{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 7: Field effect Transistors" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.1 page no. 262" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "VGS=10\t\t\t#in Volt\n", "IG=0.001\t\t#in uA\n", "IG=IG*10**-6\t\t#in A\n", "\n", "RGS=VGS/IG\t\t#in ohm\n", "\n", "print\"Resistance between gate and source is \",RGS/10**6,\"ohm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Resistance between gate and source is 10000.0 ohm\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.2 page no.262" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "delVDS=1.5\t\t\t#in Volt\n", "delID=120\t\t\t#in uA\n", "delID=120*10**-6\t\t#in A\n", "\n", "rd=delVDS/delID\t\t\t#in Ohm\n", "\n", "print\"AC drain resistance of JFET in Kohm \",rd*10**-3,\"kohm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "AC drain resistance of JFET in Kohm 12.5 kohm\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.3 page no. 262" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "VP=-4.5\t\t\t#in Volt\n", "IDSS=10.0\t\t\t#in mA\n", "IDS=2.5\t\t\t#in mA\n", "\n", "VGS=VP*(1-math.sqrt(IDS/IDSS))\t\t#in Volt\n", "gm=(-2*IDSS/VP)*(1-VGS/VP)\t\t#in mA/Volt\n", "\n", "print\"Transconductance is\",round(gm,2),\"mA/v\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Transconductance is 2.22 mA/v\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.4 page no. 262" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "gm=10\t\t\t#in mS\n", "IDSS=10\t\t\t#in uA\n", "IDSS=IDSS-10**-6\t#in Ampere\n", "\n", "VGS_OFF=-2*IDSS/gm\n", "\n", "print\"VGS(OFF) is =\",round(VGS_OFF),\"mV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "VGS(OFF) is = -2.0 mV\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.5 page no. 262" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "VP=-4.0\t\t\t #in Volt\n", "IDSS=10.0\t\t\t #in mA\n", "IDSS=IDSS*10**-3\t#in Ampere\n", "VGS=-2.0 #in Volt\n", "\n", "ID=IDSS*(1.0-VGS/VP)**2\t#in mA\n", "\n", "print \"Drain current=\",ID*1000,\"mA\"\n", "print\"VDS(min) is : \",VP,\"V\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Drain current= 2.5 mA\n", "VDS(min) is : -4.0 V\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.6 page no. 263" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "VP=-3.0\t\t\t#in Volt\n", "IDSS=8.7\t\t#in mA\n", "IDSS=IDSS*10**-3\t#in mA\n", "VGS=-1\t\t\t#in Volt\n", "\n", "ID=IDSS*(1-VGS/VP)**2\t#in Ampere\n", "gmo=-2*IDSS/VP\t\t#in mS\n", "gm=gmo*(1-VGS/VP)\t#in mS\n", "\n", "print\"ID is \",round(ID*1000,1),\"mA\"\n", "print\"gmo is\",round(gmo*1000,1),\"mS\"\n", "print\"gm is \",round(gm*1000,1),\"mS\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "ID is 3.9 mA\n", "gmo is 5.8 mS\n", "gm is 3.9 mS\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.7 page no.263" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "VP=-3.0 \t\t#in Volt\n", "IDSS=8.4 \t#in mA\n", "VGS=-1.5 \t#in Volt\n", "\n", "ID=IDSS*(1-VGS/VP)**2 \t\t#in mA\n", "gmo=-2*IDSS/VP \t\t\t#in mS\n", "gm=gmo*(1-VGS/VP) \t\t#in mS\n", "\n", "print\"Drain current=\",ID,\"mA\"\n", "print\"Transconductance is \",gm,\"mS\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Drain current= 2.1 mA\n", "Transconductance is 2.8 mS\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.8 page no.263" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "VP=-4.5 \t\t #in Volt\n", "IDSS=9 \t\t\t#in mA\n", "IDSS=IDSS*10**-3 #in Ampere\n", "IDS=3 \t\t\t #in mA\n", "IDS=IDS*10**-3 \t\t#in Ampere\n", "\n", "import math\n", "VGS=VP*(1-math.sqrt(IDS/IDSS)) \t#in Volt\n", "gm=(-2*IDSS/VP)*(1-VGS/VP) \t\t#in mS\n", "\n", "print\"IDS = 3 mA when gm is \",round(gm*1000,2),\"mS\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "IDS = 3 mA when gm is 2.31 mS\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.9 page no.271" ] }, { "cell_type": "code", "collapsed": false, "input": [ "Vp=-4.0 \t\t\t #in Volt\n", "IDSS=10.0 \t\t #in mA\n", "Vgs1=0\n", "Id1=IDSS # mA, at Vgs=0\n", "Vgs2=1\n", "Id2=Id1*(1-Vgs2/Vp)**2 #mA, at Vgs=1\n", "Vgs3=-1\n", "Id3=Id1*(1-Vgs3/Vp)**2 #mA, at Vgs=1\n", "Vgs4=-2\n", "Id4=Id1*(1-Vgs4/Vp)**2 #mA, at Vgs=-2\n", "Vgs5=-4\n", "Id5=Id1*(1-Vgs5/Vp)**2 #mA, at Vgs=-4\n", "\n", "print \"Transfer Characteristics are in mA \",Id1,Id2,Id3,Id4,Id5\n", "\n", "import matplotlib.pyplot as plt\n", "fig = plt.figure()\n", "ax = fig.add_subplot(111)\n", "\n", "Vgs=[-4,-2,-1,0,1]\n", "Id=[0,2.5,5.625,10,15.625]\n", "xlabel(\"Vgs (V)\") \n", "ylabel(\"Id (mA)\") \n", "plt.xlim((-4,2))\n", "plt.ylim((0,18))\n", "ax.plot([0], [10], 'o')\n", "ax.annotate('(Idss)', xy=(0,10))\n", "\n", "a=plot(Vgs,Id)\n", "\n", "print \"Transfer Characteristics for N channel MOSFET Type\"\n", "show(a)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Transfer Characteristics are in mA 10.0 15.625 5.625 2.5 0.0\n", "Transfer Characteristics for N channel MOSFET Type" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n" ] }, { "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEMCAYAAAAoB2Y1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xlczfn+B/DXyRaTJeFYImRpL0s1Y2SOJWWJJkwyZCrj\nDnMN416zXNwbxjAjjO3O/HApZiQjki0iJ0yaojRZRjMU0WIbyVaq7+8PM2cm2p3v+Z7l9fyrjnPO\n9/V9cF/zud/3d5EJgiCAiIgMgpHUAYiISHNY+kREBoSlT0RkQFj6REQGhKVPRGRAWPpERAZEtNIP\nDAyEXC6Hvb296rWkpCS4uLigV69ecHZ2RnJyslibJyKiCohW+gEBAYiJiSn32kcffYRFixYhNTUV\nCxcuxEcffSTW5omIqAKilb6bmxtMTU3LvdauXTsUFBQAAO7du4cOHTqItXkiIqqATMwrcrOysuDl\n5YX09HQAwNWrV9G/f3/IZDKUlZXh1KlT6Nixo1ibJyKi59TX5MaCgoKwevVqvPnmm/j+++8RGBiI\n2NjYF94nk8k0GYuISG9Uu44XRJSZmSnY2dmpfm/atKnq57KyMqFZs2YVfk7kWJL7z3/+I3UEUXH/\ndJc+75sg6P/+1aQ7NXrKZrdu3RAfHw8AiIuLQ48ePTS5eSIigyfa4R0/Pz/Ex8fj9u3b6NixIxYu\nXIj169fj/fffR1FRERo3boz169eLtXkiIqqAaKUfHh5e4es//vijWJvUGQqFQuoIouL+6S593jdA\n//evJkQ9e6euZDJZ9cMIIiIqpybdydswEBEZEJY+EZEBYekTERkQlj4RkQFh6RMRGRCWPhGRAWHp\nExEZEJY+EZEBYekTERkQlj4RkQFh6RMRGRCWPhGRAWHpExEZEJY+EZEBYekTERkQ0Uo/MDAQcrkc\n9vb25V5fs2YNrK2tYWdnh48//liszRMRUQVEe3JWQEAAZsyYAX9/f9Vrx44dQ3R0NH766Sc0aNAA\nt27dEmvzRERUAdFW+m5ubjA1NS332tdff41PP/0UDRo0AAC0bt1arM0TEVEFRFvpV+SXX37B8ePH\n8a9//QvGxsYICQlB3759K3xvcHCw6meFQsFnWxIRPUepVEKpVNbqM6I+IzcrKwteXl5IT08HANjb\n22PQoEFYtWoVkpOT4evriytXrrwYis/IJSKqNa17Rq65uTl8fHwAAM7OzjAyMsKdO3c0GYGIyKBp\ntPS9vb0RFxcHAMjIyEBxcTHMzMw0GYGIyKCJVvp+fn7o168fMjIy0LFjR2zevBmBgYG4cuUK7O3t\n4efnhy1btoi1eSKicnIKc7Dj/A6pY0hO1GP6dcVj+kSkTkUlRVCEKTCy+0jMHTBX6jiiqUl3svSJ\nSK8JgoCp+6bi7uO72DluJ2QymdSRRFOT7tToKZtERJq2/sx6JGQnIDEoUa8Lv6ZY+kSkt3649gPm\nH5uPHwJ/QNNGTaWOoxV4wzUi0ks5hTl4a+dbCPUORXez7lLH0RosfSLSO0UlRRizYwym952O4d2H\nSx1Hq3CQS0R6xZAGt8/jIJeIDA4Ht1Vj6ROR3uDgtno8pk9EeoGD25ph6RORzuPgtuY4yCUinWbI\ng9vncZBLRHqPg9vaYekTkc7i4Lb2eEyfiHQSB7d1w9InIp3DwW3dcZBLRDqFg9vKSfqM3MDAQMjl\nctjb27/wZ8uXL4eRkRHu3r0r1uaJSE/9MbgNHR3Kwq8D0Uo/ICAAMTExL7yenZ2N2NhYWFhYiLVp\nItJTfwxuo3yjOLitI9FK383NDaampi+8Pnv2bHz55ZdibZaI9BQHt+qh0VM29+zZA3Nzczg4OFT7\n3uDgYNXPCoUCCoVCvGBEpNU4uK2YUqmEUqms1WdEHeRmZWXBy8sL6enpePToEQYOHIjY2Fg0a9YM\nXbp0wenTp2FmZvZiKA5yieh3HNzWnKSD3OddvnwZWVlZcHR0RJcuXXD9+nX06dMHN2/e1FQEItJB\nHNyql8YO79jb2yM/P1/1e5cuXXDmzBm0bNlSUxGISMfwilv1E22l7+fnh379+iEjIwMdO3bE5s2b\ny/05/4tNRFXh4FYcvDiLiLROUUkRFGEKjOw+EnMHzJU6js6oSXey9IlIq3BwW3e8tTIR6RzeKllc\nLH0i0hoc3IqPd9kkIq3Awa1msPSJSHK84lZzOMglIklxcKs+HOQSkdbj4FazWPpEJBkObjWPx/SJ\nSBIc3EqDpU9EGsfBrXQ4yCUijeLgVjwc5BKR1uHgVlosfSLSGA5upcdj+kSkERzcageWPhGJjoNb\n7cFBLhGJioNbzZH8GbmBgYGQy+Wwt7dXvTZnzhxYW1vD0dERPj4+KCgoEDMCEUmMz7jVLqKWfkBA\nAGJiYsq9NnToUJw/fx5paWno0aMHlixZImYEIpLQH4PbKN8oDm61hKil7+bmBlNT03Kvubu7w8jo\n2WZdXV1x/fp1MSMQkUQ4uNVOkp6yuWnTJvj5+VX4Z8HBwaqfFQoFFAqFZkIR0Uvj4FYzlEollEpl\nrT4j+iA3KysLXl5eSE9PL/f64sWLkZKSgsjIyBdDcZBLpLM4uJWO1l6RGxoaigMHDuDo0aNSbJ6I\nRMQrbrWbxks/JiYGy5YtQ3x8PIyNjTW9eSISEa+41X6iHt7x8/NDfHw8bt++DblcjgULFmDJkiUo\nLi5Gy5YtAQCvvfYa/vvf/5YPxcM7RDonpzAHzhucscFrA4/jS6Qm3cmLs4jopRWVFEERpsDI7iMx\nd8BcqeMYLJY+EYmOg1vtobWDXCLSHxzc6haWPhHVGQe3uod32SSiOuEVt7qJpU9EtcYrbnUXB7lE\nVCsc3GovDnKJSO04uNVtLH0iqjEObnUfj+kTUY1wcKsfWPpEVC0ObvUHB7lEVCUObnWH5M/IJSLd\nU1RUhDfeeANXrlyBvb19hc+4VSgUOHPmTK2+Nzo6GosWLRIjMtUCS5+Iyvnuu+8wcuRI1KtXD4+e\nPqrwGbcymazWK34vLy9ERkbi6dOn6o5MtVBl6aekpGDOnDlwdXWFXC5H27Zt4erqijlz5iA1NVVT\nGYlIg8LDwzF69GjkFebhWsE1hHqHwryJOcaPHw8bGxv4+Pjg8ePHAICysjK88847sLe3h4ODA1at\nWgUAWL16NWxtbeHo6Kh6JKpMJsNrr72Gw4cPS7ZvVMUpm8OHD4epqSlGjRqF6dOno127dhAEAbm5\nuUhKSkJISAju3buH/fv3azIvEYmotLQU586dg0VXC4xfPh5mjc0wvPtwrFixAiYmJrhw4QLS09PR\nu3dvAEBqaipycnJUj0O9f/8+AOCLL75AVlYWGjRooHoNAFxcXHD8+HGMGDFC8ztHAKoo/c2bN0Mu\nl7/weteuXdG1a1eMHz8eN2/erPSLAwMDsX//frRp00b1D+Lu3bvw9fXF1atX0blzZ+zYsQMtWrRQ\nw24QkTrcvn0bTZs2xd8P/h1tXmmDp688OxRz4sQJzJw5EwBUq3oAsLS0xJUrV/DBBx9gxIgRGDp0\nKADAwcEBEyZMgLe3N7y9vVXf3759e8TExGh4r+ivKj28U1HhA8/+8t9//30AQJs2bSr94oCAgBf+\ncpcuXQp3d3dkZGRg8ODBWLp0aV0yE5Ga7d9/HB4e8/Dmm8uQlXcDhy8cQcjQkHLvqeiskBYtWiAt\nLQ0KhQLffPMNpkyZ8vv37cf777+PlJQUODs7o6ysDMCzw0E8+0daNRrk/nFs38LCAvPnz4eVlVW1\nn3Fzc4OpqWm516KjozF58mQAwOTJkxEVFVWHyESkTvv3H8fMmYdw+PBnOJU9Ck/LnkDY7omkk+dV\n7xkwYAC2bdsGADh37hx++uknAMCdO3dQWloKHx8fLFq0CCkpKRAEAdeuXYNCocDSpUtRUFCABw8e\nAAByc3NhYWGh+Z0klUoP71y6dAnh4eGIiIhA69atMW7cOAiCAKVSWeeN5efnq/4fhFwuR35+fp2/\ni4jUY/Xqw7h8eTFgehl4yw/42gHZZ2chLGytalU+bdo0BAQEwMbGBtbW1ujbty8A4MaNGwgICFCt\n5JcuXYrS0lJMmjQJBQUFEAQBM2fORLNmzQAASUlJ8PLykmZHCUAVpW9tbY2RI0fi0KFD6NSpEwBg\nxYoVattwdad8BQcHq35WKBRQKBRq2zYR/amoqD5gdgnwHwLE/xt43AhAFGQyM9WK3tjYGOHh4RV+\nvqLz9U+cOPHCa2VlZUhMTMTatWvVmt+QKZXKWi/EKy39Xbt2ITw8HAMGDICnp6dqpf8y5HI58vLy\n0LZtW+Tm5lY5E/hr6ROReJ62yAUmDwLiPgPOBgAoBjAEjRoNUOt29u3bh7Fjx6J+fd7nUV2eXxAv\nWLCg2s9Uekzf29sbEREROHfuHNzc3LBy5UrcunUL06ZNq/N5tqNGjUJYWBgAICwsrNxUn4g0Ly0v\nDRdddqLNT31/L3wAaAhLy/744IOhat3WqFGjMG/ePLV+J9Vere69c/fuXezcuRPbt29HXFxcle/1\n8/NDfHw8bt++DblcjoULF2L06NF46623cO3atSpP2eS9d4jEdzrnNEZsG4G1w9aiSZYca9bE4smT\nejA2LsWMGe4YMUK9K30SX026s0al/9tvvyE7OxslJSWqL+zTp496UlYUiqVPJKrE64kYFT4KG7w2\nYLTVaKnjkJqo5clZ8+fPR2hoKLp27Qojoz+PBh07duzlExKRxp24egI+O3wQ5h3G2yQboGpX+j16\n9MC5c+fQsGFDTWXiSp9IJHGZcfDd6YttPtvgbukudRxSM7XcWtnW1ha//fab2kIRkTQO/XoIvjt9\nsXPcTha+Aat2pZ+cnIzRo0fDzs4OjRo1evYhmQzR0dHiheJKn0it9l7ai6DoIOz23Y3XO70udRwS\niVqO6fv7++OTTz6BnZ2d6pg+751BpDt2XdyFafunYd+EfXDp4CJ1HJJYtSt9Z2dnJCcnayoPAK70\nidRl+7ntmBUzCwffPohe7XpJHYdEppZTNmfPno1GjRph1KhRqsM7AFT30xYDS5/o5YWdDcOnRz/F\noYmHYC+3lzoOaYBaSl+hUFR4OEfMUzZZ+kQvZ2PKRgQrgxE7KRbWra2ljkMaoraLszSNpU9Ud+uS\n1uHLhC9xZNIRdDfrLnUc0qCXOmUzNDQUJSUllX6wuLgYmzdvrns6IlK7FadWIORUCJSTlSx8qlCl\nZ+88ePAAzs7OsLKyQt++fVXPyM3Ly8Pp06fx888/491339VkViKqwpITS7Dp7CbEvxOPTs07SR2H\ntFSVh3cEQcAPP/yAkydP4tq1awAACwsL9O/fH/369RPt1E0e3iGqOUEQsCB+ASLOR+Co/1G0b9pe\n6kgkER7TJ9JzgiDgX3H/wr6MfTgy6QjkJhU/25oMg1ouziIi7SQIAv5x+B84lnUMxyYfQ6smraSO\nRDqApU+kg8qEMsw4OAPJN5Jx1P8oWjZuKXUk0hEsfSIdUyaU4W/7/oYLty4gdlIsmhs3lzoS6ZBq\n77IphiVLlsDW1hb29vaYMGECioqKpIhBpHNKy0oRsCcAGXcyEPN2DAufak3jpZ+VlYUNGzYgJSUF\n6enpKC0txfbt2zUdg0jnPC19iom7JyKnMAcH3z6Ipo2aSh2JdJDGD+80a9YMDRo0wKNHj1CvXj08\nevQIHTp00HQMIp1SXFoMv0g/PH76GHv99sK4vrHUkUhHVVr6kZGRqtN/Kjof38fHp04bbNmyJf7x\nj3+gU6dOaNy4MTw8PDBkyJA6fReRIXhS8gTjvh+HerJ62O27G43qN6r+Q0SVqLT09+7dC5lMhps3\nbyIhIQGDBg0C8OxGa/369atz6V++fBlfffUVsrKy0Lx5c4wbNw7fffcd3n777XLvCw4OVv2sUCig\nUCjqtD0iXfb46WN4R3ijeaPm+M7nOzSo10DqSKRFlEollEplrT5T7cVZ7u7u2LJlC9q1awcAyM3N\nxeTJk3H48OE6hYyIiEBsbCw2btwIANi6dSsSExOxbt26P0Px4iwiPCx+CK9wL7Rv2h6h3qGob8ST\n7ahqanlGbnZ2Ntq2bav6XS6Xq27JUBdWVlZITEzE48ePIQgCjhw5Ahsbmzp/H5E+ul90H57fecKi\nhQXCvMNY+KQ21f5LGjJkCDw8PDBhwgQIgoCIiAi4u9f9ocqOjo7w9/dH3759YWRkhN69e2Pq1Kl1\n/j4ifXPvyT14fusJp7ZO+O+I/8JIJsmZ1aSnqj28IwgCdu/ejePHj0Mmk2HAgAF48803xQ3Fwztk\noO48uoOh3w5F/0798ZXHV3weNdUKb7hGpENuPrwJ963u8LD0wBdDvmDhU6291A3XTExMKv1HJ5PJ\ncP/+/ZdLR0QquYW5GLJ1CHysfbBQsZCFT6LhSp9IYtfvX8fgLYMxyWES5g2YJ3Uc0mG8tTKRlrt6\n7yoGbRmE9/q8hzmvz5E6DhkAlj6RRC7fvYzBWwbjw1c/xMxXZ0odhwwES59IApduX8KQrUMw120u\n3uv7ntRxyICw9Ik07PzN8xj67VB8NvAzBPQKkDoOGRiWPpEGpeWlwfM7TyxzX4aJDhOljkMGiKVP\npCFncs5gxLYRWDNsDcbZjpM6Dhkolj6RBiReT8To7aOxfuR6jLYaLXUcMmAsfSKRnbh6Aj47fBDm\nHYbh3YdLHYcMHEufSERxmXHw3emLbT7b4G5Z9xsVEqkLS59IJId+PYSJuydi57ideKPzG1LHIQLA\n0icSxd5LexEUHYQo3yi83ul1qeMQqbD0idRs18VdmLZ/GvZN2AeXDi5SxyEqh6VPpEbbz23HrJhZ\niHk7Br3a9ZI6DtELJHkkz7179zB27FhYW1vDxsYGiYmJUsQgUquws2GYfWg2YifFsvBJa0my0p85\ncyaGDx+OnTt3oqSkBA8fPpQiBpHabEzZiGBlMI76H4V1a2up4xBVSuP30y8oKECvXr1w5cqVSt/D\n++mTLlmXtA5fJnyJI5OOoLtZd6njkAHTyvvpZ2ZmonXr1ggICEBaWhr69OmDVatWoUmTJuXeFxwc\nrPpZoVBAoVBoNihRDaw8tRJrktZAOVmJLqZdpI5DBkapVEKpVNbqMxpf6Z8+fRqvvfYaEhIS4Ozs\njFmzZqFZs2ZYuHDhn6G40icdsOTEEmw6uwlH/Y+iU/NOUschqlF3anyQa25uDnNzczg7OwMAxo4d\ni5SUFE3HIKozQRCwQLkAW37agvh34ln4pFM0Xvpt27ZFx44dkZGRAQA4cuQIbG1tNR2DqE4EQcDc\nuLnYeXEnlJOVaN+0vdSRiGpFkgejp6WlYcqUKSguLoalpSU2b96M5s2b/xmKh3dIC5WUleCfh/+J\n+KvxiJ0Ui1ZNWkkdiaicmnSnJKVfHZY+aZuMOxnw3+2PZo2aYfvY7WjZuKXUkYheoJXH9Il0iSAI\n+Dr5a/T7Xz9MdJiImIkxLHzSabwNA1ElcgtzERQdhFuPbuFk4ElYtbKSOhLRS+NKn6gCkRci0ev/\nesG5gzMSAhNY+KQ3uNIn+ouCJwWYcXAGTl0/hajxUXjV/FWpIxGpFVf6RL9TZinh8I0DXmn4Cs7+\n7SwLn/QSV/pk8J6UPMG8uHkIPxeODV4b+Bxb0mssfTJoZ/POYtLuSehp1hNp76Xx3HvSeyx9Mkil\nZaUISQhByKkQrBi6AhMdJkImk0kdi0h0LH0yOJm/ZcI/yh/1ZPVw+t3TsGhhIXUkIo3hIJcMhiAI\n2JS6CS4bXeDd0xtxk+NY+GRwuNIng3Dz4U1M3TsVmfcyEecfB3u5vdSRiCTBlT7pvb2X9sLpGydY\ntbJC0pQkFj4ZNK70SW8VFhVi9uHZOHLlCCLGRsDNwk3qSESS40qf9FJCdgKc/s8JZUIZ0t5LY+ET\n/Y4rfdIrxaXFWBC/AP9L+R++GfkNvK28pY5EpFVY+qQ3Lty6gIm7JqJDsw5Iey8NchO51JGItI5k\nh3dKS0vRq1cveHl5SRWB9ESZUIavEr/CG6FvYLrzdESPj2bhE1VCspX+qlWrYGNjg8LCQqkikB7I\nLsjGO3veweOnj5EYlAjLlpZSRyLSapKs9K9fv44DBw5gypQpfCwi1YkgCNiWvg191vfB4C6DcTzg\nOAufqAYkWel/+OGHWLZsGe7fv1/pe4KDg1U/KxQKKBQK8YORTrj7+C6m7Z+G9Px0xEyMQe92vaWO\nRCQJpVIJpVJZq89o/MHo+/btw8GDB7Fu3ToolUosX74ce/fuLR+KD0anShz69RCCooMwznYcPh/0\nORo3aCx1JCKtUZPu1PhKPyEhAdHR0Thw4ACePHmC+/fvw9/fH1u2bNF0FNIhj54+wsdHPsaen/cg\nzDsMg7sOljoSkU7S+Er/r+Lj4xESEsKVPlUp+UYyJu2ehD7t+2DtsLUwbWwqdSQiraSVK/3n8R7m\nVJmSshJ8fuJzrEteh9Weq+Fr5yt1JCKdJ+lKvzJc6VPGnQxM2j0JzRs1x+bRm9GhWQepIxFpvZp0\nJ++9Q1pFEAR8nfw1+v2vHyY5TELMxBgWPpEaSX54h+gPuYW5CIoOwq1Ht3Ay8CSsWllJHYlI73Cl\nT1oh8kIknP7PCc4dnJEQmMDCJxIJV/okqYInBZhxcAZOXT+FPeP34FXzV6WORKTXuNInySizlHD4\nxgEmDU1w9m9nWfhEGsCVPmnck5InmBc3D+HnwrHRayOGdR8mdSQig8HSJ406m3cWk3ZPQk+znkh7\nLw2tmrSSOhKRQWHpk0aUlpUiJCEEIadCsGLoCkx0mMgL84gkwNIn0WX+lgn/KH/Uk9XD6XdPw6KF\nhdSRiAwWB7kkGkEQsCl1E1w2usC7pzfiJsex8IkkxpU+ieLmw5uYuncqMu9lIs4/DvZye6kjERG4\n0icR7L20F47fOMKqlRWSpiSx8Im0CFf6pBb5D/Jx+PJhRF2KQkpuCnaM3QE3CzepYxHRc3iXTaqT\n4tJiJGQn4NDlQ4j5NQaZv2ViUJdB8LD0gJ+9H5o1aiZ1RCKDU5PuZOlTjf1691cc+vUQDl0+hPir\n8ehp1hMe3TzgYekB1w6uaFCvgdQRiQwaS59eSmFRIeIy43Do8rOif/z0MYZaDoWHpQfcLd15YRWR\nltHa0s/Ozoa/vz9u3rwJmUyGqVOn4oMPPvgzFEtfEmVCGc7mnVWt5s/knoFrB1d4WHrAo5sH7NvY\n84IqIi2mtaWfl5eHvLw8ODk54cGDB+jTpw+ioqJgbW39LBRLX2P+GMAeunwIsVdiYWpsqjpk84bF\nG3il4StSRySiGtLaZ+S2bdsWbdu2BQCYmJjA2toaOTk5qtIn8VQ1gP1s0Gfo3KKz1BGJSESSn7KZ\nlZWF1NRUuLq6lns9ODhY9bNCoYBCodBsMD1S2QB2zbA1HMAS6TClUgmlUlmrz0g6yH3w4AEUCgXm\nzZsHb2/vP0Px8M5L4QCWyDBp7TF9AHj69ClGjhyJYcOGYdasWeVDsfRrhQNYIgK0uPQFQcDkyZNh\nZmaGlStXvhiKpV8tDmCJ6HlaW/onT57EgAED4ODgoFqBLlmyBJ6ens9CsfRfUNUA1qObBwewRKS9\npV8dlv4zvAKWiGqDpa9jOIAlopfB0tdyHMASkTqx9LUQB7BEJBaWvhbgAJaINIWlLxEOYIlICix9\nDeEAloi0AUtfJBzAEpE2Yumr0fMD2BbGLeDZzZMDWCLSGiz9l8ABLBHpGpZ+LXEAS0S6jKVfDQ5g\niUifsPSfwwEsEekzlj44gCUiw2GQpc8BLBEZKoMpfQ5giYhq1p1GGspSTkxMDKysrNC9e3d88cUX\ntf58YVEh9vy8B9P3T4flaksM2DwAyTnJ8LPzw+UPLiPp3SQsGrgI/Tv118rCr+2DjHUN90936fO+\nAfq/fzWh8dIvLS3F3//+d8TExODChQsIDw/HxYsXq/xMmVCGlNwULDmxBIpQBdqvaI81SWvQpUUX\n7PbdjRuzbyDUOxR+9n46ccaNvv/D4/7pLn3eN0D/968m6mt6g0lJSejWrRs6d+4MABg/fjz27NkD\na2vrcu+rbAD70esfcQBLRFRHGi/9GzduoGPHjqrfzc3N8eOPP77wvp5re6oGsJ8N+owDWCIiNdD4\nIDcyMhIxMTHYsGEDAODbb7/Fjz/+iDVr1vwZiufKExHVSXWVrvGVfocOHZCdna36PTs7G+bm5uXe\no4UnFBER6QWND3L79u2LX375BVlZWSguLkZERARGjRql6RhERAZJ4yv9+vXrY+3atfDw8EBpaSmC\ngoJeGOISEZE4JDlPf9iwYbh06RJ+/fVXfPrpp1W+d/ny5TAyMsLdu3c1lE4z5s+fD0dHRzg5OWHw\n4MHlDnnpujlz5sDa2hqOjo7w8fFBQUGB1JHU6vvvv4etrS3q1auHlJQUqeOozcteP6PNAgMDIZfL\nYW9vL3UUUWRnZ2PgwIGwtbWFnZ0dVq9eXfmbBS127do1wcPDQ+jcubNw584dqeOo1f3791U/r169\nWggKCpIwjXodPnxYKC0tFQRBED7++GPh448/ljiRel28eFG4dOmSoFAohDNnzkgdRy1KSkoES0tL\nITMzUyguLhYcHR2FCxcuSB1LbY4fPy6kpKQIdnZ2UkcRRW5urpCamioIgiAUFhYKPXr0qPTvT5KV\nfk3Nnj0bX375pdQxRNG0aVPVzw8ePECrVtp/UVlNubu7w8jo2T8tV1dXXL9+XeJE6mVlZYUePXpI\nHUOt/nr9TIMGDVTXz+gLNzc3mJqaSh1DNG3btoWTkxMAwMTEBNbW1sjJyanwvRo/pl9Te/bsgbm5\nORwcHKSOIpq5c+di69ataNKkCRITE6WOI4pNmzbBz89P6hhUjZpeP0PaLysrC6mpqXB1da3wzyUt\nfXd3d+Tl5b3w+uLFi7FkyRIcPnxY9Zqgg6dxVrZ/n3/+Oby8vLB48WIsXrwYS5cuxYcffojNmzdL\nkLJuqts34NnfY8OGDTFhwgRNx3tpNdk/fcJrY/TDgwcPMHbsWKxatQomJiYVvkfS0o+Nja3w9XPn\nziEzMxOOjo4AgOvXr6NPnz5ISkpCmzZtNBnxpVS2f8+bMGEChg8fLnIa9apu30JDQ3HgwAEcPXpU\nQ4nUq6ZuTZ1KAAAEWElEQVR/d/qiJtfPkHZ7+vQpxowZg4kTJ8Lb27vS92nl4R07Ozvk5+erfu/S\npQvOnDmDli1bSphKvX755Rd0794dwLNDWb169ZI4kfrExMRg2bJliI+Ph7GxsdRxRKWL/w+0In+9\nfqZ9+/aIiIhAeHi41LGohgRBQFBQEGxsbDBr1qxq36z1unTpondn74wZM0aws7MTHB0dBR8fHyE/\nP1/qSGrTrVs3oVOnToKTk5Pg5OQkTJs2TepIarVr1y7B3NxcMDY2FuRyueDp6Sl1JLU4cOCA0KNH\nD8HS0lL4/PPPpY6jVuPHjxfatWsnNGzYUDA3Nxc2bdokdSS1OnHihCCTyQRHR0fV/+4OHjxY4Xu1\n8iEqREQkDq0+ZZOIiNSLpU9EZEBY+kREBoSlT0RkQFj6pPcGDRpU7kI/APjqq68wffp0tW4nPT0d\ngYGBuHr1armrW//g5OSEpKQkrF69Glu3blXrtolqiqVPes/Pzw/bt28v91pERITarxRetmwZpk2b\nBgsLC3Tq1AnHjx9X/dnPP/+MBw8ewMXFBQEBAeWeFEekSSx90ntjxozB/v37UVJSAuDZvUlycnLQ\nv39/lJWVYfr06bC2tsbQoUMxYsQIREZGAgA++eQT2NrawtHREXPmzKlyG0VFRUhMTISzszOAF/9D\ns337dtU9iJo2bQozMzOcP39ejN0lqhJLn/Rey5Yt4eLiggMHDgB4VsC+vr4AgF27duHq1au4ePEi\ntm7dilOnTkEmk+HOnTuIiorC+fPnkZaWhvnz51e5jdTUVPTs2VP1+7hx4xAVFYWysjIAwI4dO8rd\neM7FxaXc/xMg0hSWPhmEv668IyIiVAX8ww8/4K233gIAyOVyDBw4EADQokULGBsbIygoCLt370bj\nxo2r/P6rV6+iXbt2qt/lcjns7Oxw5MgRnD17FvXr14eNjY3qz9u3b4+srCx17iJRjbD0ySCMGjUK\nR48eRWpqKh49elTuXkcVXZRer149JCUlYezYsdi3bx88PT2r/H6ZTPbC9/zxH5qK5geCIPDOliQJ\nlj4ZBBMTEwwcOBABAQHlCvj1119HZGQkBEFAfn4+lEolAODhw4e4d+8ehg0bhhUrViAtLa3K77ew\nsHjhVsw+Pj7Yv38/IiIiMH78+HJ/lpubi86dO6tl34hqQyvvskkkBj8/P/j4+GDHjh2q18aMGYOj\nR4/CxsYGHTt2RO/evdG8eXMUFhZi9OjRePLkCQRBwMqVK6v8bkdHR1y6dKnca82bN0e/fv2Qn5//\nQsEnJSUhJCREbftGVFO84RoZvIcPH+KVV17BnTt34OrqioSEhDo9t+Gdd97BtGnTKn1i0R/u37+P\nwYMHIzk5ua6RieqMK30yeCNHjsS9e/dQXFyMf//733V+UM8///lPLF++vNrSDw0NxcyZM+u0DaKX\nxZU+EZEB4SCXiMiAsPSJiAwIS5+IyICw9ImIDAhLn4jIgLD0iYgMyP8Dr4y+N/dLTzoAAAAASUVO\nRK5CYII=\n" } ], "prompt_number": 27 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 7.10 page no.275" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "ID_on=5 \t\t#in mA\n", "VGS=6 \t\t\t#in Volt\n", "VGS_on=8.0 \t\t#in Volt\n", "VGST=4 \t\t\t#in Volt\n", "\n", "K=ID_on/(VGS_on-VGST)**2 \t\t#in mA/V**2\n", "ID=K*(VGS-VGST)**2 \t\t\t#in mA\n", "\n", "print\"When VGS=6V the drain current is \",ID,\"mA\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "When VGS=6V the drain current is 1.25 mA\n" ] } ], "prompt_number": 20 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }