{ "metadata": { "name": "", "signature": "sha256:3cabb972e9b40cc3c2621280c95233b4046eb8d671e52d74d499a7e149a3d9aa" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 12 : Conversion of Gas in Catalytic Reactions" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 1, Page 293\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math\n", "\n", "#Variable declaration\n", "Kr=10.; #rate constant in m**3 gas/m**3 cat s\n", "D=2E-5; #Diffusion coefficient of gas in m**2/s\n", "dpbar=68.; #Average partilce size in micrometers\n", "ephsilonm=0.5; #Void fraction of fixed bed\n", "gammab=0.005; #Ratio of volume of dispersed solids to that of bubble phase\n", "ephsilonmf=0.55; #Void fraction at minimum fluidization condition\n", "umf=0.006; #Velocity at minimum fluidization condition in m/s\n", "db=0.04; #Equilibrium bubble size in m\n", "Lm=0.7; #Length of the bed in m\n", "uo=0.1; #Superficial gas velocity in m/s\n", "dbed=0.26; #Diameter of the bed in m\n", "g=9.81; #Acceleration due to gravity in square m/s**2\n", "\n", "#CALCULATION\n", "ubr=0.711*(g*db)**0.5;#Rise velocity of bubble from Eqn.(6.7)\n", "ub=uo-umf+ubr;#Velocity of bubbles in bubbling beds in Eqn.(6.8)\n", "Kbc=4.5*(umf/db)+5.85*((D**0.5*g**0.25)/db**(5./4));#Gas interchange coefficient between bubble and cloud from Eqn.(10.27)\n", "Kce=6.77*((D*ephsilonmf*0.711*(g*db)**0.5)/db**3)**0.5;#Gas interchange coefficient between emulsion and cloud from Eqn.(10.34)\n", "delta=uo/ub;#Fraction of bed in bubbles from Eqn.(6.29)\n", "fw=0.6;#Wake volume to bubble volume from Fig.(5.8)\n", "gammac=(1-ephsilonmf)*((3/(ubr*ephsilonmf/umf-1))+fw);#Volume of solids in cloud to that of the bubble from Eqn.(6.36)\n", "gammae=((1-ephsilonmf)*((1-delta)/delta))-gammab-gammac;#Volume of solids in emulsion to that of the bubble from Eqn.(6.35)\n", "ephsilonf=1-(1-delta)*(1-ephsilonmf);#Void fraction of fixed bed from Eqn.(6.20)\n", "Lf=(1-ephsilonm)*Lm/(1-ephsilonf);#Length of fixed bed from Eqn.(6.19)\n", "Krtou=Kr*Lm*(1-ephsilonm)/uo;#Dimensionless reaction rate group from Eqn.(5)\n", "Kf=gammab*Kr+1/((1/Kbc)+(1/(gammac*Kr+1/((1/Kce)+(1/(gammae*Kr))))));#Raction rate for fluidized bed from Eqn.(14)\n", "XA=math.exp(-1*Kf*Lf/ub);#Conversion from Eqn.(16)\n", "\n", "#OUTPUT\n", "print 'The dimnesionless reaction rate group: %f'%Krtou\n", "print 'The reaction rate for fluidized bed: %fs**-1'%Kf\n", "print 'Conversion: %f'%XA\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The dimnesionless reaction rate group: 35.000000\n", "The reaction rate for fluidized bed: 1.979872s**-1\n", "Conversion: 0.030056\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 2, Page 298\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "\n", "#Variable declaration\n", "umf=0.005; #Velocity at minimum fluidization condition in m/s\n", "ephsilonm=0.52; #Void fraction of fixed bed\n", "ephsilonmf=0.57; #Void fraction at minimum fluidization condition\n", "DA=8.1E-6; #Diffusion coefficient of gas in m**2/s\n", "DR=8.4E-6; #Diffusion coefficient of gas in m**2/s\n", "Lm=5; #Length of the bed in m\n", "dte=1; #Diameter of tube in m\n", "Kr1=1.5; #rate constant in m**3 gas/m**3 cat s\n", "Kr3=0.01; #rate constant in m**3 gas/m**3 cat s\n", "gammab=0.005; #Ratio of volume of dispersed solids to that of bubble phase\n", "uo=0.45; #Superficial gas velocity in m/s\n", "db=0.05; #Equilibrium bubble size in m from Fig.(6.8)\n", "ub=1.5; #Velocity of bubbles in bubbling bed in m/s from Fig.(6.11(a))\n", "g=9.81; #Acceleration due to gravity in square m/s**2\n", "\n", "#CALCULATION\n", "ubr=0.711*(g*db)**0.5;#Rise velocity of bubble from Eqn.(6.7)\n", "KbcA=4.5*(umf/db)+5.85*((DA**0.5*g**0.25)/db**(5.0/4));#Gas interchange coefficient between bubble and cloud from Eqn.(10.27)\n", "KceA=6.77*((DA*ephsilonmf*0.711*(g*db)**0.5)/db**3)**0.5;#Gas interchange coefficient between emulsion and cloud from Eqn.(10.34)\n", "KbcR=4.5*(umf/db)+5.85*((DR**0.5*g**0.25)/db**(5./4));#Gas interchange coefficient between bubble and cloud from Eqn.(10.27)\n", "KceR=6.77*((DR*ephsilonmf*0.711*(g*db)**0.5)/db**3)**0.5;#Gas interchange coefficient between emulsion and cloud from Eqn.(10.34)\n", "delta=uo/ub;#Fraction of bed in bubbles from Eqn.(6.29)\n", "fw=0.6;#Wake volume to bubble volume from Fig.(5.8)\n", "gammac=(1-ephsilonmf)*((3/(ubr*ephsilonmf/umf-1))+fw);#Volume of solids in cloud to that of the bubble from Eqn.(6.36)\n", "gammae=((1-ephsilonmf)*((1-delta)/delta))-gammab-gammac;#Volume of solids in emulsion to that of the bubble from Eqn.(6.35)\n", "ephsilonf=1-(1-delta)*(1-ephsilonmf);#Void fraction of fixed bed from Eqn.(6.20)\n", "Lf=(1-ephsilonm)*Lm/(1-ephsilonf);#Length of fixed bed from Eqn.(6.19)\n", "Krtou=Kr1*Lm*(1-ephsilonm)/uo;#Dimensionless reaction rate group from Eqn.(5)\n", "Kr12=Kr1;#Since the reactions are a special case of Denbigh scheme\n", "Kr34=Kr3;\n", "Kf1=(gammab*Kr12+1/((1/KbcA)+(1/(gammac*Kr12+1/((1/KceA)+(1/(gammae*Kr12)))))))*(delta/(1-ephsilonf));#Rate of reaction 1 for fluidized bed from Eqn.(14)\n", "Kf3=(gammab*Kr34+1/((1/KbcR)+(1/(gammac*Kr34+1/((1/KceR)+(1/(gammae*Kr34)))))))*(delta/(1-ephsilonf));#Rate of reaction 2 for fluidized bed from Eqn.(14)\n", "Kf12=Kf1;\n", "Kf34=Kf3;\n", "KfA=((KbcR*KceA/gammac**2+(Kr12+KceA/gammac+KceA/gammae)* \\\n", " (Kr34+KceR/gammac+KceR/gammae))*delta*KbcA*Kr12*Kr34/ \\\n", " (1-ephsilonf))/(((Kr12+KbcA/gammac)*(Kr12+KceA/gammae)+Kr12*KceA/gammac) \\\n", " *((Kr34+KbcR/gammac)*(Kr34+KceR/gammae)+Kr34*KceR/gammac));\n", " #Rate of raection with respect to A from Eqn.(35)\n", "KfAR=Kr1/Kr12*Kf12-KfA;#Rate of reaction from Eqn.(34)\n", "tou=Lf*(1-ephsilonf)/uo;#Residence time from Eqn.(5)\n", "XA=1-math.exp(-Kf1*tou);#Conversion of A from Eqn.(26)\n", "XR=1-((KfAR/(Kf12-Kf34))*(math.exp(-Kf34*tou)-math.exp(-Kf12*tou)));#Conversion of R from Eqn.(27)\n", "SR=(1-XR)/XA;#Selectivity of R\n", "\n", "#OUTPUT\n", "\n", "print 'Rate of reaction 1 for fluidized bed:%.4f'%Kf1\n", "print 'Rate of reaction 2 for fluidized bed:%.4f'%Kf3\n", "print 'Rate of reaction 1 with respect to A:%.4f'%KfA\n", "print 'The Conversion of Napthalene:%.0f percentage'%(XA*100);\n", "print 'The selectivity of Phthalic anhydride:%.0f percentage'%(SR*100);\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Rate of reaction 1 for fluidized bed:0.6007\n", "Rate of reaction 2 for fluidized bed:0.0099\n", "Rate of reaction 1 with respect to A:0.0058\n", "The Conversion of Napthalene:96 percentage\n", "The selectivity of Phthalic anhydride:95 percentage\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3, Page 302\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import math\n", "\n", "#Variable declaration\n", "Kr=3.; #rate constant in m**3 gas/m**3 cat s\n", "db=0.12; #Equilibrium bubble size in m\n", "D=9E-5; #Diffusion coefficient of gas in m**2/s\n", "dpbar=68; #Average partilce size in micrometers\n", "ephsilonm=0.42; #Void fraction of fixed bed\n", "uo=0.4; #Superficial gas velocity in m/s\n", "Lm=0.8; #Length of the bed in m\n", "ephsilonmf=0.45; #Void fraction at minimum fluidization condition\n", "umf=0.21; #Velocity at minimum fluidization condition in m/s\n", "gammab=0; #Ratio of volume of dispersed solids to that of bubble phase\n", "g=9.81; #Acceleration due to gravity in square m/s**2\n", "\n", "#CALCULATION\n", "ubr=0.711*(g*db)**0.5; #Rise velocity of bubble from Eqn.(6.7)\n", "ub=uo-umf+ubr; #Velocity of bubbles in bubbling beds in Eqn.(6.8)\n", "ubstar=ub+3*umf; #Rise velocity of the bubble gas from Eqn.(45)\n", "delta=(uo-umf)/(ub+umf);#Fraction of bed in bubbles from Eqn.(6.46)\n", "Kbe=4.5*(umf/db); #Interchange coefficient between bubble and emulsion from Eqn.(47)\n", "Lf=Lm*(1-ephsilonm)/((1-delta)*(1-ephsilonmf));#Length of fixed bed\n", "phi=((Kr/Kbe)**2*((1-ephsilonmf)-gammab*(umf/ubstar))**2+ \\\n", " ((delta/(1-delta))+umf/ubstar)**2+2*(Kr/Kbe)*((1-ephsilonmf) \\\n", " -gammab*(umf/ubstar))*((delta/(1-delta))-umf/ubstar))**0.5;\n", " #From Eqn.(52)\n", " \n", "q1=0.5*Kr/umf*((1-ephsilonmf)+gammab*(umf/ubstar))+0.5*Kbe/umf* \\\n", " (((delta/(1-delta))+umf/ubstar)-phi);#From Eqn.(50)\n", "q2=0.5*Kr/umf*((1-ephsilonmf)+gammab*(umf/ubstar))+0.5*Kbe/umf* \\\n", " (((delta/(1-delta))+umf/ubstar)+phi);#From Eqn.(50)\n", " \n", "si1=0.5-0.5*((1-delta)/delta)*(umf/ubstar-Kr/Kbe*((1-ephsilonmf)- \\\n", " gammab*(umf/ubstar))-phi);#From Eqn.(51)\n", "si2=0.5-0.5*((1-delta)/delta)*(umf/ubstar-Kr/Kbe*((1-ephsilonmf)- \\\n", " gammab*(umf/ubstar))+phi);#From Eqn.(51)\n", "XA=1-(delta/(1-delta))*(1/(uo*phi))*((1-si2)*(si1*delta*ubstar+ \\\n", " (1-delta)*umf)*math.exp(-q1*Lf)+(si1-1)* \\\n", " (si2*delta*ubstar+(1-delta)*umf)*math.exp(-q2*Lf));\n", " #Conversion from Eqn.(49)\n", " \n", "Krtou=Kr*Lm*(1-ephsilonm)/uo;#Dimensionless reaction rate group from Eqn.(5)\n", "\n", "#OUTPUT\n", "print 'COmparing the values of 1-XA = %f and Krtou = %f with Fig.(6), \\\n", "we can conlcude that this operating condition is shown as point \\\n", "A in Fig.(3)'%(1-XA,Krtou);\n", "print 'Line 2 gives the locus of conversions for different values of the \\\n", "reaction rate group for this fluidized contacting'\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "COmparing the values of 1-XA = 0.113843 and Krtou = 3.480000 with Fig.(6), we can conlcude that this operating condition is shown as point A in Fig.(3)\n", "Line 2 gives the locus of conversions for different values of the reaction rate group for this fluidized contacting\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 4, Page 305\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math\n", "\n", "#Variable declaration\n", "uo=0.25; #Superficial gas velocity in m/s\n", "db=0.025; #Equilibrium bubble size in m\n", "Kr=1.5; #rate constant in m**3 gas/m**3 cat s\n", "umf=0.21; #Velocity at minimum fluidization condition in m/s\n", "Lm=0.8; #Length of the bed in m\n", "ephsilonm=0.42; #Void fraction of fixed bed\n", "g=9.81; #Acceleration due to gravity in square m/s**2\n", "\n", "#CALCULATION\n", "ubr=0.711*(g*db)**0.5;#Rise velocity of bubble from Eqn.(6.7)\n", "ub=uo-umf+ubr;#Velocity of bubbles in bubbling beds in Eqn.(6.8)\n", "delta=(uo-umf)/(ub+2*umf);#Fraction of bed in bubbles from Eqn.(55) since ub/umf<<1 \n", "XA=1-math.exp(-Kr*Lm*((1-ephsilonm)/uo)*(umf/uo)*(1-delta));#Conversion from Eqn.(57)\n", "Krtou=Kr*Lm*(1-ephsilonm)/uo;#Dimensionless reaction rate group from Eqn.(5)\n", "\n", "\n", "#OUTPUT\n", "print 'Comparing the values of 1-XA = %f and Krtou = %f with Fig.(6), \\\n", "we can conlcude that this operating condition is shown \\\n", "as point B in Fig.(3)'%(1-XA,Krtou);\n", "print 'Line 3 gives the locus of conversions for different values \\\n", "of the reaction rate group for this fluidized contacting'\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Comparing the values of 1-XA = 0.108243 and Krtou = 2.784000 with Fig.(6), we can conlcude that this operating condition is shown as point B in Fig.(3)\n", "Line 3 gives the locus of conversions for different values of the reaction rate group for this fluidized contacting\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 5, Page 307\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "\n", "import math\n", "\n", "#Variable declaration\n", "uo=0.3; #Superficial gas velocity in m/s\n", "Lf=1.1; #Length of fixed bed in m\n", "Hf=1.2; #Length of freeboard in m\n", "db=0.04; #Equilibrium bubble size in m\n", "umf=0.006; #Velocity at minimum fluidization condition in m/s\n", "ephsilonmf=0.55; #Void fraction at minimum fluidization condition\n", "gammab=0.005; #Ratio of volume of dispersed solids to that of bubble phase\n", "Kr=10.; #rate constant in m**3 gas/m**3 cat s\n", "D=2E-5; #Diffusion coefficient of gas in m**2/s\n", "g=9.81; #Acceleration due to gravity in square m/s**2\n", "\n", "#CALCULATION\n", "ubr=0.711*(g*db)**0.5;#Rise velocity of bubble from Eqn.(6.7)\n", "ub=uo-umf+ubr;#Velocity of bubbles in bubbling beds in Eqn.(6.8)\n", "Kbc=4.5*(umf/db)+5.85*((D**0.5*g**0.25)/db**(5./4));\n", "#Gas interchange coefficient between bubble and cloud from Eqn.(10.27)\n", "\n", "Kce=6.77*((D*ephsilonmf*0.711*(g*db)**0.5)/db**3)**0.5;\n", "#Gas interchange coefficient between emulsion and cloud from Eqn.(10.34)\n", "\n", "delta=uo/ub;#Fraction of bed in bubbles from Eqn.(6.29)\n", "ephsilonf=1-(1-delta)*(1-ephsilonmf);#Void fraction of fixed bed from Eqn.(6.20)\n", "fw=0.6;#Wake volume to bubble volume from Fig.(5.8)\n", "gammac=(1-ephsilonmf)*((3.0/(ubr*ephsilonmf/umf-1))+fw);\n", "#Volume of solids in cloud to that of the bubble from Eqn.(6.36)\n", "\n", "gammae=((1-ephsilonmf)*((1-delta)/delta))-gammab-gammac;\n", "#Volume of solids in emulsion to that of the bubble from Eqn.(6.35)\n", "\n", "Kf=(gammab*Kr)+1.0/((1.0/Kbc)+(1.0/(gammac*Kr+1.0/((1.0/Kce)+(1.0/(gammae*Kr))))));\n", "#Raction rate for fluidized bed from Eqn.(14)\n", "\n", "XA=1-math.exp(-1*Kf*Lf/ub);#Conversion at the top of dense bed from Eqn.(16)\n", "etabed=(Kf*delta)/(Kr*(1-ephsilonf));#Reactor efficiency from Eqn.(22)\n", "a=0.6/uo #Since uoa = 0.6s**-1 from Fig.(5)\n", "adash=6.62; #From Fig.(5)\n", "XA1=1-1.0/(math.exp(((1-ephsilonf)*Kr/(uo*a))*((1-math.exp(-a*Hf))- \\\n", " ((1-etabed)/(1+(adash/a)))*(1-math.exp(-(a+adash)*Hf)))));#Conversion from Eqn.(64)\n", "XA2=1-(1.0-XA1)*(1.0-XA);#Conversion at the exit from Eqn.(64)\n", "\n", "#OUTPUT\n", "print 'The conversion:'\n", "print '\\tAt the top pf the dense bed: %d percentage'%(XA1*100)\n", "print '\\tAt the reactor exit: %d percentage'%(XA2*100);\n", "\n", "#Disclaimer: The value of kf deviate from the one given in textbook, where as it is close to the value obtained by manual calculation. \n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The conversion:\n", "\tAt the top pf the dense bed: 96 percentage\n", "\tAt the reactor exit: 99 percentage\n" ] } ], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }