{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 8 : High Velocity Fludization" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 1, Page 206\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "from numpy import zeros\n", "from scipy.optimize import fsolve \n", "\n", "\n", "#INPUT\n", "Lmf=2.4; #Length of bed at minimum fluidized condition in m\n", "uo=[2.,4.,6.]; #Superficial gas velocity in m/s\n", "GsII=100.; #Solid circulation rate in kg/m**2 s for Mode II\n", "uoIII=4.; #Superficial gas velocity in m/s for Mode III\n", "GsIII=[42.,50.,100.,200.,400.]; #Solid circulation rate in kg/m**2 s for Mode III\n", "GsIV=[70.,100.,120.]; #Solid circulation rate in kg/m**2 s for Mode IV\n", "dt=0.4; #Column diamter in m\n", "Ht=10.; #Height of column in m\n", "rhos=1000.; #Density of solid in kg/m**3\n", "dpbar=55.; #Particle diameter in micrometer\n", "ephsilonmf=0.5; #Void fraction at minimum fluidization condition\n", "\n", "#CALCULATION\n", "#Mode I\n", "ephsilonstar=0.01; #Saturation carrying capacity of gas\n", "ephsilonsd=[0.2,0.16,0.14]; #Solid holdup in lower dense region from Fig.8(b) for various uo\n", "n=len(uo);\n", "i=0;\n", "Hfguess=2.; #Guess value of height\n", "a = zeros(n)\n", "Hf = zeros(n)\n", "Hd = zeros(n)\n", "ephsilonse = zeros(n)\n", "GsI = zeros(n)\n", "# endfunction\n", " \n", "while i<n:\n", " a[i]= 3./uo[i]; #Decay consmath.tant\n", " def solver_func(Hf): #Function defined for solving the system\n", " return Lmf*(1-ephsilonmf)-((ephsilonsd[i]-(ephsilonstar+(ephsilonsd[i]-ephsilonstar)*math.exp(-a[i]*Hf)))/a[i])-Ht*ephsilonsd[i]+Hf*(ephsilonsd[i]-ephsilonstar);\n", " \n", " Hf[i] = fsolve(solver_func,1E-6)\n", " Hd[i]=Ht-Hf[i];#Height of lower densce region\n", " ephsilonse[i]=ephsilonstar+(ephsilonsd[i]-ephsilonstar)*math.exp(-a[i]*Hf[i]);#Solid holdup at exit\n", " GsI[i]=rhos*uo[i]*ephsilonse[i];#Solid circulation rate from Eqn.(4)\n", " i=i+1;\n", "\n", "#Mode II\n", "i=0;\n", "Hfguess2=2;#Guess value of height\n", "ephsilonseII = zeros(n)\n", "HdII = zeros(n)\n", "LmfII = zeros(n)\n", "HfII = zeros(n)\n", "while i<n:\n", " ephsilonseII[i]=GsII/(rhos*uo[i]);#Solid holdup at exit\n", " def solver_func1(Hf): #Function defined for solving the system\n", " return ephsilonseII[i]-ephsilonstar-(ephsilonsd[i]-ephsilonstar)*math.exp(-a[i]*Hf);#From Eqn.(7)\n", " HfII[i] = fsolve(solver_func1,1E-6)\n", " HdII[i]=Ht-HfII[i];#Height of lower dense region\n", " #Length of bed minimum fluidization condtion\n", " LmfII[i]=(1-ephsilonmf)**-1*((ephsilonsd[i]-ephsilonseII[i])/a[i])+Ht*ephsilonsd[i]-HfII[i]*(ephsilonsd[i]-ephsilonstar);\n", " i=i+1;\n", "\n", "#Mode III\n", "aIII = 3./uoIII; #Decay consmath.tant\n", "ephsilonsdIII=0.16; #Solid holdup at lower dense region\n", "i=0;\n", "m=len(GsIII);\n", "Hfguess3=2;#Guess value of height \n", "ephsilonseIII = zeros(m)\n", "HdIII = zeros(m)\n", "ephsilonseIII = zeros(m)\n", "LmfIII = zeros(m)\n", "HfIII = zeros(m)\n", "while i<m:\n", " ephsilonseIII[i]=GsIII[i]/(rhos*uoIII);#Solid holdup at exit\n", " def solver_func2(Hf): #Function defined for solving the system\n", " return ephsilonseIII[i]-ephsilonstar-(ephsilonsdIII-ephsilonstar)*math.exp(-aIII*Hf);#From Eqn.(7)\n", "\n", " HfIII[i] = fsolve(solver_func2,1E-6)\n", " HdIII[i]=Ht-HfIII[i]; #Height of lower dense region\n", " #Length of bed at minimum fluidization condition\n", " LmfIII[i]=(1-ephsilonmf)**-1*(((ephsilonsdIII-ephsilonseIII[i])/aIII)+Ht*ephsilonsdIII-HfIII[i]*(ephsilonsdIII-ephsilonstar));\n", " i=i+1;\n", "\n", "#Mode IV\n", "i=0;\n", "Hfguess4=2;#Guess value of height\n", "aIV = zeros(n)\n", "ephsilonseIV = zeros(n)\n", "HdIV = zeros(n)\n", "HfIV = zeros(n)\n", "LmfIV = zeros(n)\n", "while i<n:\n", " aIV[i]=3./uo[i]; #Decay consmath.tant\n", " ephsilonseIV[i]=GsIV[i]/(rhos*uo[i]); #Solid holdup at exit\n", " def solver_func3(Hf): #Function defined for solving the system\n", " return ephsilonseIV[i]-ephsilonstar-(ephsilonsd[i]-ephsilonstar)*math.exp(-aIV[i]*Hf); #From Eqn.(7)\n", "\n", " HfIV[i] = fsolve(solver_func3,1E-6)\n", " HdIV[i]=Ht-HfIV[i];#Height of lower dense region\n", " #Length of bed at minimum fluidization condition\n", " LmfIV[i]=(1-ephsilonmf)**-1*(((ephsilonsd[i]-ephsilonseIV[i])/aIV[i])+Ht*ephsilonsd[i]-HfIV[i]*(ephsilonsd[i]-ephsilonstar));\n", " i=i+1;\n", "\n", "#OUTPUT\n", "print 'Mode I';\n", "print '\\tuom/s\\t\\tephsilonse-\\tHfm\\t\\tHdm\\t\\tGskg/m**2 s';\n", "i=0;\n", "while i<n:\n", " print '\\t%f\\t%f\\t%f\\t%f\\t%f'%(uo[i],ephsilonse[i],Hf[i],Hd[i],GsI[i]);\n", " i=i+1;\n", "\n", "print 'Mode II';\n", "print '\\tuom/s\\t\\tephsilonse-\\tHfm\\t\\tHdm\\t\\tLmfm';\n", "i=0;\n", "while i<n:\n", " print '\\t%f\\t%f\\t%f\\t%f\\t%f'%(uo[i],ephsilonseII[i],HfII[i],HdII[i],LmfII[i]);\n", " i=i+1;\n", "\n", "print 'Mode III';\n", "print '\\tGskg/m** s\\tephsilonse-\\tHfm\\t\\tHdm\\t\\tLmfm';\n", "i=0;\n", "while i<m:\n", " print '\\t%f\\t%f\\t%f\\t%f\\t%f'%(GsIII[i],ephsilonseIII[i],HfIII[i],HdIII[i],LmfIII[i]);\n", " i=i+1;\n", "\n", "print 'Mode IV';\n", "print '\\tuom/s\\t\\tGskg/m**2 s\\tephsilonse-\\tHfm\\t\\tLmfm';\n", "i=0;\n", "while i<n:\n", " print '\\t%f\\t%f\\t%f\\t%f\\t%f'%(uo[i],GsIV[i],ephsilonseIV[i],HfIV[i],LmfIV[i]);\n", " i=i+1;\n", "\n", "#====================================END OF PROGRAM ======================================================" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Mode I\n", "\tuom/s\t\tephsilonse-\tHfm\t\tHdm\t\tGskg/m**2 s\n", "\t2.000000\t0.192856\t0.025551\t9.974449\t385.711493\n", "\t4.000000\t0.017870\t3.930041\t6.069959\t71.481458\n", "\t6.000000\t0.037349\t3.117707\t6.882293\t224.094133\n", "Mode II\n", "\tuom/s\t\tephsilonse-\tHfm\t\tHdm\t\tLmfm\n", "\t2.000000\t0.050000\t1.038763\t8.961237\t2.002635\n", "\t4.000000\t0.025000\t3.070113\t6.929887\t1.499483\n", "\t6.000000\t0.016667\t5.940829\t4.059171\t1.121026\n", "Mode III\n", "\tGskg/m** s\tephsilonse-\tHfm\t\tHdm\t\tLmfm\n", "\t42.000000\t0.010500\t7.605043\t2.394957\t1.317154\n", "\t50.000000\t0.012500\t5.459126\t4.540874\t1.955596\n", "\t100.000000\t0.025000\t3.070113\t6.929887\t2.638966\n", "\t200.000000\t0.050000\t1.762341\t8.237659\t2.964631\n", "\t400.000000\t0.100000\t0.681101\t9.318899\t3.155670\n", "Mode IV\n", "\tuom/s\t\tGskg/m**2 s\tephsilonse-\tHfm\t\tLmfm\n", "\t2.000000\t70.000000\t0.035000\t1.352099\t3.706202\n", "\t4.000000\t100.000000\t0.025000\t3.070113\t2.638966\n", "\t6.000000\t120.000000\t0.020000\t5.129899\t1.946226\n" ] }, { "output_type": "stream", "stream": "stderr", "text": [ "/usr/lib/python2.7/dist-packages/scipy/optimize/minpack.py:227: RuntimeWarning: The iteration is not making good progress, as measured by the \n", " improvement from the last ten iterations.\n", " warnings.warn(msg, RuntimeWarning)\n" ] } ], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }