{ "metadata": { "name": "Chapter 14" }, "nbformat": 2, "worksheets": [ { "cells": [ { "cell_type": "markdown", "source": [ "# Chapter 14 :- Chemical and Phase Equilibrium" ] }, { "cell_type": "markdown", "source": [ "## Example 14.1 Page no-688" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "# Given:-", "# The reaction is CO + .5O2 ----> CO2", "# Part(a)", "T = 298.0 # in kelvin", "Rbar = 8.314 # universal gas constant in SI units", "# From table A-25", "", "hfbarCO2 = -393520.0 # in kj/kmol", "hfbarCO = -110530.0 # in kj/kmol", "hfbarO2 = 0 # in kj/kmol", "deltahbarCO2 = 0 # in kj/kmol", "deltahbarCO = 0 # in kj/kmol", "deltahbarO2 = 0 # in kj/kmol", "sbarCO2 = 213.69 # in kj/kmol.K", "sbarCO = 197.54 # in kj/kmol.K", "sbarO2 = 205.03 # in kj/kmol.K", "# From table A-27", "logKtable = 45.066", "# Calculations", "import math", "deltaG = (hfbarCO2-hfbarCO-.5*hfbarO2) + (deltahbarCO2-deltahbarCO-.5*deltahbarO2) - T*(sbarCO2-sbarCO-.5*sbarO2)", "lnK = -deltaG/(Rbar*T)", "logK = (1/math.log(10))*lnK", "# Results", "print '-> Part(a) the value of equilibrium constant expressed as log10K is: '", "print logK", "print '-> The value of equilibrium constant expressed as log10K from table A-27 is: '", "print logKtable", "", "# Part(b)", "T = 2000.0 # in kelvin", "# From table A-23", "hfbarCO2 = -393520.0 # in kj/kmol", "hfbarCO = -110530.0 # in kj/kmol", "hfbarO2 = 0 # in kj/kmol", "deltahbarCO2 = 100804-9364 # in kj/kmol", "deltahbarCO = 65408 - 8669 # in kj/kmol", "deltahbarO2 = 67881 - 8682 # in kj/kmol", "sbarCO2 = 309.210 # in kj/kmol.K", "sbarCO = 258.6 # in kj/kmol.K", "sbarO2 = 268.655 # in kj/kmol.K", "# Calculations", "deltaG = (hfbarCO2-hfbarCO-.5*hfbarO2) + (deltahbarCO2-deltahbarCO-.5*deltahbarO2) - T*(sbarCO2-sbarCO-.5*sbarO2)", "lnK = -deltaG/(Rbar*T)", "logK = (1/math.log(10))*lnK", "# From table A-27", "logKtable = 2.884", "# Results", "print '-> Part(b) the value of equilibrium constant expressed as log10K is: '", "print logK", "print '-> The value of equilibrium constant expressed as log10K from table A-27 is: '", "print logKtable" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "-> Part(a) the value of equilibrium constant expressed as log10K is: ", "45.094010685", "-> The value of equilibrium constant expressed as log10K from table A-27 is: ", "45.066", "-> Part(b) the value of equilibrium constant expressed as log10K is: ", "2.88485359375", "-> The value of equilibrium constant expressed as log10K from table A-27 is: ", "2.884" ] } ], "prompt_number": 10 }, { "cell_type": "markdown", "source": [ "## Example 14.2 Page no-690" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "# Given:-", "# Applying conservation of mass, the overall balanced chemical reaction equation is", "# CO + .5O2 -------> zCO + (z/2)O2 + (1-z)CO2", "", "# At 2500 K, Table A-27 gives", "log10K = -1.44", "# Part(a)", "p = 1.0 # in atm", "# Calculations", "import math", "K = (10.0)**(log10K) # equilibrium constant", "# Solving equation K = (z/(1-z))*(2/(2 + z))^.5 *(p/1)^.5 gives", "z = 0.129", "yCO = 2.0*z/(2.0 + z)", "yO2 = z/(2.0 + z)", "yCO2 = 2.0*(1.0 - z)/(2.0 + z)", "", "# Results", "print '-> Part(a) mole fraction of CO is: ',round(yCO,3)", "print '-> Mole fraction of O2 is: ',round(yO2,3)", "print '-> Mole fraction of CO2 is: ',round(yCO2,3)", "", "# Part(b)", "p = 10.0 # in atm", "# Solving equation K = (z/(1-z))*(2/(2 + z))^.5 *(p/1)^.5 gives", "z = 0.062", "yCO = 2.0*z/(2.0 + z)", "yO2 = z/(2.0 + z)", "yCO2 = 2.0*(1.0 - z)/(2.0 + z)", "", "# Results", "print '-> Part(b) mole fraction of CO is: ',round(yCO,3)", "print '-> Mole fraction of O2 is: ',round(yO2,3)", "print '-> Mole fraction of CO2 is: ',round(yCO2,3)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "-> Part(a) mole fraction of CO is: 0.121", "-> Mole fraction of O2 is: 0.061", "-> Mole fraction of CO2 is: 0.818", "-> Part(b) mole fraction of CO is: 0.06", "-> Mole fraction of O2 is: 0.03", "-> Mole fraction of CO2 is: 0.91" ] } ], "prompt_number": 11 }, { "cell_type": "markdown", "source": [ "## Example 14.3 Page no-691" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "# Given:-", "yCO = 0.298", "p = 1 # in atm", "pref = 1 # in atm", "# With this value of K, table A-27 gives", "T = 2881", "", "# Calculations", "# Solving yCO = 2z/(2 + z)", "z = 2*yCO/(2 - yCO)", "K = (z/(1-z))*(z/(2 + z))**.5*(p/pref)**.5", "", "# Result", "print '-> The temperature T of the mixture in kelvin is: ',T" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "-> The temperature T of the mixture in kelvin is: 2881" ] } ], "prompt_number": 12 }, { "cell_type": "markdown", "source": [ "## Example 14.4 Page no-692" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "# Given:-", "# For a complete reaction of CO with the theoretical amount of air", "# CO + .5 O2 + 1.88N2 -----> CO2 + 1.88N2 ", "# Accordingly, the reaction of CO with the theoretical amount of air to form CO2, CO, O2, and N2 is", "# CO + .5O2 + 1.88N2 ---> zCO + z/2 O2 + (1-z)CO2 + 1.88N2", "", "K = 0.0363 # equilibrium constant the solution to Example 14.2", "p =1.0 # in atm", "pref = 1.0 # in atm", "", "# Calculations", "# Solving K = (z*z^.5/(1-z))*((p/pref)*2/(5.76+z))^.5 gives", "z = 0.175", "yCO = 2.0*z/(5.76 + z)", "yO2 = z/(5.76 + z)", "yCO2 = 2.0*(1.0-z)/(5.76 + z)", "yN2 = 3.76/(5.76 + z)", "", "# Results", "print '-> The mole fraction of CO is: ',round(yCO,3)", "print '-> The mole fraction of O2 is: ',round(yO2,3)", "print '-> The mole fraction of CO2 is: ',round(yCO2,3)", "print '-> The mole fraction of N2 is: ',round(yN2,3)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "-> The mole fraction of CO is: 0.059", "-> The mole fraction of O2 is: 0.029", "-> The mole fraction of CO2 is: 0.278", "-> The mole fraction of N2 is: 0.634" ] } ], "prompt_number": 13 }, { "cell_type": "markdown", "source": [ "## Example 14.5 Page no-692" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "# Given:-", "# Applying the conservation of mass principle, the overall dissociation reaction is described by", "# CO2 ----> zCO2 + (1-z)CO + ((1-z)/2)O2", "", "p = 1.0 # in atm", "pref = 1.0 # in atm", "# At 3200 K, Table A-27 gives", "log10k = -.189", "# Solving k = ((1-z)/2)*((1-z)/(3-z))^.5 gives", "z = 0.422", "", "# Calculations", "k = 10**log10k", "# From tables A-25 and A-23", "hfbarCO2 = -393520.0 # in kj/kmol", "deltahbarCO2 = 174695-9364 # in kj/kmol", "hfbarCO = -110530.0 # in kj/kmol", "deltahbarCO = 109667-8669 # in kj/kmol", "hfbarO2 = 0 # in kj/kmol", "deltahbarO2 = 114809-8682 # in kj/kmol", "hfbarCO2r = -393520.0 # in kj/kmol", "deltahbarCO2r = 0 # in kj/kmol", "", "Qcvdot = 0.422*(hfbarCO2 + deltahbarCO2) + 0.578*(hfbarCO + deltahbarCO) + 0.289*(hfbarO2 + deltahbarO2)- (hfbarCO2r + deltahbarCO2r) ", "", "# Result", "print '-> The heat transfer to the reactor, in kJ per kmol of CO2 entering is: '", "print Qcvdot" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "-> The heat transfer to the reactor, in kJ per kmol of CO2 entering is: ", "322385.449" ] } ], "prompt_number": 14 }, { "cell_type": "markdown", "source": [ "##Example 14.8 Page no-701" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib inline" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "", "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].", "For more information, type 'help(pylab)'." ] } ], "prompt_number": 15 }, { "cell_type": "code", "collapsed": false, "input": [ "", "# Given:-", "# The ionization of cesium to form a mixture of Cs, Cs+, and e-\u0005 is described by", "# Cs ----> (1-z)Cs + zCs+ + Ze-", "", "K = 15.63", "z = 0.95", "pref =1 # in atm", "# Calculation", "p = pref*K*((1-z**2)/z**2)", "", "# Results", "print '-> The pressure if the ionization of CS is 95 percent complete is: ',p,'atm'", "", "x = []", "y = []", "from numpy import linspace ", "from pylab import plot, show ", "x = linspace(0,10,100)", "for i in range(0,100):", " y.append(i)", " y[i]= 100*((1/(1+x[i]/K))**0.5)", "", "plot(x,y)", "xlabel(\"Pressure (atm)\")", "ylabel(\"Ionization\")", "show()" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "-> The pressure if the ionization of CS is 95 percent complete is: 1.68855955679 atm" ] }, { "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEMCAYAAADEXsFmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8z/X///Hbmy3L2BbZJnMKi9nYZk1cPpi0SUVyKirT\nvnwqn+pTOikJFabyCckhx3VkSfj4oZLWR2kfp9H6OKYtYiizwpy2vX5/PPVGaDbb+/Xedr9eLi7Z\n23vv9733pfbwPD2eDsuyLEREpMKrZHcAERFxDyoIIiICqCCIiMgZKggiIgKoIIiIyBkqCCIiApRC\nQUhISCAgIICwsDDnY9nZ2cTGxhIcHExcXBw5OTnOPxs7dixNmjShadOmfPbZZyUdR0RELlOJF4QH\nHniAFStWnPdYYmIisbGx7Nixg06dOpGYmAjAli1bmD9/Plu2bGHFihUMHjyYgoKCko4kIiKXocQL\nQrt27bjmmmvOe2zJkiXEx8cDEB8fz6JFiwBYvHgxffv2xdPTkwYNGtC4cWPWrl1b0pFEROQyeLji\nTQ4cOEBAQAAAAQEBHDhwAIB9+/Zx0003OZ8XFBTE3r17z/teh8PhiogiIuVOURtRuHxR2eFw/OUP\n+Yv92aJFFtdea7FggYVlVdxfI0aMsD2Du/zSZ6HPQp/FX/8qDpeMEAICAti/fz+BgYFkZWXh7+8P\nQJ06ddizZ4/zeT///DN16tS54PvvvBPq1jX/3LkTnn0WNHAQESlZLhkhdOvWjaSkJACSkpLo3r27\n8/F58+Zx6tQpMjIy2LlzJ9HR0Rd9jchISE2F5GRISICTJ12RXESk4ijxgtC3b1/atm3L9u3bqVu3\nLnPmzGHo0KF8/vnnBAcHs2rVKoYOHQpASEgIffr0ISQkhC5dujBlypS/nE6qUwdWr4acHIiNhV9/\nLen07i0mJsbuCG5Dn8VZ+izO0mdxZRxWcSebXMThcFwwH1ZQAMOGmdHCv/8NISE2hRMRcVMX+9lZ\nmDJ5UrlSJRg7Fl58EWJi4E/HHkREpBjK5AjhXF9/Db17w9Ch8NhjWmwWEYHijRDKfEEAyMyErl2h\nTRuYPBmuuso12URE3FWFmTL6swYNYM0a2L8f4uIq3mKziEhJKBcFAaB6dVi0CNq2heho+P57uxOJ\niJQt5WLK6M/efx+eeAJmzoRu3UopmIiIG6uwawgXs3Yt9OgBDz8Mzz+vxWYRqVhUEP5k3z646y6z\nxjB7Nnh7l2w2ERF3VWEXlS/luuvgq6/Aywv+9jf46Se7E4mIuK9yXRDAFIO5c+H+++Gmm0yBEBGR\nC5XrKaM/+/xzuO8+c8J58GCtK4hI+aU1hMuwa5dpo926Nbz1lhlBiIiUN1pDuAyNGsG338Jvv0GH\nDvCnC9pERCqsClcQwBxi++gjM1KIjoZvvrE7kYiI/SrclNGfLV8OAwbAiBHmzILWFUSkPNAaQjH9\n8IM5r3DjjTBlitYVRKTs0xpCMTVubNYVjh2Ddu1g9267E4mIuJ4KwhnVqsG8edCnj1lX+OILuxOJ\niLiWpowuYtUquPdeGDIEnnpK6woiUvZoDaEE7d4NvXpBvXowZ47ZmSQiUlZoDaEE1asH//kP1Kxp\nppC2brU7kYhI6VJB+AteXjB9OjzzDLRvD8nJdicSESk9mjK6TBs3mimkO++EV18FT0+7E4mIXJqm\njEpRZCRs2AA7d0LHjmp5ISLljwpCEVxzDSxZArfdZg6xffml3YlEREqOpoyKaeVKc8fCo4/C0KFQ\nSaVVRNyItp262M8/w913g58fvPsu1KhhdyIREUNrCC4WFAQpKdC0qVljWLvW7kQiIsWngnCFPD1h\n/Hh44w244w54801w0wGNiMhf0pRRCdq1y/RCuv56mDkTfH3tTiQiFZWmjGzWqJG5bKdWLWjVypxd\nEBEpK1QQSpiXl7lTYfRo6NwZpk7VFJKIlA2aMipFO3dC795www3w9tuaQhIR19GUkZtp0sRcvFOj\nhplC2rDB7kQiIpemglDKrr7aTBuNGQO33qpdSCLivlxaECZOnEhYWBihoaFMnDgRgJEjRxIUFERE\nRAQRERGsWLHClZFcpk8fM1pISoIePeDwYbsTiYicz2UF4fvvv2fmzJmsW7eOzZs3s3TpUnbt2oXD\n4WDIkCGkpaWRlpbGrbfe6qpILte4sdmFVL8+RESYAiEi4i5cVhC2bdtG69at8fLyonLlynTo0IGF\nCxcClNlF4+KoUgUmTIBJk6B7d0hMhIICu1OJiLhwl9G2bdu48847+fbbb/Hy8uKWW24hKiqKmjVr\nMmfOHHx9fYmKimL8+PH4+fmdDehwMGLECOfXMTExxMTEuCJyqduzB/r1M1tV330XAgPtTiQiZVVK\nSgopKSnOr0eNGuXeze1mz57NlClT8Pb2pnnz5lSpUoXnn3+ea6+9FoDhw4eTlZXFrFmzzgYsw9tO\nL0deHrz8stmWOneuObsgInKlylS30+eff5569erx0EMPOR/LzMyka9eupKennw1YzgvCH1JSTDvt\nu+82O5KuusruRCJSlrn9OYSDBw8CsHv3bj755BP69etHVlaW888/+eQTwsLCXBnJbcTEQFqaOczW\ntq35p4iIK3m48s169erFoUOH8PT0ZMqUKfj4+PDII4+wadMmHA4HDRs2ZPr06a6M5FauvRYWLTLn\nFtq2hddfh/79weGwO5mIVARqXeGm0tOhb18ICzMF4px1dhGRQrn9lJFcvrAwWLcOatY0Zxa++cbu\nRCJS3mmEUAYsWQJ//zs89BC88AJ4uHSiT0TKojK1y+hyqSAYWVkQHw9Hj8L770PDhnYnEhF3pimj\ncqx2bVixwrTTjo6Gd95RkzwRKVkaIZRBmzfDvfdC8+YwbRpcc43diUTE3WiEUEG0bGkWnAMDze9X\nrbI7kYiUBxohlHGffgoJCWaL6ujRpnmeiIhGCBVQ585mCikjw6wtnNP1Q0SkSFQQyoFrr4UFC+Dx\nx+Hmm+Ff/1JLbREpOk0ZlTMZGabdhaen6Z5ar57diUTEDpoyEho2NJ1T4+IgKsrcs6B6KiKXQyOE\ncmzTJtNSOzjYbE+tVcvuRCLiKhohyHnCw8321OuvN9tTlyyxO5GIuDONECqI1athwADo0MHc6ezj\nY3ciESlNGiHIJbVrZ6aQPD2hRQv48ku7E4mIu9EIoQJavhwGDYIePSAxEapWtTuRiJQ0jRDksnTp\nYg6wHT5s1hnWrLE7kYi4A40QKriFC+Ef/zC7kV56Cby87E4kIiVBIwQpsh494LvvzIG2iAhYu9bu\nRCJiF40QBDCH15KT4bHHTLO8kSPVKE+kLNMIQYrN4YC77zajhe3bITLSnGEQkYpDBUHOExAAH39s\n7m6+4w54/nk4edLuVCLiCioIcgGHw9yvsHkzbN1qRgtaWxAp/1QQ5JICA80upOHDoWtXePZZOH7c\n7lQiUlpUEOQvORxwzz1mbeHHH81OpG++sTuViJQG7TKSIvn4Y3j0UejdG8aMAW9vuxOJyMVol5GU\nup494fvvzSnnsDD44gu7E4lISdEIQYpt2TJ46CFzr/Nrr4Gfn92JROQPGiGIS912mxkteHpCaCgs\nXmx3IhG5EhohSIn46ivTQTUiAiZNMucZRMQ+GiGIbTp0MOcWGjY09y0kJekuZ5GyRiMEKXFpaTBw\nINSoAdOnmys8RcS1NEIQtxARAf/9L8TFQXQ0vP465OXZnUpECqMRgpSqXbvgwQfNNtUZM0wbDBEp\nfRohiNtp1Ag+/9y01e7SBZ5+Go4dszuViFyMCoKUOocD4uPNtZ379pktqitW2J1KRP7MpQVh4sSJ\nhIWFERoaysSJEwHIzs4mNjaW4OBg4uLiyMnJcWUkcSF/f3j/fZg2DQYPNh1VDxywO5WI/MFlBeH7\n779n5syZrFu3js2bN7N06VJ27dpFYmIisbGx7Nixg06dOpGYmOiqSGKTzp3Ngbb69U37ixkzoKDA\n7lQi4rKCsG3bNlq3bo2XlxeVK1emQ4cOfPzxxyxZsoT4+HgA4uPjWbRokasiiY2qVoXERFi5EmbN\ngvbt4X//szuVSMXm4ao3Cg0NZdiwYWRnZ+Pl5cWyZcuIioriwIEDBJw51hoQEMCBi8whjBw50vn7\nmJgYYmJiXJRaSluLFqad9vTpEBNjzi8MH24KhohcvpSUFFJSUq7oNQrddnrw4EFmzJhBZmYmeWc2\nkzscDmbPnl3kN5s9ezZTpkzB29ub5s2bU6VKFebOncvhw4edz6lRowbZ2dlnA2rbaYWRlQVPPGFu\nZ3vrLbMrSUSKpzg/OwstCG3atKF9+/a0atWKSpUqOd+oZ8+exU8KDBs2jKCgICZOnEhKSgqBgYFk\nZWXRsWNHtm3bdjagCkKF8+mnZtG5VSt44w2oU8fuRCJlT3F+dhY6ZXT8+HHGjRtX7FDnOnjwIP7+\n/uzevZuFCxeSmppKRkYGSUlJPPvssyQlJdG9e/cSeS8pu/5YdB4zBlq2NFNI//gHeLhsglOkYip0\nhPDCCy/Qpk0bbr/99it+s/bt23Po0CE8PT1544036NixI9nZ2fTp04fdu3fToEEDkpOT8Tunsb5G\nCBXbtm1mtJCTA1OnQuvWdicSKRtKZcqoWrVq5ObmctVVV+Hp6el8o99//734SYsSUAWhwrMs+OAD\nc8q5a1cYO9Y0zhORSyuV1hVHjx6loKCAEydOcOTIEY4cOeKyYiAC5qTzvffCli3mMp6QEJgzR2cX\nREraZTW3W7x4Mf/5z39wOBx06NCBrl27uiIboBGCXGjDBjON5OkJU6aYrasicr5SGSEMHTqUSZMm\n0bx5c5o1a8akSZN47rnnih1S5Eq1agXffgv9+0NsrNmq+ttvdqcSKfsKHSGEhYWxadMmKleuDEB+\nfj7h4eGkp6e7JqBGCPIXfv0Vhg6FZcvgtdegXz8zxSRS0ZXKCMHhcJzXcC4nJweH/o8TN3HttTBz\nJixcCOPHm9POLvq7iki5U+jO7ueee47IyEhnu4ivvvpKDejE7dx0E6xbZ1pgdOpkRgqjRoGvr93J\nRMqOy1pU3rdvH+vWrcPhcBAdHU1gYKArsgGaMpKi++UXeO45M42UmAj33QeVdPOHVDAleg5h69at\nNGvWjA0bNpz3wn9MF0W66C5EFQQprrVr4ZFHzAnnyZN1fadULCVaEAYNGsSMGTOIiYm56JrBl19+\nWbyURaSCIFeioMCcWRg2DLp3h9GjoWZNu1OJlL5SOal84sQJvLy8Cn2stKggSEk4fBhGjIB582Dk\nSPj739UbScq3Utll1LZt28t6TMSdXXMNTJoEX3wBH31kzjJ89ZXdqUTcyyX/jpSVlcW+ffvIzc1l\n48aNWJbl7GGUm5vryowiJSYsDFatggULzMG2m24y5xfq1bM7mYj9LjlllJSUxNy5c1m/fj1RUVHO\nx6tXr86AAQPo0aOHawJqykhKSW4uvPoqvPkmPPaYaZ6nm9qkvCiVNYQFCxbQq1evKwp2JVQQpLRl\nZsIzz8B//2tGC71767SzlH2lUhAAli5dypYtWzhx4oTzsRdffLHoCYtBBUFcJSUF/vlP8PODCRMg\nIsLuRCLFVyqLyg8++CDJyclMmjQJy7JITk7mp59+KnZIEXcVEwMbN5pTzl26wKBBcOCA3alEXKfQ\ngrBmzRreeecdatSowYgRI0hNTWX79u2uyCbicpUrw4MPmpvafHygeXMzjXTypN3JREpfoQXh6quv\nBqBq1ars3bsXDw8P9u/fX+rBROzk52ea5a1ZA19/bS7l+eQTc3ubSHlVaEG44447OHz4ME8//TSt\nWrWiQYMG9O3b1xXZRGwXHAyLF5umeS++CDffDGlpdqcSKR2Xtaj8hxMnTnDixAn8/PxKM9N5tKgs\n7iIvD2bNMieeb7vNtMGoXdvuVCIXVyqLytdffz1Tp04FwMvLCz8/P+64447iJRQpwzw8zPrC9u1Q\nqxaEhsLLL5vzDCLlQaEFwdPTk5SUFB544AFOnllZ27t3b6kHE3FXvr4wbhysXw/ffw9Nm8K775pG\neiJlWaEFoWrVqsyfP59mzZrRvn17bTkVOaNhQ5g/3zTMmzwZoqPVH0nKtsvu9/jMM88QGRlJXFwc\n2dnZpZlJpExp2xZSU01xiI83B9rGjTML0iJlSaEjhJdeesn5+1tuuYXPPvuMRx99tFRDiZQ1Dgfc\nc485v9CmjSkSjz5qbm8TKSsu+8a0c1mWRatWrVwTULuMpAz69Vd46SX44APTNO+xx+DMkR4Rl9CN\naSJuZscOGDoUNmyAV16Be+/V/c7iGqXW3M5OKghSHnz9tRkpnDhhWmHccovdiaS8K7WCsGbNGjIz\nM8nLy3M+1r9//6InLAYVBCkvLMtczPPcc9C4sVl4btnS7lRSXpVKQbjvvvv48ccfCQ8Pp3Llys7H\n33zzzeKlLCIVBClvTp2Ct982U0idO5vDbbqxTUpaqRSEZs2asWXLlouuI7iCCoKUV7//bqaPpkyB\nhAR4/nlz97NISSiV1hWhoaFkZWUVO5SIXJyPjxkdpKeb4hAcbArE8eN2J5OKqtARQkxMDJs2bSI6\nOpoqVaqYb3I4WLJkiWsCaoQgFcS2bTBsGKxdC6NGmUNu58zSihRJqUwZpaSkOF8czBkEh8NBhw4d\nipeyiFQQpKJJTYVnnzVnGcaMgW7ddMezFF2p7TLav38/69atw+FwEB0djb+/f7FDFpUKglRElgXL\nl5szDNWqQWIitG9vdyopS0plDSE5OZnWrVvz0UcfkZycTHR0NB999FGxQ4pI4RwOc+dCWho8/LCZ\nPrrtNti0ye5kUp4VOkJo0aIFK1eudI4KfvnlFzp16sR3331X5DcbO3Ys7733HpUqVSIsLIw5c+Yw\nduxYZs6cSa1atZzPufXWW88G1AhBhJMnzVbV0aPNrW0vvWTOMohcSqmMECzLcv6wBqhZs2axfkBn\nZmYyY8YMNm7cSHp6Ovn5+cybNw+Hw8GQIUNIS0sjLS3tvGIgIkaVKqZZ3g8/QLNmcNNN8NBDsG+f\n3cmkPCm0INx666107tyZuXPnMmfOHG677Ta6dOlS5Dfy8fHB09OT3Nxc8vLyyM3NpU6dOgAaAYhc\npmrVYPhwc2ubjw+EhcEzz8ChQ3Ynk/Kg0Ckjy7JYuHAhX3/9NQ6Hg3bt2nHXXXcV683efvttnnzy\nSa6++mo6d+7Mu+++y6hRo5gzZw6+vr5ERUUxfvz48+5sdjgcjBgxwvl1TEwMMTExxXp/kfJm715z\n4vmjj+Cf/4THH4fq1e1OJXZISUlx7goFGDVqlPs2t9u1axddu3Zl9erV+Pr60rt3b3r16kVsbKxz\nSmr48OFkZWUxa9asswG1hiBSqF27YORI+OwzM2IYPFjttiu6El1DqFatGtWrV7/oLx8fnyKHW79+\nPW3btqVmzZp4eHjQo0cP1qxZg7+/Pw6HA4fDwcCBA1m7dm2RX1ukomvUyNzr/MUX8M030KQJTJ1q\n+iaJXK5LFoSjR49y5MiRi/76/fffi/xGTZs2JTU1lePHj2NZFitXriQkJIT9+/c7n/PJJ58QFhZW\nvH8TESE0FBYuhEWLYPFiaNoUkpLgnEbFIpfk0vsQXn31VZKSkqhUqRKRkZHMmDGDgQMHsmnTJhwO\nBw0bNmT69OkEBAScDagpI5FiW70aXngBDhww7TB699YFPRWFLsgRkQtYFqxcaXYn5eaaMwx33ql2\nGOWdCoKIXJJlwf/7f/Dii2aU8NJL0KWLCkN5pYIgIoUqKDBrDCNGgLe3KQyxsSoM5Y0KgohctoIC\nc35h5EioWdOsMdx8swpDeaGCICJFlp8PH35oRgq1a5vCoLOfZZ8KgogUW14evP++ucWtbl1TGNRy\nu+xSQRCRK5aXB++9ZwpD/fpmSkmFoexRQRCREnP6tDn9PHo0NGhgFqFVGMoOFQQRKXGnT5sRwyuv\nQL16pjBojcH9qSCISKk5fdqsMbzyCtSpYwpDx47aleSuVBBEpNTl5ZldSa+8Av7+5qDbLbeoMLgb\nFQQRcZn8fJg/3xQGX1/TGkMnn92HCoKIuFx+Pnz8sSkMV11lmul166YmenZTQRAR2xQUmJbbL79s\nisSwYdCzJ1SubHeyikkFQURsZ1mwfLkpDIcPw/PPQ9++4Olpd7KKRQVBRNyGZcGqVaYw7N4NQ4dC\nfDxUqWJ3sopBBUFE3NLXX5sDbunp8NRTMGiQ6bQqpadE71QWESkpf/ubmUZatMjc4nb99TBmDPz2\nm93J5FwqCCLiMlFRZkfSl1/C1q2mMAwbBgcP2p1MQAVBRGwQEmL6JK1bB9nZ0LQpPPaYWWsQ+6gg\niIhtrr8epk6F//3PLDaHh8OAAWb0IK6ngiAitqtdG157DXbtgkaNoEMH6NHDjCDEdVQQRMRtXHON\naYGRkWE6qvbsCZ06wcqVZhurlC5tOxURt3X6NHzwAYwbB1WrwrPPmpGDTj8XTucQRKRcKiiApUsh\nMRF++cWcZYiPBy8vu5O5LxUEESnXLMscchs3DjZsMDuTHn4Y/PzsTuZ+dDBNRMo1hwPatTOjhc8+\nM7uRGjWCp5+Gn3+2O13Zp4IgImVSWBi88w6kpZnuqi1amC2r339vd7KySwVBRMq0evXgX/8yW1aD\ngyE2Fm6/HVJStDOpqLSGICLlyokT5hT066+Dj49ZgO7ZEzw87E7mWlpUFhE5o6AA/v1vUxj27oUn\nnoAHHoBq1exO5hpaVBYROaNSJbjzTtNd9YMPzBRSw4bmwp6sLLvTuScVBBEp9266yXRZTU2F33+H\n5s3NaCE93e5k7kUFQUQqjEaNYPJk2LkTGjeGuDjo3NlsYdXMtNYQRKQCO3nSTCf961/m6yFDoF+/\n8nHNpxaVRUSKwbLg889NYdi8GQYPhoceglq17E5WfG6/qDx27FiaN29OWFgY/fr14+TJk2RnZxMb\nG0twcDBxcXHk5OS4MpKICA6HmT5ascIUhp9+MmcaHnywYt3N4LKCkJmZyYwZM9i4cSPp6enk5+cz\nb948EhMTiY2NZceOHXTq1InExERXRRIRuUBoKMycCdu3w3XXQceO0KULfPpp+V9ncFlB8PHxwdPT\nk9zcXPLy8sjNzeW6665jyZIlxMfHAxAfH8+iRYtcFUlE5JL8/WHECMjMhD59TL+k0FB4+204ftzu\ndKXDZWf3atSowZNPPkm9evW4+uqr6dy5M7GxsRw4cICAgAAAAgICOHDgwAXfO3LkSOfvY2JiiImJ\ncVFqEanovLzMFtUBA2DVKpg4EV54AQYNMmsNderYndBISUkhJSXlil7DZYvKu3btomvXrqxevRpf\nX1969+5Nz549efTRRzl8+LDzeTVq1CA7O/tsQC0qi4ib2bkTJk2C99+HW2+Fxx+H6Gi7U53PrReV\n169fT9u2balZsyYeHh706NGDb7/9lsDAQPbv3w9AVlYW/v7+rookIlIsTZrAm2+aqz5vvBHuvhva\ntIF588wtb2WVywpC06ZNSU1N5fjx41iWxcqVKwkJCaFr164kJSUBkJSURPfu3V0VSUTkivj6mh5J\nP/xgrvecPt20xxg92tzsVta49BzCq6++SlJSEpUqVSIyMpKZM2dy5MgR+vTpw+7du2nQoAHJycn4\nnXP9kaaMRKQs2bzZTCctXAh33WVudQsPd30OHUwTEXETv/4KM2bAlClm1PDoo6ZAuKoNtwqCiIib\nycuDRYvMqCEjw9wBPWhQ6Z+CdutFZRGRisjDA3r1gv/8x9zP8OOP5hR0fDysX293uvNphCAi4mKH\nDsGsWWY6KTDQTCf16lWyTfU0ZSQiUobk58PSpaYld3q6mUp68EEICrry19aUkYhIGVK5srnV7fPP\n4csvIScHWrQwd0B/+aXreydphCAi4kaOHIH33jOjBjDtMe6/H3x8ivY6mjISESknLAu++greegu+\n+AL69jU7lEJDL+/7NWUkIlJOOBwQEwMffWTWF/z9zXWfHTrA/Plw6lQpvKdGCCIiZcPp0+ZMw9Sp\n5uKehAT4+9+hfv0Ln6sRgohIOebpCb17mzbcq1bB0aMQGQndusHy5WbX0pXQCEFEpAw7dsx0WZ06\n1ZxvePBBM3IICNCisohIhbVuHUybZhrr5eSoIIiIVHiHD0ONGioIIiKCFpVFROQKqCCIiAiggiAi\nImeoIIiICKCCICIiZ6ggiIgIoIIgIiJnqCCIiAiggiAiImeoIIiICKCCICIiZ6ggiIgIoIIgIiJn\nqCCIiAiggiAiImeoIIiICKCCICIiZ6ggiIgIoIIgIiJnqCCIiAiggiAiImeoIJQhKSkpdkdwG/os\nztJncZY+iyvjsoKwfft2IiIinL98fX2ZOHEiI0eOJCgoyPn4ihUrXBWpzNF/7GfpszhLn8VZ+iyu\njIer3uiGG24gLS0NgIKCAurUqUOPHj2YPXs2Q4YMYciQIa6KIiIiF2HLlNHKlStp3LgxdevWxbIs\nLMuyI4aIiJzDYdnw0zghIYGoqCgGDx7MqFGjmDNnDr6+vkRFRTF+/Hj8/PzOBnQ4XB1PRKRcKOqP\nd5cXhFOnTlGnTh22bNlCrVq1OHjwILVq1QJg+PDhZGVlMWvWLFdGEhERbJgyWr58Oa1atXIWAX9/\nfxwOBw6Hg4EDB7J27VpXRxIREWwoCB9++CF9+/Z1fp2VleX8/SeffEJYWJirI4mICC6eMjp27Bj1\n69cnIyOD6tWrA9C/f382bdqEw+GgYcOGTJ8+nYCAAFdFEhGRM1w6QvD29ubXX391FgOAd955h+++\n+47NmzezaNGi84rBihUraNq0KU2aNGHcuHGujOp29uzZQ8eOHWnevDmhoaFMmjTJ7ki2ys/PJyIi\ngq5du9odxVY5OTn06tWLZs2aERISQmpqqt2RbDN27FiaN29OWFgY/fr14+TJk3ZHcpmEhAQCAgLO\nm2HJzs4mNjaW4OBg4uLiyMnJKfR13Pakcn5+Po888ggrVqxgy5YtfPjhh2zdutXuWLbx9PTkjTfe\n4H//+x+pqam89dZbFfrzmDhxIiEhIRV+F9o///lPbrvtNrZu3cp3331Hs2bN7I5ki8zMTGbMmMHG\njRtJT09US16jAAAIVklEQVQnPz+fefPm2R3LZR544IELDvUmJiYSGxvLjh076NSpE4mJiYW+jtsW\nhLVr19K4cWMaNGiAp6cn99xzD4sXL7Y7lm0CAwMJDw8HoFq1ajRr1ox9+/bZnMoeP//8M8uWLWPg\nwIEV+gzLb7/9xurVq0lISADAw8MDX19fm1PZw8fHB09PT3Jzc8nLyyM3N5c6derYHctl2rVrxzXX\nXHPeY0uWLCE+Ph6A+Ph4Fi1aVOjruG1B2Lt3L3Xr1nV+HRQUxN69e21M5D4yMzNJS0ujdevWdkex\nxRNPPMFrr71GpUpu+5+vS2RkZFCrVi0eeOABIiMjGTRoELm5uXbHskWNGjV48sknqVevHtdddx1+\nfn7ccsstdsey1YEDB5xT8AEBARw4cKDQ73Hb/6Mq+lTApRw9epRevXoxceJEqlWrZnccl1u6dCn+\n/v5ERERU6NEBQF5eHhs3bmTw4MFs3LgRb2/vy5oWKI927drFhAkTyMzMZN++fRw9epT333/f7lhu\n44+t/YVx24JQp04d9uzZ4/x6z549BAUF2ZjIfqdPn6Znz57cd999dO/e3e44tlizZg1LliyhYcOG\n9O3bl1WrVtG/f3+7Y9kiKCiIoKAgbrzxRgB69erFxo0bbU5lj/Xr19O2bVtq1qyJh4cHPXr0YM2a\nNXbHslVAQAD79+8HzPZ+f3//Qr/HbQtCVFQUO3fuJDMzk1OnTjF//ny6detmdyzbWJbF//3f/xES\nEsLjjz9udxzbjBkzhj179pCRkcG8efO4+eabeeedd+yOZYvAwEDq1q3Ljh07ANMjrHnz5janskfT\npk1JTU3l+PHjWJbFypUrCQkJsTuWrbp160ZSUhIASUlJl/eXSMuNLVu2zAoODrYaNWpkjRkzxu44\ntlq9erXlcDisli1bWuHh4VZ4eLi1fPlyu2PZKiUlxeratavdMWy1adMmKyoqymrRooV11113WTk5\nOXZHss24ceOskJAQKzQ01Orfv7916tQpuyO5zD333GPVrl3b8vT0tIKCgqzZs2dbhw4dsjp16mQ1\nadLEio2NtQ4fPlzo69jS3E5ERNyP204ZiYiIa6kgiIgIoIIgIiJnqCCIiAiggiBlUOXKlYmIiCAs\nLIw+ffpw/PhxuyNdloMHD3L77bf/5XN++uknPvzwwyK/9pAhQ1i9enVxo4kAKghSBlWtWpW0tDTS\n09O56qqrmDZt2nl/npeX57IsRXmvyZMnM2DAgL98TkZGBh988EGRczz88MO89tprRf4+kXOpIEiZ\n1q5dO3744Qe++uor2rVrx5133kloaCgFBQU8/fTTREdH07JlS95++23AnNhs3769c4TxzTffUFBQ\nwIABAwgLC6NFixZMnDgRgJiYGDZs2ADAr7/+SsOGDQGYO3cu3bp1o1OnTsTGxpKbm0tCQgKtW7cm\nMjKSJUuWXDTrggULnCOEzMxM2rdvT6tWrWjVqhXffvstAEOHDmX16tVEREQwYcIE54GiuLg4GjZs\nyOTJk3n99deJjIykTZs2HD58GIAmTZqQmZl5WS2ORS6p1E9MiJSwatWqWZZlWadPn7a6detmTZs2\nzUpJSbG8vb2tzMxMy7Isa/r06dYrr7xiWZZlnThxwoqKirIyMjKs8ePHW6NHj7Ysy7IKCgqsI0eO\nWOvXr7diY2Odr//bb79ZlmVZMTEx1oYNGyzLsqxffvnFatCggWVZljVnzhwrKCjIedDnueees957\n7z3Lsizr8OHDVnBwsHXs2LHzMmdlZVmhoaHOr3Nzc60TJ05YlmVZO3bssKKioizLMoft7rjjDufz\n5syZYzVu3Ng6evSo9csvv1g+Pj7W9OnTLcuyrCeeeMKaMGGC87n9+/e3li1bVsxPVcSyPOwuSCJF\ndfz4cSIiIgBo3749CQkJfPPNN0RHR1O/fn0APvvsM9LT01mwYAEAv//+Oz/88AM33ngjCQkJnD59\nmu7du9OyZUsaNWrEjz/+yGOPPcbtt99OXFxcoRliY2Px8/Nzvte///1vXn/9dQBOnjzJnj17uOGG\nG5zP/+mnn6hdu7bz61OnTvHII4+wefNmKleuzM6dOwEuaNjncDjo2LEj3t7eeHt74+fn57wUKCws\njO+++8753Ouuu47MzMwifZYi51JBkDLn6quvJi0t7YLHvb29z/t68uTJxMbGXvC81atXs3TpUgYM\nGMCQIUO4//772bx5M59++inTpk0jOTmZWbNm4eHhQUFBAQAnTpz4y/dauHAhTZo0+cvc5/6wf+ON\nN6hduzbvvvsu+fn5eHl5XfL7qlSp4vx9pUqVnF9XqlTpvDUMy7LUJViuiNYQpFzq3LkzU6ZMcf7A\n3LFjB7m5uezevZtatWoxcOBABg4cyMaNGzl06BD5+fn06NGDl19+2VlsGjRowPr16wGcI41Lvde5\nV5perFjVr1/f2XkSzIglMDAQMNfI5ufnA1C9enWOHDnifN6fRwzn+vOfZWVl0aBBg0s+X6QwKghS\n5lzsb8F/7vc+cOBAQkJCiIyMJCwsjIcffpi8vDxSUlIIDw8nMjKS5ORkHn/8cfbu3UvHjh2JiIjg\n/vvvZ+zYsQA89dRTTJ06lcjISA4dOuR8/T+/1/Dhwzl9+jQtWrQgNDSUESNGXJAvMDCQvLw8jh07\nBsDgwYNJSkoiPDyc7du3O++2aNmyJZUrVyY8PJwJEyZc8F5//v25X6elpdGmTZtifaYiAGpuJ+Ii\nI0eOpFmzZtx9990l/to7duzgqaeeuuQOJ5HLoRGCiIv84x//cPanL2nTpk3jmWeeKZXXlopDIwQR\nEQE0QhARkTNUEEREBFBBEBGRM1QQREQEUEEQEZEzVBBERASA/w+AWqN6z/mF6wAAAABJRU5ErkJg\ngg==\n" } ], "prompt_number": 16 }, { "cell_type": "markdown", "source": [ "## Example 14.9 Page no-703" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "# Given:-", "# The overall reaction can be written as", "# CO2 + .5O2 + .5N2 ----> aCO + bNO + (1-a)CO2 + .5(1+a-b)O2 + .5(1-b)N2", "", "# At 3000 K, Table A-27 provides", "log10K1 = -0.485 # equilibrium constant of the reaction CO2 <--> CO + .5O2", "log10K2 = -0.913 # equilibrium constant of the reaction .5O2 + .5N2 <-->NO", "# Solving equations K1 = (a/(1-a))*((1+a-b)/(4+a))^.5 and K2 = 2b/((1+a-b)*(1-b))^.5", "a = 0.3745", "b = 0.0675", "", "# Calculations", "K1 = 10**log10K1", "K2 = 10**log10K2", "", "# Result", "print '-> The composition of the equilibrium mixture, in kmol per kmol of CO2 present initially, is then 0.3745CO, 0.0675NO, 0.6255CO2, 0.6535O2, 0.4663N2.'" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "-> The composition of the equilibrium mixture, in kmol per kmol of CO2 present initially, is then 0.3745CO, 0.0675NO, 0.6255CO2, 0.6535O2, 0.4663N2." ] } ], "prompt_number": 17 }, { "cell_type": "markdown", "source": [ "## Example 14.10 Page no-707" ] }, { "cell_type": "code", "collapsed": false, "input": [ "", "# Given:-", "# With data from Table A-2 at 20\u0004C,", "vf = 1.0018e-3 # in m^3/kg", "psat = 0.0239 # in bar", "p = 1.0 # in bar", "T = 293.15 # in kelvin", "Rbar = 8.314 # universal gas constant in SI units", "M = 18.02 # molat mass of water in kg/kmol", "e=2.715", "", "# Calculations", "pvbypsat = e**(vf*(p-psat)*10**5/((1000*Rbar/M)*T))", "percent = (pvbypsat-1)*100", "", "# Result", "print '-> The departure, in percent, of the partial pressure of the water vapor from the saturation pressure of water at 20\u0004 is: ',round(percent,3)" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "-> The departure, in percent, of the partial pressure of the water vapor from the saturation pressure of water at 20\u0004 is: 0.072" ] } ], "prompt_number": 18 } ] } ] }