyOBxWz549rfDwcCs8\nPNz69NNPrby8PGvgwIFeedtmeZKSkkrv/vKltu3du9eKjIwsc7umL7Vvzpw5pbcUT5w40SosLPTq\n9o0ePdpq3bq1VbduXSswMNBasGDBZdszc+ZMq0OHDlanTp2sxMREGyuvmIvb9+6771ohISFWu3bt\nSn+/PPTQQ6XnX237fPbJjyIi4nk+N/wlIiL2UaiIiIjLKFRERMRlFCoiIuIyChWRCsjLyyMiIoKI\niAhat25NYGAgERERNGnShKlTp7rlmm+88QYLFy50+vOEhAReeuklt1xbpLJ095fIVXrhhRdo0qQJ\n06dPd9s1LMuiV69e7Nq1izp1yn+WnmVZREREsGvXLurWreu2WkSuhnoqIpVQ8m+xpKQkYmJiAJgx\nYwZxcXH079+foKAgli9fzhNPPEFYWBh33HEHRUVFACQnJxMVFUVkZCS33357uY/d/uKLL+jcuXNp\noMybN49u3brRs2dPxowZA5jtMm688UbWrVvniSaLVIhCRcSF0tPT+fzzz0lISGD8+PFER0ezb98+\nGjZsyJo1azh79iy/+tWvWLZsGbt372bSpEn89re/veR7tmzZQmRkZOnrOXPmsHfvXv75z38yf/78\n0vf79OnDpk2bPNI2kYpw2zPqRWoah8PBHXfcQe3atenevTvnzp1jyJAhAPTo0YOMjAxSU1PZv38/\ngwYNAqC4uJg2bdpc8l1Hjhzh5ptvLn0dFhbG2LFjGT58eJktT9q0aUNiYqKbWyZScQoVEReqV68e\nALVq1Sozz1GrVi2KioqwLItu3bqxdevWK37XhdOda9asYdOmTfztb39j5syZfPXVV9SqVYtz5855\n9a644ns0/CXiIhW556VTp06cOHGC7du3A2b36QMHDlxyXvv27UvnWizL4siRI0RFRREfH8+3337L\n6dOnAbNjbvv27V3YCpGqUaiIVEJJ7+DCZ2tc/JyNi3sQDoeDunXr8sknn/DUU08RHh5OREQE27Zt\nu+T7b775Znbv3g2YZ7JMmDCBsLAwevXqxSOPPMK1114LwM6dO+nfv79b2ihSGbqlWKQaKrmleMeO\nHaVDahc7d+4cvXr1Yvfu3U5vOxbxNPVURKohh8PBlClTyjww6WKrV69m5MiRChSpVtRTERERl1FP\nRUREXEahIiIiLqNQERERl1GoiIiIyyhURETEZRQqIiLiMv8fGRx8Be2i9aQAAAAASUVORK5CYII=\n" }, { "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEMCAYAAADwJwB6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH3VJREFUeJzt3X9QVXX+x/HXJaF1En/VelHQNBUQFL2sP/FHFF5/ZCKm\nY2kWmdmUU63tljrTTpmp4Drl6qZN22YytZs/8hdqqbSKP0L8kaQtlFDCivIjFTF1M1Q+3z9a7zeC\nqyKXcwOfj5kzwznnc875vBvnvDrnfM65NmOMEQAAtczH2x0AANwcCBwAgCUIHACAJQgcAIAlCBwA\ngCUIHACAJbwSOCUlJXI6nQoODtagQYNUWlpaZbvHH39cdrtdXbp0qbB879696tmzpxwOh3r06KF9\n+/ZJkvLy8tSwYUM5HA45HA5Nnjy51msBAFwfrwROYmKinE6nsrOzFRMTo8TExCrbTZgwQZs2baq0\nfOrUqXrttdeUkZGhmTNnaurUqa51HTp0UEZGhjIyMrR48eJaqwEAUD1eCZzk5GTFx8dLkuLj47V2\n7doq2/Xv31/NmjWrtLxly5Y6c+aMJKm0tFSBgYG111kAgGcYL2jatKnr7/Ly8grzv5Sbm2s6d+5c\nYVleXp4JCgoyrVu3NoGBgebo0aOutrfddpvp1q2bufvuu83OnTsr7U8SExMTE9MNTDVVa4EzcOBA\n07lz50rTunXrKgVMs2bN3O6nqsCJiYkxq1evNsYYs2LFCjNw4EBjjDE//vijKSkpMcYY8/nnn5vW\nrVub77//vsK2nviP9mv2yiuveLsLtYr66rb6XF99rs0Yz5w7G6iWpKSkuF1nt9tVVFSkgIAAFRYW\nqkWLFtXa9969e/Xpp59KkkaPHq0nnnhCkuTn5yc/Pz9JUmRkpNq3b6+cnBxFRkbeYBUAAE/xyjOc\n2NhYJSUlSZKSkpIUFxdXre07dOig7du3S5K2bt2q4OBgSdLJkyd1+fJlSdKRI0eUk5Oju+66y4M9\nBwDcMA9caVXbqVOnTExMjOnYsaNxOp3m9OnTxhhjjh8/bu677z5Xu4ceesi0bNnS+Pn5maCgILNk\nyRJjjDH79u0zPXv2NF27djW9e/c2Bw4cMMYYs2rVKhMeHm66detmIiMjzYYNGyod20slW2bbtm3e\n7kKtor66rT7XV59rM8Yz507b/3Z007DZbLrJSgaAGvPEuZMvDQAALEHgAAAsQeAAACxB4AAALEHg\nAAAsQeAAACxB4AAALEHgAAAsQeAAACxB4AAALEHgAAAsQeAAACxB4AAALEHgAAAsQeAAACxB4AAA\nLEHgAAAsQeAAACxB4AAALEHgAAAsQeAAACxB4AAALEHgAAAsQeAAACxB4AAALEHgAAAsQeAAACxB\n4AAALEHgAAAsQeAAACxB4AAALEHgAAAsQeAAACxB4AAALEHgAAAs4ZXAKSkpkdPpVHBwsAYNGqTS\n0tIq2z3++OOy2+3q0qVLheUHDx5Unz59FBERodjYWJ09e9a1LiEhQR07dlRoaKi2bNlSq3UAAK6f\nVwInMTFRTqdT2dnZiomJUWJiYpXtJkyYoE2bNlVa/sQTT+jPf/6zDh06pJEjR2revHmSpKysLC1f\nvlxZWVnatGmTJk+erPLy8lqtBQBwfbwSOMnJyYqPj5ckxcfHa+3atVW269+/v5o1a1ZpeU5Ojvr3\n7y9JGjhwoFatWiVJWrduncaOHStfX1+1bdtWHTp00N69e2upCgBAdTTwxkGLi4tlt9slSXa7XcXF\nxdXaPjw8XOvWrdOIESO0cuVK5efnS5IKCgrUu3dvV7ugoCAdP3680vYzZsxw/R0dHa3o6OjqFwEA\n9VhqaqpSU1M9us9aCxyn06mioqJKy2fPnl1h3mazyWazVWvfS5Ys0XPPPafXXntNsbGx8vPzc9u2\nqn3/PHAAAJX98n/GX3311Rrvs9YCJyUlxe06u92uoqIiBQQEqLCwUC1atKjWvkNCQrR582ZJUnZ2\ntjZu3ChJCgwMdF3tSNKxY8cUGBh4A70HAHiaV57hxMbGKikpSZKUlJSkuLi4am1/4sQJSVJ5eblm\nzZqlp59+2rXfZcuWqaysTLm5ucrJyVHPnj0923kAwA3xSuBMnz5dKSkpCg4O1tatWzV9+nRJPz2D\nGTZsmKvd2LFjFRUVpezsbLVu3VrvvfeeJOnDDz9USEiIOnXqpKCgID322GOSpLCwMI0ZM0ZhYWEa\nOnSoFi9eXO3bdQCA2mEzxhhvd8JKNptNN1nJAFBjnjh38qUBAIAlCBwAgCUIHACAJQgcAIAlCBwA\ngCUIHACAJQgcAIAlCBwAgCUIHACAJQgcAIAlCBwAgCUIHACAJQgcAIAlCBwAgCUIHACAJQgcAIAl\nCBwAgCUIHACAJQgcAIAlCBwAgCUIHACAJQgcAIAlCBwAgCUIHACAJQgcAIAlCBwAgCUIHACAJQgc\nAIAlCBwAgCUIHACAJQgcAIAlCBwAgCUIHACAJQgcAIAlCBwAgCUIHACAJa4rcM6fP6+vv/5ahw8f\n1vnz52t80JKSEjmdTgUHB2vQoEEqLS2tst3jjz8uu92uLl26VFh+8OBB9enTRxEREYqNjdXZs2cl\nSXl5eWrYsKEcDoccDocmT55c474CADzDZowxVa04e/as3nnnHS1btkwnT56U3W6XMUbFxcW6/fbb\n9fDDD2vSpElq1KhRtQ86depU3XHHHZo6darmzp2r06dPKzExsVK7nTt3qlGjRnr00Uf15Zdfupb3\n6NFDb7zxhvr376/33ntPubm5mjlzpvLy8jR8+PAKbSsVbLPJTckAADc8ce50e4UTFxcnf39/rV+/\nXkeOHNHu3buVnp6u3NxcbdiwQbfddptGjBhxQwdNTk5WfHy8JCk+Pl5r166tsl3//v3VrFmzSstz\ncnLUv39/SdLAgQO1atWqG+oHAMA6Ddyt+Ne//uV2o4CAAD355JN68sknb+igxcXFstvtkiS73a7i\n4uJqbR8eHq5169ZpxIgRWrlypfLz813rcnNz5XA41KRJE82aNUv9+vWrtP2MGTNcf0dHRys6OvqG\n6gCA+io1NVWpqake3afbW2ojRoxQ37591bdvX/Xo0UN+fn7V2rHT6VRRUVGl5bNnz1Z8fLxOnz7t\nWta8eXOVlJRUuZ+qbpMdPnxYzz33nE6dOqXY2FgtXLhQJ0+eVFlZmc6fP69mzZrpwIEDiouLU2Zm\npvz9/f+/YG6pAUC1eeLc6fYK54knnlBaWppeeuklHTx4UKGhoYqKilK/fv0UFRXlukJxJyUlxe06\nu92uoqIiBQQEqLCwUC1atKhWp0NCQrR582ZJUnZ2tjZu3ChJ8vPzcwVjZGSk2rdvr5ycHEVGRlZr\n/wAAz3P7DGf48OFKSEhQamqqTp48qb/+9a9q2bKlXnzxRbVq1apGB42NjVVSUpIkKSkpSXFxcdXa\n/sSJE5Kk8vJyzZo1S08//bQk6eTJk7p8+bIk6ciRI8rJydFdd91Vo74CADzD7RWO9NOJPS0tTWlp\nadqzZ48uXLiggQMHqk+fPjU66PTp0zVmzBi9++67atu2rVasWCFJKigo0KRJk1xXLGPHjtX27dt1\n6tQptW7dWjNnztSECRP04YcfatGiRZKkUaNG6bHHHpMk7dixQy+//LJ8fX3l4+Ojt99+W02bNq1R\nXwEAnuH2GU7Hjh3VpEkTjRo1Sr169VLPnj1vaAj0rw3PcACg+jxx7nQbOAkJCdq9e7cKCgrUsWNH\nRUVFqU+fPnI4HLrllltqdFBvInAAoPpqNXB+7vDhw9q9e7fS0tK0a9cu3XHHHdqxY0eNDuwtBA4A\nVF+tvvh5xZEjR7R3717t2bNHe/bs0XfffafGjRvX6KAAgJuP2yuckSNHKj09XY0bN1bfvn0VFRWl\nvn37KjQ0VDabzep+egxXOABQfbX6Ho7D4dA777yjO+64o9K6t956yzUUGQCA6+H2ltrSpUuVl5dX\nafkrr7yiv/3tb7XZJwBAPeQ2cFauXKkxY8YoLS1N0k8vWT711FPavn27tm/fblkHAQD1w1VHqR06\ndEgjR47UokWL9M4770iS/vnPf+rWW2+1rIOexjMcAKi+Wh0WfeVjmpmZmYqLi5PT6dSbb74pH5+f\nLoqaN29eowN7C4EDANVXq4HTtm1b12g0Y0yFkWk2m01Hjhyp0YG9hcABgOqz7MXP+oTAAYDqq9UX\nP6/nCubbb7+t0cEBADcPt1c4Dz74oM6fP6/Y2Fh1795dLVu2lDFGhYWF2r9/v5KTk+Xv769ly5ZZ\n3eca4QoHAKqv1m+pffPNN1q2bJk+++wz/ec//5Ek3XnnnerXr5/Gjh1bJ39rhsABgOrjGc4NIHAA\noPos+XgnAACeQOAAACxB4AAALHHNwImJibmuZQAAXI3bnyf44Ycf9N///lcnTpxwfeZGkr7//nsd\nP37cks4BAOoPt4Hz9ttva8GCBSooKNDvfvc713J/f38988wzlnQOAFB/XHNY9MKFC/Xcc89Z1Z9a\nx7BoAKg+S97DKSsr01tvvaUdO3bIZrPp7rvv1lNPPSVfX98aHdhbCBwAqD5LAmfixIm6dOmS4uPj\nZYzR+++/rwYNGujvf/97jQ7sLQQOAFSfJYETERGhQ4cOXXNZXUHgAED1WfKlgQYNGuibb75xzX/7\n7bdq0MDtWAMAAKp0zeSYN2+e7r33XrVr106SlJeXp/fee6/WOwYAqF+u6+OdFy5c0OHDh2Wz2RQS\nEqJbb73Vir7VCm6pAUD11eoznFWrVrkO8POfl77igQceqNGBvYXAAYDq88S50+0ttfXr18tms+m7\n775TWlqa7r33XknStm3bFBUVVWcDBwDgHW4DZ+nSpZIkp9OprKwstWzZUpJUWFio+Ph4SzoHAKg/\nrjlKLT8/XwEBAa55u92uo0eP1mqnAAD1zzVHqQ0cOFCDBw/WuHHjZIzR8uXL5XQ6regbAKAeueYo\nNWOM1qxZo507d0qSBgwYoJEjR1rSudrAoAEAqL5aHaU2f/589e3bV5GRkfXqRU8CBwCqr1ZHqR07\ndkxTpkzRV199pS5duqhfv36KiopSVFSUmjdvXqODAgBuPm4HDbz++utKS0tTUVGREhIS1Lx5cy1Z\nskTh4eHq1KlTjQ5aUlIip9Op4OBgDRo0SKWlpZXa5Ofn65577lF4eLg6d+6shQsXXtf2CQkJ6tix\no0JDQ7Vly5Ya9RMA4DnXHKX2ww8/6Pvvv9eZM2d05swZtWrVSr17967RQRMTE+V0OpWdna2YmBgl\nJiZWauPr66v58+crMzNT6enpWrRokb7++uurbp+VlaXly5crKytLmzZt0uTJk1VeXl6jvgIAPMPt\nM5xJkyYpKytL/v7+6tmzp/r06aPevXurWbNmNT5oaGiotm/fLrvdrqKiIkVHR7vCxJ24uDg9++yz\niomJcbt9QkKCfHx8NG3aNEnSkCFDNGPGjAoByTMcAKi+Wn2Gc/ToUf3444/q2LGjAgMDFRgYqKZN\nm9boYFcUFxfLbrdL+um9nuLi4qu2z8vLU0ZGhnr16nXV7QsKCiqES1BQkI4fP15pfzbbjJ/NRf9v\nAgD8v9T/TZ7jNnA2b96s8vJyZWZmavfu3XrjjTf05Zdf6vbbb1fv3r01c+bMq+7Y6XSqqKio0vLZ\ns2dXmLfZbFV+q+2Kc+fOafTo0VqwYIEaNWpUaf21tq9qnTEzrtJzAMAv/2fcZnu1xnu86nhnHx8f\ndenSRU2bNlWTJk3UuHFjbdiwQXv27Llm4KSkpLhdd+VWWEBAgAoLC9WiRYsq2128eFGjRo3S+PHj\nFRcXd83tAwMDlZ+f72p37NgxBQYGXrWfAABruB00sGDBAj344INq06aN7r77bq1fv16dOnXSmjVr\nVFJSUqODxsbGKikpSZKUlJRUIUyuMMZo4sSJCgsL05QpU65r+9jYWC1btkxlZWXKzc1VTk6Oevbs\nWaO+AgA8w+2ggeeff179+vVTnz591KpVK48etKSkRGPGjNHRo0fVtm1brVixQk2bNlVBQYEmTZqk\njRs3ateuXRowYIAiIiJct8USEhI0ZMgQt9tL0pw5c7RkyRI1aNBACxYs0ODBgysWzKABAKi2Wv3S\nQH1F4ABA9Xni3HnN93AAAPAEAgcAYAkCBwBgCQIHAGAJAgcAYAkCBwBgCQIHAGAJAgcAYAkCBwBg\nCQIHAGAJAgcAYAkCBwBgCQIHAGAJAgcAYAkCBwBgCQIHAGAJAgcAYAkCBwBgCQIHAGAJAgcAYAkC\nBwBgCQIHAGAJAgcAYAkCBwBgCQIHAGAJAgcAYAkCBwBgCQIHAGAJAgcAYAkCBwBgCQIHAGAJAgcA\nYAkCBwBgCQIHAGAJAgcAYAmvBE5JSYmcTqeCg4M1aNAglZaWVmqTn5+ve+65R+Hh4ercubMWLlx4\nze3z8vLUsGFDORwOORwOTZ482bKaAABX55XASUxMlNPpVHZ2tmJiYpSYmFipja+vr+bPn6/MzEyl\np6dr0aJF+vrrr6+5fYcOHZSRkaGMjAwtXrzYspoAAFfnlcBJTk5WfHy8JCk+Pl5r166t1CYgIEDd\nunWTJDVq1EidOnXS8ePHr3t7AMCvSwNvHLS4uFh2u12SZLfbVVxcfNX2eXl5ysjIUK9eva65fW5u\nrhwOh5o0aaJZs2apX79+lfY3Y8YM19/R0dGKjo6uYUUAUL+kpqYqNTXVo/u0GWOMR/f4P06nU0VF\nRZWWz549W/Hx8Tp9+rRrWfPmzVVSUlLlfs6dO6fo6Gj96U9/UlxcnCSpWbNmVW5fVlam8+fPq1mz\nZjpw4IDi4uKUmZkpf39/V1ubzaZaKhkA6i1PnDtr7QonJSXF7Tq73a6ioiIFBASosLBQLVq0qLLd\nxYsXNWrUKI0fP94VNlfb3s/PT35+fpKkyMhItW/fXjk5OYqMjPRgZQCAG+GVZzixsbFKSkqSJCUl\nJVUIkyuMMZo4caLCwsI0ZcqU69r+5MmTunz5siTpyJEjysnJ0V133VWbpQAArlOt3VK7mpKSEo0Z\nM0ZHjx5V27ZttWLFCjVt2lQFBQWaNGmSNm7cqF27dmnAgAGKiIiQzWaTJCUkJGjIkCFut1+9erVe\nfvll+fr6ysfHRzNnztSwYcMqFswtNQCoNk+cO70SON5E4ABA9Xni3MmXBgAAliBwAACWIHAAAJYg\ncAAAliBwAACWIHAAAJYgcAAAliBwAACWIHAAAJYgcAAAliBwAACWIHAAAJYgcAAAliBwAACWIHAA\nAJYgcAAAliBwAACWIHAAAJYgcAAAliBwAACWIHAAAJYgcAAAliBwAACWIHAAAJYgcAAAliBwAACW\nIHAAAJYgcAAAliBwAACWIHAAAJYgcAAAliBwAACWIHAAAJYgcAAAliBwAACWIHDqmdTUVG93oVZR\nX91Wn+urz7V5ilcCp6SkRE6nU8HBwRo0aJBKS0srtcnPz9c999yj8PBwde7cWQsXLnStW7lypcLD\nw3XLLbfowIEDFbZLSEhQx44dFRoaqi1bttR6Lb829f0fPfXVbfW5vvpcm6d4JXASExPldDqVnZ2t\nmJgYJSYmVmrj6+ur+fPnKzMzU+np6Vq0aJG++uorSVKXLl20Zs0aDRgwoMI2WVlZWr58ubKysrRp\n0yZNnjxZ5eXlltQEALg6rwROcnKy4uPjJUnx8fFau3ZtpTYBAQHq1q2bJKlRo0bq1KmTCgoKJEmh\noaEKDg6utM26des0duxY+fr6qm3bturQoYP27t1bi5UAAK6b8YKmTZu6/i4vL68wX5Xc3FzTpk0b\nc/bs2QrLo6Ojzeeff+6af+aZZ8wHH3zgmp84caL56KOPKmwjiYmJiYnpBqaaaqBa4nQ6VVRUVGn5\n7NmzK8zbbDbZbDa3+zl37pxGjx6tBQsWqFGjRtXuxy/3/VPmAACsVmuBk5KS4nad3W5XUVGRAgIC\nVFhYqBYtWlTZ7uLFixo1apTGjx+vuLi4ax4zMDBQ+fn5rvljx44pMDCw+p0HAHicV57hxMbGKikp\nSZKUlJRUZZgYYzRx4kSFhYVpypQpbvf18yuW2NhYLVu2TGVlZcrNzVVOTo569uzp+QIAANXmlcCZ\nPn26UlJSFBwcrK1bt2r69OmSpIKCAg0bNkyS9Nlnn+mDDz7Qtm3b5HA45HA4tGnTJknSmjVr1Lp1\na6Wnp2vYsGEaOnSoJCksLExjxoxRWFiYhg4dqsWLF1/1dh0AwEI1fgpUh3zyyScmJCTEdOjQwSQm\nJnq7OzV29OhREx0dbcLCwkx4eLhZsGCBMcaYU6dOmYEDB5qOHTsap9NpTp8+7eWe1sylS5dMt27d\nzP3332+MqV/1nT592owaNcqEhoaaTp06mfT09HpT35w5c0xYWJjp3LmzGTt2rLlw4UKdrm3ChAmm\nRYsWpnPnzq5lV6tnzpw5pkOHDiYkJMRs3rzZG12ulqrqe+GFF0xoaKiJiIgwI0eONKWlpa51N1Lf\nTRM4ly5dMu3btze5ubmmrKzMdO3a1WRlZXm7WzVSWFhoMjIyjDHGnD171gQHB5usrCzz4osvmrlz\n5xpjjElMTDTTpk3zZjdr7PXXXzfjxo0zw4cPN8aYelXfo48+at59911jjDEXL140paWl9aK+3Nxc\n065dO3PhwgVjjDFjxowxS5curdO17dixwxw4cKDCCdldPZmZmaZr166mrKzM5Obmmvbt25vLly97\npd/Xq6r6tmzZ4ur3tGnTalzfTRM4aWlpZvDgwa75hIQEk5CQ4MUeed6IESNMSkqKCQkJMUVFRcaY\nn0IpJCTEyz27cfn5+SYmJsZs3brVdYVTX+orLS017dq1q7S8PtR36tQpExwcbEpKSszFixfN/fff\nb7Zs2VLna8vNza1wQnZXz5w5cyrcRRk8eLDZvXu3tZ29Ab+s7+dWr15tHn74YWPMjdd303xL7fjx\n42rdurVrPigoSMePH/dijzwrLy9PGRkZ6tWrl4qLi2W32yX9NCKwuLjYy727cc8//7zmzZsnH5//\n/6daX+rLzc3Vb3/7W02YMEGRkZGaNGmSzp8/Xy/qa968uf74xz+qTZs2atWqlZo2bSqn01kvavs5\nd/UUFBQoKCjI1a4+nG+WLFmi++67T9KN13fTBE59Hjxw7tw5jRo1SgsWLJC/v3+Fddd6z+nXbMOG\nDWrRooUcDofb96fqcn2XLl3SgQMHNHnyZB04cEC33XZbpc881dX6vv32W/3lL39RXl6eCgoKdO7c\nOX3wwQcV2tTV2ty5Vj11udbZs2fLz89P48aNc9vmeuq7aQLnl+/o5OfnV0jouurKu0qPPPKIa3j5\nlfecJF31Padfu7S0NCUnJ6tdu3YaO3astm7dqkceeaTe1BcUFKSgoCD16NFDkjR69GgdOHBAAQEB\ndb6+/fv3KyoqSrfffrsaNGigBx54QLt3764Xtf2cu3+L9emdwKVLl+rjjz/WP/7xD9eyG63vpgmc\n7t27KycnR3l5eSorK9Py5csVGxvr7W7ViHHzrtL1vOdUF8yZM0f5+fnKzc3VsmXLdO+99+r999+v\nN/UFBASodevWys7OliR9+umnCg8P1/Dhw+t8faGhoUpPT9cPP/wgY4w+/fRThYWF1Yvafs7dv8X6\n8k7gpk2bNG/ePK1bt06/+c1vXMtvuD4PPGeqMz7++GMTHBxs2rdvb+bMmePt7tTYzp07jc1mM127\ndjXdunUz3bp1M5988ok5deqUiYmJqZNDT91JTU11jVKrT/V98cUXpnv37hWGndaX+ubOnesaFv3o\no4+asrKyOl3bQw89ZFq2bGl8fX1NUFCQWbJkyVXrmT17tmnfvr0JCQkxmzZt8mLPr88v63v33XdN\nhw4dTJs2bVznl6efftrV/kbqsxnDx8UAALXvprmlBgDwLgIHAGAJAgcAYAkCBwBgCQIHqIFTp065\nvmbesmVLBQUFyeFwyN/fX88880ytHPPNN9/U0qVL3a5PTk7Wa6+9VivHBmqCUWqAh7z66qvy9/fX\nH/7wh1o7hjFGkZGR2rdvnxo0qPr3E40xcjgc2rdvn3x9fWutL0B1cYUDeNCV/39LTU3V8OHDJUkz\nZsxQfHy8BgwYoLZt22r16tV64YUXFBERoaFDh+rSpUuSpM8//1zR0dHq3r27hgwZUuVPtH/22WcK\nDQ11hc3ChQsVHh6url27auzYsZJ++sRInz59tGXLFitKBq4bgQNYIDc3V9u2bVNycrLGjx8vp9Op\nQ4cOqWHDhtq4caMuXryoZ599VqtWrdL+/fs1YcIEvfTSS5X2s2vXLnXv3t01P3fuXH3xxRc6ePCg\n3n77bdfynj17aseOHZbUBlyvqq/JAXiMzWbT0KFDdcstt6hz584qLy/X4MGDJUldunRRXl6esrOz\nlZmZqYEDB0qSLl++rFatWlXa19GjR9WvXz/XfEREhMaNG6e4uLgKn4lp1aqV6xdygV8LAgewgJ+f\nnyTJx8enwnMVHx8fXbp0ScYYhYeHKy0t7Zr7+vlj140bN2rHjh1av369Zs+erX//+9/y8fFReXl5\nnf46MeonbqkBtex6xuWEhIToxIkTSk9Pl/TTV8CzsrIqtbvzzjtdz3aMMTp69Kiio6OVmJioM2fO\n6Ny5c5J++nLxnXfe6cEqgJojcAAPunJV8fPfRvnl76T88srDZrPJ19dXH330kaZNm6Zu3brJ4XBo\n9+7dlfbfr18/7d+/X9JPv6fzyCOPKCIiQpGRkfr973+vxo0bS5L27t2rAQMG1EqNwI1iWDRQh1wZ\nFr1nzx7XbbpfKi8vV2RkpPbv3+926DTgDVzhAHWIzWbTpEmTKvwY1i9t2LBBo0ePJmzwq8MVDgDA\nElzhAAAsQeAAACxB4AAALEHgAAAsQeAAACxB4AAALPF/Eo3dird4yKcAAAAASUVORK5CYII=\n" }, { "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEMCAYAAADu7jDJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcVHX+x/HXAINoYWl5HVRMbqGoeLeMqCA1lUzNwtSs\nbEvLdTOrvbS7Witq5u5mRZu7muVu62W9YGoklmRWgrfSZFepMAGlzNTUVEDP74/zYwSVVIbhzAzv\n5+PxfQxzZuacz7d8zGe+l/P92gzDMBAREakiP6sDEBER76ZEIiIiLlEiERERlyiRiIiIS5RIRETE\nJUokIiLiEq9KJOnp6URFRREeHs706dOtDkdERACbt9xHcvr0aSIjI1m7di0Oh4OuXbvy73//m+uv\nv97q0EREajWvaZFkZ2cTFhZGaGgodrude++9l7S0NKvDEhGp9QKsDuBSFRYW0qJFC+fzkJAQsrKy\nKrzHZrPVdFgiIj7Blc4pr2mRXGqSMAzDZ8sf//hHy2NQ3VQ/1c/3iqu8JpE4HA7y8/Odz/Pz8wkJ\nCbEwIhERAS9KJF26dCE3N5c9e/ZQXFzMwoULSUpKsjosEZFaz2vGSAICAnjllVfo3bs3p0+f5qGH\nHqp1M7bi4+OtDsFtfLluoPp5O1+vn6u8ZvrvpbDZbNXS3+eJTp+GU6fOlpISsxQXQ2lpxXLmjFlO\nnwbDMEuZsqEmPz/w9z/7GBBwttjtUKcOBAaaj0FB5qOf17RfReRyuPrd6TUtEm9x5gz8+CMcPgxH\njph/ly9Hj8KxYxXL8eNny08/wYkT5uPJk+bfJ0+aSaFOnbNf8GXFbjdLWRLw9z+bIPz8zMRRVsr+\nnRhGxWRTVkpLKyao4mLz2mXJy26HevUqluBguPJK87F+/bPlqqugQYOzpWFDuOYas9SpY+3/IxGp\nXmqRVOLUKTh4EL7/3nwsKz/8ULEcOmQmjbLH48fNL9arrjJL+S/X4OCK5cor4YorzpZ69c4+1q1r\nlqAgs9jtZ1sTVjAM879JWZL76aezSfDYMTNB/vijmTzLStl/k7L/VmX//YKCoFEjszRpYpamTc3S\nvLlZHA7zeIB+6oi4navfnbUmkZSWwoED8O23Zvnuu7PlwIGzjwcOmMnjxAm49lrzF3TZY1lp2PDs\nr+wGDeDqq8/+8g4OVhfQzzEMM+GU/fcu+/9RVGSW/fth3z4oLDT/PzRpAiEh0LIltGoFoaFmue46\n8zEoyOIKifgAJZJybDYbM2cazi+ksi+noiLzl/E110DjxuaXU/nHsl/H5Uv9+ta2AMTsYtu3DwoK\n4Jtvzpa8PLPs3Wsm+TZtIDwcIiLMEhVlHrPbra6BiHdQIinHZrMxfrxB06bQrBnOxyZNzC8cf3+r\nI5TqdPo05OfDV19Bbq5Zdu0yS34+tG4N0dHQti20a2eWiAh1l4mcS4mkHF+etSWX59QpM7Hs3GmW\nL76AHTvMFs7110P79tCpk1k6dDDHpkRqKyWScpRI5GKOHTOTyuefw9atZtm502y9dOsGXbuajx06\nqGtMag8lknKUSKQqSkrM5JKdDZs2QVaWOQbTqRP07Ak33gi9epmTK0R8kRJJOUokUl2OHDETyyef\nwIYNZnJp2RJuvhni483SqJHVUYpUDyWScpRIxF1KSuCzz2D9eli3Dj76yEwsCQlmuflm874gEW+k\nRFKOEonUlNJS2LIF3n8fMjLMLrEuXaBvX7PExGj6uHgPJZJylEjEKsePQ2YmvPuuWU6dgv79YcAA\nuPVWc5UCEU+lRFKOEol4AsOA3bvhnXdgxQqzSywxEe66y0wuV19tdYQiFSmRlKNEIp7o4EEzqSxb\nZrZabrgBhg6FgQPNZXVErKZEUo4SiXi6Y8dg1SpYtAjWrjWnFQ8bZiYV3RQpVlEiKUeJRLzJ0aNm\n19fbb8PHH0O/fjBypDkLTMv5SE1SIilHiUS81YEDsHAhvPWWuYzL8OEwapS5AKWIuymRlKNEIr5g\n5054800zqYSHw8MPw5Ah5j41Iu6gRFKOEon4kpISWLkS/vEP2LgRRoyAMWMgMtLqyMTXuPrdqS2Y\nRDyU3W5OGV61ylxc8oorzDvoExJg+XJzGX0RT6AWiYgXKS6GJUtg1ixzZ8nHH4eHHjK3dRapKrVI\nRGqRwEBIToZPP4V//xs2bza3HX7ySXMzLxErKJGIeKnu3c2pw599Zj7v0MGc7fXFF9bGJbWPRyWS\np556iuuvv54OHTowaNAgjhw54nxt6tSphIeHExUVxZo1ayyMUsSztGgBM2fC11+b2wknJJg3OG7a\nZHVkUlt4VCK5/fbb2blzJ59//jkRERFMnToVgJycHBYuXEhOTg7p6emMHTuWM2fOWBytiGe5+mr4\n9a/NhHLbbTB4MPTpY+6lIuJOAVYHUF5iYqLz7+7du7NkyRIA0tLSSE5Oxm63ExoaSlhYGNnZ2fTo\n0eO8c0yaNMn5d3x8PPHx8e4OW8Sj1KsH48bBI4/AG2/A3XebLZVJk8xthEUyMzPJzMystvN57Kyt\nAQMGkJyczLBhwxg3bhw9evTgvvvuA2D06NH07duXwYMHV/iMZm2JnO/UKTOhTJkCnTubj23bWh2V\neBKvm7WVmJhITEzMeeWdd95xvmfKlCkEBgYybNiwSs9j065BIpekTh149FFzafubboJbbjHX9Prm\nG6sjE19R411bGRkZP/v6vHnzWL16Ne+//77zmMPhIL/c3MaCggIcDofbYhTxRXXrmtOEH34YXnwR\nOnWC0aPhN7/RHiniGo8abE9PT2fGjBmkpaURFBTkPJ6UlMSCBQsoLi4mLy+P3NxcuqmzV6RK6teH\n556DHTvMvVIiI+Hll80lWUSqwqPGSMLDwykuLqZhw4YA9OzZk9TUVABSUlKYO3cuAQEBvPTSS/Tu\n3fu8z2uMROTy7dgBEyaYqw7/9a/mbo5Su2jRxnKUSESqxjDMvVEmTICYGPjLX6B1a6ujkpridYPt\nIuJ5bDa4807IyTGnCHftCn/6kznjS+RilEhExKlOHfjtb801vLZsMVsna9daHZV4OnVtiUilVq2C\nxx4zl6+fOROuvdbqiMQd1LUlIm7Tr5+5CGTDhubd8f/8pzmeIlKeWiQickk2bTL3PmnVCl5/HZo3\ntzoiqS5qkYhIjeja1Rw76dQJOnaEefPUOhGTWiQictk++wxGjYKWLeHvf4cmTayOSFyhFomI1LiO\nHSE72xw36dgR0tKsjkispBaJiLjk44/NRSBvvdW8M/6KK6yOSC6XWiQiYqkbbzS7uoqLzWXqt22z\nOiKpaUokIuKy4GB48034wx/g9tvNlok6B2oPdW2JSLX6+mu4915wOGDuXGjQwOqI5GLUtSUiHuW6\n62DDBnNGV+fO5pRh8W1KJCJS7QID4aWX4IUX4I474G9/U1eXL1PXloi4VW4u3HUXdO8Or74K5fas\nEw+hri0R8Wjh4bBxIxw7Br16aa94X6REIiJud+WVsGCBOQjfo4c5hiK+Q11bIlKj3nsPRoyAlBQY\nPdrqaAS01W4FSiQi3mHXLkhKgj59zH1OAgKsjqh2UyIpR4lExHscOgT33AN2u9ntFRxsdUS1lwbb\nRcQrNWhg7sDYvDncdBMUFFgdkVSVEomIWMZuh9mzYdgw6NnTXLNLvI9HJpKZM2fi5+fHDz/84Dw2\ndepUwsPDiYqKYs2aNRZGJyLVyWaDp5+GP//ZXKfr/fetjkgul8cNceXn55ORkUGrVq2cx3Jycli4\ncCE5OTkUFhaSkJDA7t278fPzyDwoIlVw993QqBEMHQqzZplThcU7eNw38YQJE3jhhRcqHEtLSyM5\nORm73U5oaChhYWFkZ2dbFKGIuEt8vNkieeopcwVh8Q4e1SJJS0sjJCSE9u3bVzi+b98+evTo4Xwe\nEhJCYWHhBc8xadIk59/x8fHEx8e7I1QRcZOYGHOzrNtvh4MH4bnnzO4vqT6ZmZlkZmZW2/lqPJEk\nJiZSVFR03vEpU6YwderUCuMfPzcdzVbJv6zyiUREvFPLlrB+vXmfyeHD5gKQ6smuPuf+yJ48ebJL\n56vxRJKRkXHB41988QV5eXl06NABgIKCAjp37kxWVhYOh4P8/HznewsKCnA4HDUSr4hYo3FjWLcO\n+veH+++HN97QjYueymNvSGzdujVbtmyhYcOG5OTkMGzYMLKzs52D7V9++eV5rRLdkCjie376CQYP\nNveCf/ttc4l6qV4+e0Ni+SQRHR3N0KFDiY6Opm/fvqSmplbatSUivqVePVi+HEpKYMgQOHXK6ojk\nXB7bIqkKtUhEfFdxsXnj4vHjsHQp1K1rdUS+w2dbJCIi5QUGmmtyNWgAd94JJ09aHZGUUSIREa8R\nEABvvQXXXGPuuqhuLs+gRCIiXiUgAObPN1cLHjxYycQTaIxERLxSSYm5DP2ZM7B4sbkApFSNxkhE\npFYq28fk9GnzPpPTp62OqPZSIhERrxUYCIsWQVERjBkD6pCwhhKJiHi1unUhLQ22b4eJE5VMrKBE\nIiJeLzgYVq+GtWthyhSro6l9tHKNiPiEhg0hPR1uvBGaNIGHH7Y6otpDiUREfEazZvDee3DzzeYm\nWQMHWh1R7aBEIiI+JTwc3nkH+vY1WylxcVZH5Ps0RiIiPqdzZ3Ol4Lvvhv/+1+pofJ8SiYj4pIQE\nmDED7rjDnB4s7qOuLRHxWSNHwp495uZYH35o7mki1U9LpIiITzMMePBB+P57c18Tf3+rI/I8WiJF\nRORn2GwwezacOAFPPWV1NL5JiUREfJ7dbi7suGoV/P3vVkfjezRGIiK1QoMG5rTgm26CsDC45Rar\nI/Idl9wiOXnyJKe08L+IeLGICHNa8L33Qm6u1dH4jkoTyZkzZ1i6dCl33303DoeD1q1b06pVKxwO\nB0OGDGHZsmUa2BYRr3PbbTBpkrld79GjVkfjGyqdtRUXF8dNN91EUlISHTt2pE6dOgCcOnWKbdu2\nsWLFCjZs2MD69etrNOCfo1lbInKpHnkEvvsOliwBv1o+Wuzqd2elieTUqVPO5FGZS3lPTVIiEZFL\ndeoU3Hor9OkDv/+91dFYy22J5Icffqj0Q3Xq1OEKD7yzR4lERC7H/v3QtSukpkJSktXRWMdtiSQ0\nNBSbzXbBD5WWlmIYBtOmTWP48OFVvviFvPzyy6SmpuLv70+/fv2YPn06AFOnTmXu3Ln4+/sza9Ys\nbr/99vM+q0QiIpcrKwsGDICPPzYXfKyN3JZIfs4PP/zA6dOniYuL47/VuCLaunXrSElJYfXq1djt\ndg4cOECjRo3Iyclh2LBhbNq0icLCQhISEti9ezd+53RsKpGISFX87W9mq2TjRqhXz+poap7b7mwf\nPXr0BY/n5+cTFxdHo0aNnK2F6vLaa6/xm9/8BrvdDkCjRo0ASEtLIzk5GbvdTmhoKGFhYWRnZ1fr\ntUWk9nrkEejYER59VFv1VkWlNySWlJQwfPhw3nrrLecv/5ycHPr3788f/vAHAJKquVMxNzeX9evX\n89vf/pagoCBefPFFunTpwr59++jRo4fzfSEhIRQWFl7wHJMmTXL+HR8fT3x8fLXGKCK+x2YzWyU9\nesDrr5sJxZdlZmaSmZlZbeerNJG88cYbPProo9xzzz0sWLCArKws7rnnHl577TX69+9f5QsmJiZS\ndIE1nadMmUJpaSmHDh1i48aNbNq0iaFDh/L1119f8DyVjd+UTyQiIpeqXj1zKvCNN0KXLmbxVef+\nyJ48ebJL56s0kfj5+TF79mzGjRvHzTffzN69e1m0aBE9e/Z06YIZGRmVvvbaa68xaNAgALp27Yqf\nnx/ff/89DoeD/Px85/sKCgpwOBwuxSEicq7wcHOs5J57YOtWuOoqqyPyDpUOto8bN845APP222/T\nqVMnoqKizA/ZbMyaNavag3n99dfZt28fkydPZvfu3SQkJLB3717nYHt2drZzsP3LL788r1WiwXYR\nqQ5jx8KBA7Bokdnt5etc/e6stEXSuXNn5xd1+b8Nw6i0W8lVDz74IA8++CAxMTEEBgby1ltvARAd\nHc3QoUOJjo4mICCA1NRUt8UgIvLnP0P37rVjvKQ6aGMrEZEL2LULevWCtWuhQwero3Evt03/ffDB\nB9m0aVOlH8zKyuKBBx6o8oVFRDxZZCT85S/meMlPP1kdjWertEWyY8cOZsyYwcaNG4mMjKRZs2YY\nhkFRURG7du3ihhtuYOLEibRr166mY66UWiQiUt2GD4crrzSnB/sqt9/ZXrba7zfffIPNZqNVq1Z0\n6NCBoKCgKl/UXZRIRKS6HTkCsbFm6+TOO62Oxj0sWSLFUymRiIg7fPIJDBpkTglu3tzqaKqf28ZI\nRETEdMMN5uyt+++HM2esjsbzKJGIiFyCZ5+FY8fglVesjsTzVKlrq6SkxLmwoidR15aIuFNuLvTs\nCRs2wP/fn+0T3Na11atXL+ffI0aMqPBa9+7dq3xBERFvFR4Ozz0HI0dCaanV0XiOShPJ8ePHnX9/\n8cUXFV7Tr34Rqa3GjIGrr4apU62OxHNojERE5DLYbDB3Lrz8sjmLS35mra0jR46wdOlSDMNw/g04\nn4uI1FYhIeZ6XKNGwebNEBhodUTWqnSwfdSoUT+7UOMbb7zh/ugukwbbRaSmGAYkJUHnzuDt2yDp\nhsRylEhEpCYVFpp3vWdkePfCjjWSSFauXElOTg4nT550HivbbteTKJGISE174w1zvCQrCzzwrohL\n4vY72x955BEWLVrErFmzMAyDRYsW8c0331T5giIivmTUKGjcGF54wepIrHPRFklMTAw7duygffv2\nbN++nWPHjtGnTx82bNhQUzFeMrVIRMQKe/dCp07ee6Oi21skdevWBaBevXoUFhYSEBBAUVFRlS8o\nIuJrWraEP/wBfvGL2rkW10UTSf/+/Tl06BBPPfUUnTt3JjQ0lOTk5JqITUTEazz2GBQXw5w5VkdS\n8y7atXXy5Enn3iMnT550Ptd+JCIiFW3fDrfdZj42a2Z1NJfO7V1bN9xwg/PvoKAgrr766grHRETE\n1L49PPwwjB9vdSQ1q9I72/fv38++ffv46aef2Lp1q/OmxB9//JGftIGxiMgF/f73ZkJZtQr69bM6\nmppRaSJ57733mDdvHoWFhTz55JPO48HBwaSkpNRIcCIi3qZuXXj1VXMjrFtugXr1rI7I/S46RrJk\nyRIGDx5cU/G4RGMkIuIp7rkHIiLg+eetjuTi3HZn+8yZM50nL7/OVtnzCRMmVPmilcnOzubxxx+n\npKSEgIAAUlNT6dq1KwBTp05l7ty5+Pv7M2vWLG6//fbzK6NEIiIeYt8+c9mUDRsgMtLqaH6eq9+d\nlXZtHT169LyFGt3t6aef5vnnn6d37968++67PP3006xbt46cnBwWLlxITk4OhYWFJCQksHv3bvz8\ntAq+iHim5s3hd78zpwVnZJjLz/uqShPJJAuWs2zWrJlzifrDhw/jcDgASEtLIzk5GbvdTmhoKGFh\nYWRnZ9OjR48aj1FE5FI9/jjMmwcLFoAv335XaSIps2vXLsaOHUtRURE7d+5k+/btrFixgmeffbba\ng5k2bRq9evVi4sSJnDlzhk8//RSAffv2VUgaISEhFBYWXvAc5RNgfHw88fHx1R6niMilCAiA1FQY\nOhQGDIArr7Q6IlNmZiaZmZnVdr6LDrbHxcUxY8YMHn30UbZt24ZhGLRr146dO3dW6YKJiYkXXGJl\nypQpzJo1i8cee4y77rqLxYsXM3v2bDIyMhg3bhw9evTgvvvuA2D06NHccccdDBo0qGJlNEYiIh5o\n5EhwODx3e163jZGU+emnn+jevXuFC9pdWCs5IyOj0teGDx/O2rVrARgyZAijR48GwOFwkJ+f73xf\nQUGBs9tLRMTTTZ8OMTHw4IMQHm51NNXvoqPVjRo14ssvv3Q+/89//kMzN937HxYWxocffgjABx98\nQEREBABJSUksWLCA4uJi8vLyyM3NpVu3bm6JQUSkujVrBs88A088YXUk7nHRFskrr7zCL37xC/73\nv//RvHlzWrduzb/+9S+3BDN79mwee+wxTp06Rd26dZk9ezYA0dHRDB06lOjoaOe04JqeUSYi4orx\n4+Ef//DNO94veavd48ePc+bMGYKDg90dU5VpjEREPFl6OowbB198AXXqWB3NWW69IbH8Rc7ljhsS\nXaVEIiKerl8/c4VgT/oKdfsNibt27WLTpk0kJSVhGAYrV67U+ISISBW9+CLExZkzua691upoqsdF\nu7ZuuukmVq9e7ezSOnr0KHfccQcfffRRjQR4OdQiERFvMG6c+fjyy9bGUcbt+5F89913Fab72u12\nvvvuuypfUESktps0CRYuhP/+1+pIqsdFZ22NHDmSbt26MWjQIAzDYPny5dx///01EZuIiE+65hr4\nzW9g4kRzFpe3u6RZW1u2bOGjjz7CZrMRFxdHbGxsTcR22dS1JSLeorgY2rY1l1BJTLQ2FrfN2vJG\nSiQi4k2WLIE//Qm2bAErFzN3+xiJiIi4x6BBEBQEb79tdSSuUYtERMRCH30EI0bA//5nJhUrqEUi\nIuLFbrrJ3Enx1VetjqTq1CIREbFYTg7Ex8OuXdCgQc1fXy0SEREvFx0Nd97pufuVXIxaJCIiHqCw\n0NyzZMcOcxOsmqTpv+UokYiIN3vqKTh2DF57rWavq0RSjhKJiHiz77+HqCjIyoI2bWruuhojERHx\nEddeC7/8pbkWlzdRi0RExIMcPQphYfD++9CuXc1cUy0SEREfEhxs7u/+7LNWR3Lp1CIREfEwJ05A\neDgsWwZdu7r/emqRiIj4mLp14be/9Z6xErVIREQ80KlTZqtk8WLo3t2911KLRETEB9Wp4z2tErVI\nREQ8VHGx2SpZsAB69nTfdbyyRbJ48WLatm2Lv78/W7durfDa1KlTCQ8PJyoqijVr1jiPb9myhZiY\nGMLDwxk/fnxNhywiUuMCA+F3v4M//tHqSH6eJYkkJiaGZcuWERcXV+F4Tk4OCxcuJCcnh/T0dMaO\nHevMkmPGjGHOnDnk5uaSm5tLenq6FaGLiNSoUaMgNxc+/tjqSCpnSSKJiooiIiLivONpaWkkJydj\nt9sJDQ0lLCyMrKws9u/fz9GjR+nWrRsAI0eOZPny5TUdtohIjStrlTz/vNWRVC7A6gDK27dvHz16\n9HA+DwkJobCwELvdTkhIiPO4w+GgsLDwgueYVG5kKj4+nvj4eHeFKyJSI0aOhOeeg+xs+P/f0y7J\nzMwkMzPT9RP9P7clksTERIqKis47npKSwoABA9x12QqJRETEFwQGmne7T5kCaWmun+/cH9mTJ092\n6XxuSyQZGRmX/RmHw0F+fr7zeUFBASEhITgcDgoKCiocd9T0gv0iIhZ68EEzkXz+ubk1ryex/D6S\n8lPOkpKSWLBgAcXFxeTl5ZGbm0u3bt1o2rQp9evXJysrC8MwmD9/PgMHDrQwahGRmlW3Ljz5pJlM\nPI0liWTZsmW0aNGCjRs30q9fP/r27QtAdHQ0Q4cOJTo6mr59+5KamorNZgMgNTWV0aNHEx4eTlhY\nGH369LEidBERyzz6KHz4Ifz3v1ZHUpFuSBQR8SIpKWYimT+/+s6pHRLLUSIREV935Ahcdx1s3gyt\nW1fPOb3yznYREamaq66CX/wCZs60OpKz1CIREfEyRUUQHQ3/+x80buz6+dQiERGpZZo2hXvugZdf\ntjoSk1okIiJe6KuvzH1K8vLM7XldoRaJiEgt1KYNJCTA7NlWR6IWiYiI19q2Dfr3h6+/NjfCqiq1\nSEREaqnYWGjXDt5+29o4lEhERLzYxInmVGArO2OUSEREvFhCAvj7w3vvWReDEomIiBez2WDCBGtv\nUNRgu4iIlysuNpdLWb26akvMa7BdRKSWCwyEcePgz3+25vpqkYiI+IBDh8x7S3bsgMvd908tEhER\noUEDGD7cmmVT1CIREfERZcumfPMNXHHFpX9OLRIREQHMrq0bboB//rNmr6tEIiLiQ371K5g1q2Zv\nUFQiERHxIbfcAn5+sHZtzV1TiURExIfYbDB+PLz0Ug1eU4PtIiK+5cQJaNUKPv4YwsMv/n4NtouI\nSAV168Lo0TU3FVgtEhERH1RQADEx5lTg+vV//r1e2SJZvHgxbdu2xd/fny1btjiPZ2Rk0KVLF9q3\nb0+XLl1Yt26d87UtW7YQExNDeHg448ePtyJsERGvERJirgz81lvuv5YliSQmJoZly5YRFxeHzWZz\nHm/UqBErV65k+/btvPnmm4wYMcL52pgxY5gzZw65ubnk5uaSnp5uRegiIl7jsccgNdX9U4EtSSRR\nUVFEREScd7xjx440bdoUgOjoaE6cOEFJSQn79+/n6NGjdOvWDYCRI0eyfPnyGo1ZRMTb3HyzORW4\nXOeOWwS49/RVt2TJEjp37ozdbqewsJCQkBDnaw6Hg8LCwgt+btKkSc6/4+PjiY+Pd3OkIiKeyWaD\nsWPh1Vfh1lvPHs/MzCQzM7ParuO2RJKYmEhRUdF5x1NSUhgwYMDPfnbnzp38+te/JiMj47KvWz6R\niIjUdiNGwLPPmoPvZb/Hz/2RPXnyZJeu4bZEUpUkAFBQUMCgQYOYP38+rVu3BswWSEFBQYX3OC53\nnWQRkVooOBiGDYPZs+G559xzDcvvIyk/5ezw4cP069eP6dOn07NnT+fxZs2aUb9+fbKysjAMg/nz\n5zNw4EArwhUR8Tpjx8Lf/27upOgOliSSZcuW0aJFCzZu3Ei/fv3o27cvAK+88gpfffUVkydPJjY2\nltjYWL7//nsAUlNTGT16NOHh4YSFhdGnTx8rQhcR8TrR0XD99bB0qXvOrxsSRURqgUWL4LXXLjyD\ny9XvTiUSEZFaoLgYWraEDz+EyMiKr3nlne0iIlKzAgNh1Chz0L26qUUiIlJLfPUV9OgB+fkQFHT2\nuFokIiJySdq0gdhYWLKkes+rRCIiUos88gi8/nr1nlNdWyIitUhJiTno/v775rRgUNeWiIhcBrsd\nHnqoegfd1SIREall9uyBLl3M9beCgtQiERGRyxQaag66V9duHEokIiK10EMPwT/+UT3nUteWiEgt\ndPIktGgBosrNAAAKMElEQVQB2dlw3XXq2hIRkcsUFGQuL//GG66fSy0SEZFaavt26NcPCgrUIhER\nkSpo3x6aNXP9PEokIiK12EMPuX4OdW2JiNRiP/4IV12l/UiclEhERC6fbkgUERFLKZGIiIhLlEhE\nRMQlSiQiIuISJRIREXGJEokXyczMtDoEt/HluoHq5+18vX6usiSRLF68mLZt2+Lv78/WrVvPe33v\n3r1ceeWVzJw503lsy5YtxMTEEB4ezvjx42syXI/hy/+YfbluoPp5O1+vn6ssSSQxMTEsW7aMuLi4\nC74+YcIE+vXrV+HYmDFjmDNnDrm5ueTm5pKenl4ToYqIyEVYkkiioqKIiIi44GvLly/nuuuuI7ps\nM2Fg//79HD16lG7dugEwcuRIllfXjiwiIuIaw0Lx8fHGli1bnM+PHj1q9OzZ0zh+/LgxadIk48UX\nXzQMwzA2bdpkJCQkON+3fv16o3///uedD1BRUVFRqUJxRQBukpiYSFFR0XnHU1JSGDBgwAU/M2nS\nJJ544gnq1atXpdv1q/IZERFxjdsSSUZGxmV/Jjs7myVLlvD0009z+PBh/Pz8qFu3LoMGDaKgoMD5\nvoKCAhwOR3WGKyIiVeS2RHKpyrci1q9f7/x78uTJBAcHM3bsWADq169PVlYW3bp1Y/78+fzyl7+s\n8VhFROR8lgy2L1u2jBYtWrBx40b69etH3759L/qZ1NRURo8eTXh4OGFhYfTp06cGIhURkYtyaYTF\ng7z77rtGZGSkERYWZkybNs3qcFy2d+9eIz4+3oiOjjbatm1rvPTSS4ZhGMbBgweNhIQEIzw83EhM\nTDQOHTpkcaRVV1paanTs2NE5ccKX6nbo0CFj8ODBRlRUlHH99dcbGzdu9Kn6paSkGNHR0Ua7du2M\n5ORk4+TJk15dvwceeMBo3Lix0a5dO+exn6tPSkqKERYWZkRGRhrvvfeeFSFflgvVb+LEiUZUVJTR\nvn1746677jIOHz7sfO1y6+cTiaS0tNRo06aNkZeXZxQXFxsdOnQwcnJyrA7LJfv37ze2bdtmGIY5\nmy0iIsLIyckxnnrqKWP69OmGYRjGtGnTjGeeecbKMF0yc+ZMY9iwYcaAAQMMwzB8qm4jR4405syZ\nYxiGYZSUlBiHDx/2mfrl5eUZrVu3Nk6ePGkYhmEMHTrUmDdvnlfXb/369cbWrVsrfNFWVp+dO3ca\nHTp0MIqLi428vDyjTZs2xunTpy2J+1JdqH5r1qxxxv3MM8+4VD+fSCSffPKJ0bt3b+fzqVOnGlOn\nTrUwoup35513GhkZGUZkZKRRVFRkGIaZbCIjIy2OrGry8/ON2267zfjggw+cLRJfqdvhw4eN1q1b\nn3fcV+p38OBBIyIiwvjhhx+MkpISo3///saaNWu8vn55eXkVvmgrq09KSkqFXo/evXsbn376ac0G\nWwXn1q+8pUuXGvfdd59hGFWrn0+stVVYWEiLFi2cz0NCQigsLLQwouq1Z88etm3bRvfu3fn2229p\n0qQJAE2aNOHbb7+1OLqqeeKJJ5gxYwZ+fmf/CfpK3fLy8mjUqBEPPPAAnTp14uGHH+b48eM+U7+G\nDRvy5JNP0rJlS5o3b87VV19NYmKiz9SvTGX12bdvHyEhIc73+cL3zdy5c7njjjuAqtXPJxKJzWaz\nOgS3OXbsGIMHD+all14iODi4wms2m80r675y5UoaN25MbGxspff+eGvdAEpLS9m6dStjx45l69at\nXHHFFUybNq3Ce7y5fl999RV//etf2bNnD/v27ePYsWP885//rPAeb67fhVysPt5c1ylTphAYGMiw\nYcMqfc/F6ucTicThcJCfn+98np+fXyGjequSkhIGDx7MiBEjGDhwIGD+Miq70XP//v00btzYyhCr\n5JNPPmHFihW0bt2a5ORkPvjgA0aMGOETdQPzF1xISAhdu3YFYMiQIWzdupWmTZv6RP02b97MDTfc\nwDXXXENAQACDBg3i008/9Zn6lans3+O53zfefF/bvHnzWL16Nf/617+cx6pSP59IJF26dCE3N5c9\ne/ZQXFzMwoULSUpKsjoslxiGwUMPPUR0dDS/+tWvnMeTkpJ48803AXjzzTedCcabpKSkkJ+fT15e\nHgsWLODWW29l/vz5PlE3gKZNm9KiRQt2794NwNq1a2nbti0DBgzwifpFRUWxceNGTpw4gWEYrF27\nlujoaJ+pX5nK/j0mJSWxYMECiouLycvLIzc317kOoDdJT09nxowZpKWlERQU5DxepfpV0ziO5Vav\nXm1EREQYbdq0MVJSUqwOx2UfffSRYbPZjA4dOhgdO3Y0OnbsaLz77rvGwYMHjdtuu80rp1heSGZm\npnPWli/V7bPPPjO6dOlSYWqlL9Vv+vTpzum/I0eONIqLi726fvfee6/RrFkzw263GyEhIcbcuXN/\ntj5Tpkwx2rRpY0RGRhrp6ekWRn5pzq3fnDlzjLCwMKNly5bO75cxY8Y433+59bMZhhaoEhGRqvOJ\nri0REbGOEomIiLhEiURERFyiRCIiIi5RIhGpxMGDB4mNjSU2NpZmzZoREhJCbGwswcHBPP744265\n5iuvvMK8efMqfX3FihU8//zzbrm2SFVp1pbIJSjbH2fChAluu4ZhGHTq1IlNmzYREHDhrYIMwyA2\nNpZNmzZht9vdFovI5VCLROQSlf3myszMdG4XPWnSJO6//37i4uIIDQ1l6dKlTJw4kfbt29O3b19K\nS0sB2LJlC/Hx8XTp0oU+ffpccBvqjz/+mKioKGcSmTVrFm3btqVDhw4kJycD5lIVPXv2ZM2aNTVR\nZZFLokQi4qK8vDzWrVvHihUrGD58OImJiWzfvp26deuyatUqSkpKGDduHEuWLGHz5s088MAD/O53\nvzvvPBs2bKBLly7O59OnT+ezzz7j888/5/XXX3ce79atW4XdREWsZvlWuyLezGaz0bdvX/z9/WnX\nrh1nzpyhd+/eAMTExLBnzx52797Nzp07SUhIAOD06dM0b978vHPt3buXXr16OZ+3b9+eYcOGMXDg\nwArLjTRv3pz09HQ310zk0imRiLgoMDAQAD8/vwrjFn5+fpSWlmIYBm3btuWTTz656LnKD1muWrWK\n9evX88477zBlyhS++OIL/Pz8OHPmjFevNiu+R11bIi64lLkqkZGRHDhwgI0bNwLmqs45OTnnva9V\nq1bOsRPDMNi7dy/x8fFMmzaNI0eOcOzYMcBcibZVq1bVWAsR1yiRiFyislZA+b0pzt2n4tyWgs1m\nw26385///IdnnnmGjh07Ehsby6effnre+Xv16sXmzZsBc0+TESNG0L59ezp16sT48eOpX78+ANnZ\n2cTFxbmljiJVoem/Ih6ibPpvVlaWs7vsXGfOnKFTp05s3ry50inCIjVNLRIRD2Gz2Xj44YcrbDJ0\nrpUrVzJkyBAlEfEoapGIiIhL1CIRERGXKJGIiIhLlEhERMQlSiQiIuISJRIREXGJEomIiLjk/wAf\njNfcbjy1VQAAAABJRU5ErkJggg==\n" } ], "prompt_number": 7 } ] } ] }