{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter3 : Excess Carriers in Semiconductor" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.2 Page No 111" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "l=6000 #in Angstrum\n", "h=6.6*10**(-34) #Planks constant\n", "c=3*10**8 #speed of light in m/s\n", "e=1.602*10**(-19) #Constant\n", "\n", "phi=c*h/(e*l*10**(-10))\n", "\n", "print\"Minimum required energy is\",round(phi,2),\"eV \"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Minimum required energy is 2.06 eV \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.3 Page No 112" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "Emax=2.5 #maximum energy of emitted electrons in eV \n", "l=2537.0 #in Angstrum\n", "\n", "EeV=12400.0/l #in eV\n", "phi=EeV-Emax #in eV\n", "\n", "print \"Work function of the cathode material is \",round(phi,2),\"eV\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Work function of the cathode material is 2.39 eV\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.4 Page No 115" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "t=0.46*10**-4 #in centi meters\n", "hf1=2 #in ev\n", "hf2=1.43\n", "Pin=10 #in mW\n", "alpha=50000 # in per cm\n", "e=1.6*10**-19 #constant\n", "Io=0.01 #in mW\n", "\n", "import math\n", "\n", "It=Io*math.exp(-alpha*t) #in mW\n", "Iabs=Io-It\n", "f=(hf1-hf2)/hf1\n", "E=f*Iabs\n", "N=Iabs/(e*hf1)\n", "\n", "print\"(i)Thus power absorbed is \",round(Iabs,3),\"J/s\"\n", "print\"(ii)Energy converted into heat is\",round(E,4),\"J/s\"\n", "print\"(iii)Number of photons per second given off from recombination events \",round(N,-14)\n", ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i)Thus power absorbed is 0.009 J/s\n", "(ii)Energy converted into heat is 0.0026 J/s\n", "(iii)Number of photons per second given off from recombination events 2.81e+16\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.5 Page No 123" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "L=100 #in uM\n", "A=10&-7 #in cm**2\n", "th=10**-6 #in sec\n", "V=12 #in Volts\n", "ue=0.13 #in m**2/V-s\n", "uh=0.05 #in m**2/V-s\n", "\n", "E=V/(L*10**-6) #in V/m\n", "tn=(L*10**-6)/(ue*E)\n", "Gain=(1+uh/ue)*(th/tn)\n", "\n", "print\"Electron transit time in sec is \",round(tn,10),\"s\"\n", "print\"Photoconductor gain is \",Gain" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Electron transit time in sec is 6.4e-09 s\n", "Photoconductor gain is 216.0\n" ] } ], "prompt_number": 29 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.6 Page No128" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "Io=0.15 #in uA\n", "V=0.12 #in mVolt\n", "Vt=26 #in mVolt\n", "\n", "I=Io*10**-6*(math.exp(V/(Vt*10**-3))-1) #in A\n", "\n", "print\"Current flowing through diode is \",round(I*10**6,2),\"micra A\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Current flowing through diode is 15.0 micra A\n" ] } ], "prompt_number": 30 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.7 Page No 128" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "Io=2.5 #in uA\n", "I=10 #in mA\n", "Vt=26 #in mVolt\n", "n=2 #for silicon\n", "\n", "V=n*Vt*10**-3*math.log((I*10**-3)/(Io*10**-6))\n", "\n", "print \"Forward voltage is \",round(V,2),\"V\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Forward voltage is 0.43 V\n" ] } ], "prompt_number": 31 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.8 Page No 128" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "ND=10**21 #in m**-3\n", "NA=10**22 #in m**-3\n", "De=3.4*10**-3 #in m**2-s**-1\n", "Dh=1.2*10**-3 #in m**2-s**-1\n", "Le=7.1*10**-4 #in meters\n", "Lh=3.5*10**-4 #in meters\n", "ni=1.6*10**16 #in m**-3\n", "e=1.602*10**-19 #constant\n", "\n", "IoA=e*ni**2*(Dh/(Lh*ND)+De/(Le*NA))\n", "\n", "print\"Reverse saturation current density is \",round(IoA*10**6,2),\"uA \"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Reverse saturation current density is 0.16 uA \n" ] } ], "prompt_number": 33 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }