{
 "metadata": {
  "name": "",
  "signature": "sha256:69d28aca1d8ec525f15842df275d6e6c6108139c968df651029692a500222ce7"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter  11  : Particle to Gas Mass and Heat Transfer"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "%matplotlib inline"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n",
        "For more information, type 'help(pylab)'.\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 1, Page 265\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "db=0.37;         #Equilibrium bubble size in cm\n",
      "dp=0.028;        #Particle size in cm\n",
      "rhos=1.06;       #Density of solids in g/cc\n",
      "ephsilonmf=0.5;  #Void fraction at minimum fluidization condition\n",
      "phis=0.4;        #Sphericity of solids\n",
      "gammab=0.005;    #Ratio of volume of dispersed solids to that of bubble phase\n",
      "rhog=1.18E-3;    #Density of air in g/cc\n",
      "myu=1.8E-4;      #Viscosity of gas in g/cm s\n",
      "D=0.065;         #Diffusion coefficient of gas in cm**2/s\n",
      "Sc=2.35;         #Schmidt number\n",
      "etad=1;          #Adsorption efficiency factor\n",
      "y=1;\n",
      "umf=1.21;        #Velocity at minimum fluidization condition in cm/s\n",
      "ut=69;           #Terminal velocity in cm/s\n",
      "g=980;           #Acceleration due to gravity in square cm/s**2\n",
      "uo=[10,20,30,40,50];#Superficial gas velocity in cm/s\n",
      "\n",
      "#CALCULATION\n",
      "n=len(uo);\n",
      "i=0;\n",
      "Rept=(dp*ut*rhog)/myu;\n",
      "Shstar=2+(0.6*(Rept**0.5)*(Sc**(1/3)));#Sherwood no. from Eqn.(1)\n",
      "Kbc=4.5*(umf/db)+5.85*((D**0.5*g**0.25)/db**(5/4));#Gas interchange coefficient between bubble and cloud from Eqn.(10.27)\n",
      "ubr=0.711*(g*db)**0.5;#Rise velocity of the bubble\n",
      "x = [0,0,0,0,0]\n",
      "Shbed = [0,0,0,0,0]\n",
      "Rep = [0,0,0,0,0]\n",
      "while i<n:\n",
      "    x[i]=(uo[i]-umf)/(ubr*(1-ephsilonmf));#The term delta/(1-epshilonf) after simplification\n",
      "    Shbed[i]=x[i]*((gammab*Shstar*etad)+((phis*dp**2*y)/(6*D))*Kbc);#Sherwood no. from Eqn.(11)\n",
      "    Rep[i]=(dp*uo[i]*rhog)/myu;#Reynolds of the particle\n",
      "    i=i+1;\n",
      "\n",
      "#OUTPUT\n",
      "print 'The desired result is the relationship between Shbed and Rep  The points gives a straight line of the form y=mx+c'\n",
      "print 'Rep',\n",
      "print '\\t\\tShbed'\n",
      "i=0;\n",
      "while i<n:\n",
      "    print '%f'%Rep[i],\n",
      "    print '\\t%f'%Shbed[i]\n",
      "    i=i+1;\n",
      "import matplotlib.pyplot as plt\n",
      "plt.plot(Rep,Shbed);\n",
      "plt.xlabel(\"Rep\");\n",
      "plt.ylabel(\"Shbed\");\n",
      "\n",
      "plt.show()"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Populating the interactive namespace from numpy and matplotlib\n",
        "The desired result is the relationship between Shbed and Rep  The points gives a straight line of the form y=mx+c\n",
        "Rep \t\tShbed\n",
        "1.835556 \t0.065762\n",
        "3.671111 \t0.140576\n",
        "5.506667 \t0.215391\n",
        "7.342222 \t0.290206\n",
        "9.177778 \t0.365020\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEMCAYAAADeYiHoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9YVHXe//HnKJSZpWlkyFCoYOAPkARZaykqlNVWbsXq\nxixN0UjXq612225rt7Td2uiue3OzWir7YRmyZYmVsmTKav4AFdS+64/IZEXSNNMSoZDx8/3j5Kwk\nKqMDZwZej+viumaY84EXVzbveX/O53yOwxhjEBER+Yk2dgcQERHfpAIhIiINUoEQEZEGqUCIiEiD\nVCBERKRBKhAiItKgJikQ+fn5REZGEhERQVZW1kmPW7t2LQEBAcyfP9/jsSIi0rQc3r4OwuVyccUV\nV7BkyRJCQkKIj48nJyeHqKioE44bPHgw7du3Z/z48YwaNarRY0VEpOl5vYMoLi4mPDycsLAwAgMD\nSU9PJy8v74Tjnn32WW666SaCgoI8HisiIk3P6wWisrKS0NBQ93On00llZeUJx+Tl5TF58mQAHA5H\no8eKiEjzCPD2Dzz2Zn8q99xzD0888QQOhwNjDMdmuRoz1pPjRESkPk/OKni9gwgJCaGiosL9vKKi\nAqfTWe+Y9evXk56eTvfu3Zk/fz5Tpkxh4cKFjRp7zLHC4itfjzzyiO0Z/CWXMilTa8jli5k85fUO\nIi4ujrKyMsrLy+nWrRu5ubnk5OTUO+aLL75wPx4/fjzDhw8nNTWVurq6044VEZHm4fUCERAQwKxZ\ns0hJScHlcpGRkUFUVBTZ2dkAZGZmejxWRESan9cLBMDQoUMZOnRove+drDC8+uqrpx3rD5KSkuyO\n0CBfzKVMjaNMjeeLuXwxk6e8fh1Eczh2cltERBrP0/dObbUhIiINUoEQEZEGqUCIiEiDVCBERKRB\nKhAiItIgFQgREWmQCoSIiDRIBUJERBqkAiEiIg1SgRARkQapQIiISINUIEREpEEqECIi0iAVCBER\naZAKhIiINEgFQkSkmZSXw+9+B0eP2p2kcVQgRESamDHw+usQHw9BQXanabwmueWoiIhY9u+HzEzY\ntg2WLIGYGLsTNZ46CBGRJpKfD9HRcPnlsHatfxUHUAchIuJ11dXWuYaFC+GNN+D66+1OdGbUQYiI\neNH69TBgAHzzDWzc6L/FAVQgRES8oq4OHnsMhg6Fhx+Gt96Ciy6yO9XZaZICkZ+fT2RkJBEREWRl\nZZ3wel5eHjExMcTGxjJgwACWLl3qfi0sLIzo6GhiY2MZOHBgU8QTEfGqL76Aa6+FpUutDmL0aLsT\neYfDGGO8+QNdLhdXXHEFS5YsISQkhPj4eHJycoiKinIfc/jwYc4//3wAPv30U0aOHMnnn38OQPfu\n3Vm/fj2dO3c+eWiHAy/HFhHxmDHw6qvwwAPw4IPw619DGx+el/H0vdPrJ6mLi4sJDw8nLCwMgPT0\ndPLy8uoViGPFAaCqqoqLL7643s/Qm7+I+Lp9++DOO63uYdky6NvX7kTe5/UCUVlZSWhoqPu50+mk\nqKjohOMWLFjAtGnT2L17NwUFBe7vOxwOkpOTadu2LZmZmUyaNKnB3zN9+nT346SkJJKSkrz2N4iI\nnMqiRTBxItx2G8ybB+eea3eihhUWFlJYWHjG471eIBwOR6OOGzFiBCNGjGDFihXcfvvtbNu2DYCV\nK1cSHBzMvn37GDx4MJGRkSQmJp4w/vgCISLSHA4fht/+FhYvhpwc67yDL/vph+cZM2Z4NN7rs2Uh\nISFUVFS4n1dUVOB0Ok96fGJiInV1dezfvx+A4OBgAIKCghg5ciTFxcXejigi4rHiYrjySqtIbNzo\n+8XBG7xeIOLi4igrK6O8vJza2lpyc3NJTU2td8z27dvd5xlKSkoA6NKlC9XV1Rw6dAiwTmQXFBTQ\nr18/b0cUEWm0ujp49FEYPhz+9CeYMwc6drQ7VfPw+hRTQEAAs2bNIiUlBZfLRUZGBlFRUWRnZwOQ\nmZnJ/PnzmTNnDoGBgXTo0IF58+YBsGfPHtLS0gCoq6tjzJgxDBkyxNsRRUQapawMbr8dLrwQSkog\nJMTuRM3L68tcm4OWuYpIUzIGXnrJWrr68MMwdapvL19tLNuXuYqI+LOvvoJJk6CiApYvh9697U5k\nnxZQE0VEvOP996F/f+uahqKi1l0cQB2EiAhVVXDfffDRR/D22/Dzn9udyDeogxCRVm31aqtrOHLE\nWr6q4vAf6iBEpFU6cgT++EfIzobnn4dRo+xO5HtUIESk1dm2zVq+2qULbNgAP16fKz+hKSYRaTWM\ngRdegKuvhnHjrD2VVBxOTh2EiLQKe/ZARoa1jPWTTyAy0u5Evk8dhIi0eAsWWCeir7zSOimt4tA4\n6iBEpMU6dMi6ic8//wnvvgtXXWV3Iv+iDkJEWqSVK62uoU0b60S0ioPn1EGISItSWwszZsDs2fC3\nv8GIEXYn8l8qECLSYmzZYt3lLTjY6houvdTuRP5NU0wi4veMgVmzIDHRuk/0+++rOHiDOggR8Wtf\nfgnjx8PBg7BqFfTqZXeilkMdhIj4rXfegdhYGDTIurZBxcG71EGIiN/59lu4+26rY1i4EBIS7E7U\nMqmDEBG/smKFtXy1XTsoLVVxaErqIETEL/zwAzzyCLz+Orz4Igwfbneilk8FQkR83r/+BWPGwGWX\nWfdsuOQSuxO1DppiEhGfdfQozJwJSUkwdSrk5ak4NCd1ECLik3btspavVlVZG+yFh9udqPVRByEi\nPic319p59ZprrJPSKg72aJICkZ+fT2RkJBEREWRlZZ3wel5eHjExMcTGxjJgwACWLl3a6LEi0nId\nPGhtlfHww/Dhh/CHP0CA5jnsY7ysrq7O9OzZ0+zYscPU1taamJgYs3nz5nrHVFVVuR9v2rTJ9OzZ\ns9FjjTGmCWKLiM2WLjXmssuMmTzZmOPeIsSLPH3v9HoHUVxcTHh4OGFhYQQGBpKenk5eXl69Y84/\n/3z346qqKi6++OJGjxWRluWHH+D++63O4W9/g+efh+PeIsRGXm/eKisrCQ0NdT93Op0UFRWdcNyC\nBQuYNm0au3fvpqCgwKOxANOnT3c/TkpKIikpyTt/gIg0m08/tZavhodby1d//KwoXlJYWEhhYeEZ\nj/d6gXA4HI06bsSIEYwYMYIVK1Zw++23s3XrVo9+z/EFQkT8y9Gj8Je/wBNPwJNPwh13QCPfOsQD\nP/3wPGPGDI/Ge71AhISEUFFR4X5eUVGB0+k86fGJiYnU1dXxzTff4HQ6PRorIv6nogLGjbNu7FNU\nBD162J1ITsbr5yDi4uIoKyujvLyc2tpacnNzSU1NrXfM9u3bsc6XQElJCQBdunRp1FgR8V9vvQUD\nBkBysnWfaBUH3+b1DiIgIIBZs2aRkpKCy+UiIyODqKgosrOzAcjMzGT+/PnMmTOHwMBAOnTowLx5\n8045VkT824EDMGWKdZ4hP9+6xkF8n8Mc+yjvRxwOB34YW6RV+vhj6xzDyJGQlQXnnWd3otbL0/dO\nXYIiIk3i++/hwQfh73+H2bMhJcXuROIpFQgR8bqNG63lq1FR1uMuXexOJGdCezGJiNe4XNay1eRk\n+N3vrO5BxcF/qYMQEa/4979h7FgwBtauhbAwuxPJ2VIHISJnxRiYMwfi4uDGG2HZMhWHlkIdhIic\nsf374a67YMsW+Ogj617R0nKogxCRM1JQADEx4HTCunUqDi2ROggR8UhNDTzwALz3Hrz2mnVCWlom\ndRAi0mglJdZWGXv3WstXVRxaNhUIETktlwv+/Gf4xS/g97+HefOgc2e7U0lT0xSTiJzSjh1w++0Q\nGGida7jsMrsTSXNRByEiDTIGXn0VBg609lH6+GMVh9ZGHYSInODrr+HOO+Hzz63CEB1tdyKxgzoI\nEaln8WJr+WrPnlBcrOLQmqmDEBEAqqvh/vvhgw9g7lzQbd5FHYSIsHYtxMbCt99ay1dVHATUQYi0\nanV11vLVZ5+1vv77v+1OJL5EBUKkldq+3Vq+2r69dQGc02l3IvE1mmISaWWMgZdfhp/9zOoYCgpU\nHKRh6iBEWpG9e2HSJNi5EwoLoU8fuxOJL1MHIdJKfPihteNqVBSsWaPiIKenDkKkhTt8GH7zG/jH\nP6w9lK65xu5E4i/UQYi0YEVFVtdQUwMbNqg4iGeapEDk5+cTGRlJREQEWVlZJ7w+d+5cYmJiiI6O\n5uqrr2bTpk3u18LCwoiOjiY2NpaBAwc2RTyRFu/IEZg+HVJTrWWsr78OHTvanUr8jdenmFwuF1On\nTmXJkiWEhIQQHx9PamoqUVFR7mN69OjB8uXL6dixI/n5+dx5552sWbMGAIfDQWFhIZ21l7DIGSkr\ng9tug4sugtJS6NbN7kTir7zeQRQXFxMeHk5YWBiBgYGkp6eTl5dX75hBgwbR8cePMwkJCezatave\n68YYb8cSafGMgexsuOoq6/qGxYtVHOTseL2DqKysJDQ01P3c6XRSVFR00uNnz57NsGHD3M8dDgfJ\nycm0bduWzMxMJk2a1OC46dOnux8nJSWRpL0BpBX76iuYOBG+/BKWL7dWKokUFhZSWFh4xuO9XiAc\nDkejj122bBmvvPIKK1eudH9v5cqVBAcHs2/fPgYPHkxkZCSJiYknjD2+QIi0Znl5cNddMGECzJ8P\n55xjdyLxFT/98DxjxgyPxnu9QISEhFBRUeF+XlFRgbOByzQ3bdrEpEmTyM/P56KLLnJ/Pzg4GICg\noCBGjhxJcXFxgwVCpLWrqoJ77oGlS+Gdd+Dqq+1OJC3NSQvE008/7X7scDjc5wWOdQj33Xdfg+Pi\n4uIoKyujvLycbt26kZubS05OTr1jdu7cSVpaGm+++Sbh4eHu71dXV+Nyubjgggs4fPgwBQUFPPLI\nI2f+14m0UKtXW+cZrr3W2n31ggvsTiQt0UkLxKFDh3A4HGzbto21a9eSmpqKMYYPPvjglMtPAwIC\nmDVrFikpKbhcLjIyMoiKiiI7OxuAzMxMHn30UQ4cOMDkyZMBCAwMpLi4mD179pCWlgZAXV0dY8aM\nYciQId78e0X82pEj8Oij8NJL8MIL1q1ARZqKw5xmyVBiYiKLFi3igh8/ohw6dIhhw4axYsWKZgnY\nkOM7GpHWYts2a/lqUBC88gpceqndicTfePreedplrnv37iUwMND9PDAwkL17955ZOhHxmDHw3HPW\nOYYJE6w9lVQcpDmc9iT12LFjGThwIGlpaRhjWLBgAePGjWuObCKt3u7dVlH4+mtYuRKuuMLuRNKa\nnHaKCWD9+vV88sknAFxzzTXExsY2ebBT0RSTtAbvvgtTpsCdd8If/gDHNfIiZ8TT985GLXOtrq7m\nggsuYMKECezbt48dO3bQvXv3Mw4pIif33Xfw61/DihWwYIF1Yx8RO5z2HMT06dN58skneeKJJwCo\nra3ltttua/JgIq3RJ59Yu68GBlq7r6o4iJ1O20G89957lJaWMmDAAMC6EO7QoUNNHkykNamttXZf\nffVVaz+l1FS7E4k0okCce+65tGnzn0bj8OHDTRpIpLXZvNlavhoSYnUNXbvanUjEctoppptvvpnM\nzEwOHjzIiy++yA033MDEiRObI5tIi3b0KPz1r9bV0HfdBQsXqjiIb2nUKqaCggIKCgoASElJYfDg\nwU0e7FS0ikn8XWUljB9vnZB+4w2IiLA7kbQGTbKKqV+/ftTU1OBwOOjXr98ZhxMRePttmDoVfvUr\nePBBCNCd4cVHnXaK6eWXXyYhIYF3332X+fPnk5CQwOzZs5sjm0iL8u23MHYsPPQQvP8+PPywioP4\nttNOMfXq1YvVq1fTpUsXAPbv38+gQYP47LPPmiVgQzTFJP5m+XKrOAwdCk89Beefb3ciaY28PsV0\n8cUX06FDB/fzDh06cPHFF59ZOpFW5ocfrE7hjTesHVhvvNHuRCKNd9r7QYSHh5OQkMCIESMAyMvL\nIzo6unnSifix//f/rOWrYWHWPRuCguxOJOKZ094PomfPnvTo0cN9o6D/+q//8ui2oiKtzdGjMHMm\nPP44ZGVZq5X0v4z4o0Ytc/U1OgchvmrXLrjjDqipsaaVevSwO5HIf3j9HMS2bdt46qmnKC8vp66u\nzv1Lli5deuYpRVqgefPg7rutjfYeeEArlMT/nbaDiI6OZvLkyVx55ZW0bdvWGuRwuPdmsoM6CPEl\nBw9a1zSsXw9vvglxcXYnEmmY1zuIwMBA972jRaS+pUutKaXUVCgpgfbt7U4k4j0n7SC++eYbjDE8\n++yzBAUFkZaWxrnnnut+vXPnzs0W8qfUQYjdvv/euuAtNxdefhl+8Qu7E4mcnqfvnSctEGFhYadc\nrbRjxw7P03mJCoTYadMma/lqr17W1tw/XkMq4vO8ViCKi4sJDQ0lODgYgNdee4358+cTFhbG9OnT\n3VdW20EFQuxw9Cj83/9ZS1efesq6MlrLV8WfePreedK9mDIzM91TSsuXL2fatGnccccddOzYkczM\nzLNPKuJHdu6EG26AvDwoLoZx41QcpOU7aYE4evSo+zxDbm4umZmZjBo1ij/96U+UlZWd8ofm5+cT\nGRlJREQEWVlZJ7w+d+5cYmJiiI6O5uqrr2bTpk2NHivSnIyBuXOtlUkpKVBYCLodu7Qa5iT69Olj\namtrjTHG9OrVyxQWFrpf692798mGmbq6OtOzZ0+zY8cOU1tba2JiYszmzZvrHbNq1Spz8OBBY4wx\nixcvNgkJCY0e++OU2El/v4i37N9vzC23GBMVZUxJid1pRM6ep++dJ+0gRo8ezbXXXktqairt27cn\nMTERgLKyMjp16nTSglNcXEx4eDhhYWEEBgaSnp5OXl5evWMGDRpEx44dAUhISGDXrl2NHivSHJYs\ngZgYCA62rm+IjbU7kUjzO+l1EA899BDXX389e/bsYciQIe77Upsfl76eTGVlJaGhoe7nTqeToqKi\nkx4/e/Zshg0b5vHY6dOnux8nJSWRlJR00t8h0lg1NTBtGsyfD6+8AjbfPFHkrBQWFlJYWHjG4095\nodygQYNO+F6vXr1O+QM92chv2bJlvPLKK6xcudLjsccXCBFv2LABxoyBvn2t3VdtvNRHxCt++uF5\nxowZHo0/7R3lPBUSEkJFRYX7eUVFBU6n84TjNm3axKRJk1i4cCEXXXSRR2NFvMnlspauDhlidQ/z\n5qk4iEAj70ntibi4OMrKyigvL6dbt27k5uaSk5NT75idO3eSlpbGm2++SXh4uEdjRbypvNy6nqFN\nG1i7Fi6/3O5EIr7D6wUiICCAWbNmkZKSgsvlIiMjg6ioKLKzswHr+opHH32UAwcOuPd4CgwMpLi4\n+KRjRbzNGJgzB377W2vn1XvvhR/3ohSRH+l+ENLq7N8PmZmwbZt1jYNukCithdeupBZpif7xD2v5\n6uWXW1NKKg4iJ6dbmkirUF1tTSXl5VlTS9dfb3ciEd+nDkJavPXrYcAAa2pp40YVB5HGUoGQFsvl\ngsceg6FD4eGH4a234McV1SLSCJpikhbpiy/g9tuhXTurgzjuAn0RaSR1ENKiGGNtkZGQADfdBB99\npOIgcqbUQUiLsW8f3Hmn1T0sW2ZtmSEiZ04dhLQIixZZy1cjIqwb+qg4iJw9dRDi1w4ftq6GXrwY\ncnLg2mvtTiTScqiDEL9VXAxXXmkViY0bVRxEvE0dhPidujp4/HF47jmYNQtuvtnuRCItkwqE+JWy\nMmv56oUXQkkJhITYnUik5dIUk/gFY+DFF2HQILj1VsjPV3EQaWrqIMTn7d0LEydCRQUsXw69e9ud\nSKR1UAchPu39963lq337QlGRioNIc1IHIT6pqgruu8+6Evrtt+HnP7c7kUjrow5CfM6aNRAbC0eO\nWMtXVRxE7KEOQnzGkSPwxz9CdjY8/zyMGmV3IpHWTQVCfMJnn8Ftt0GXLrBhAwQH251IRDTFJLYy\nBl54Aa66CsaNs/ZUUnEQ8Q3qIMQ2e/ZARgZ89RV88glERtqdSESOpw5CbLFgAfTvb+2ltHq1ioOI\nL1IHIc3q0CH49a/hn/+Ed9+1ppZExDc1SQeRn59PZGQkERERZGVlnfD61q1bGTRoEO3atePpp5+u\n91pYWBjR0dHExsYycODApognNlm50uoa2rSxTkSrOIj4Nq93EC6Xi6lTp7JkyRJCQkKIj48nNTWV\nqKgo9zFdunTh2WefZcGCBSeMdzgcFBYW0rlzZ29HE5vU1sKMGTB7NvztbzBihN2JRKQxvN5BFBcX\nEx4eTlhYGIGBgaSnp5OXl1fvmKCgIOLi4ggMDGzwZxhjvB1LbLJli7XB3saNVteg4iDiP7zeQVRW\nVhJ63F3inU4nRUVFjR7vcDhITk6mbdu2ZGZmMmnSpAaPmz59uvtxUlISSUlJZxpZmoAx1v0apk+H\nxx6z7hXtcNidSqR1KSwspLCw8IzHe71AOM7yXWDlypUEBwezb98+Bg8eTGRkJImJiSccd3yBEN/y\n5ZcwYQJ88w2sWgW9etmdSKR1+umH5xkzZng03utTTCEhIVRUVLifV1RU4HQ6Gz0++MerpIKCghg5\nciTFxcXejihN6J13rH2UfvYz66S0ioOI//J6gYiLi6OsrIzy8nJqa2vJzc0lNTW1wWN/eq6hurqa\nQ4cOAXD48GEKCgro16+ftyNKE/j2W+tK6GnTYOFCa2rpJKeYRMRPeH2KKSAggFmzZpGSkoLL5SIj\nI4OoqCiys7MByMzMZM+ePcTHx/Pdd9/Rpk0bZs6cyebNm9m7dy9paWkA1NXVMWbMGIYMGeLtiOJl\nK1bA2LEwZAiUlkKHDnYnEhFvcBg/XDLkcDi00skH1NbCww/D669btwMdPtzuRCJyKp6+d+pKajkj\n//qXtftqaKi1hPWSS+xOJCLepr2YxCNHj8LMmZCUBL/6FeTlqTiItFTqIKTRdu2C8eOt24GuXg3h\n4XYnEpGmpA5CGiU319p59ZprrJPSKg4iLZ86CDmlgwdh6lRYuxY+/BDi4+1OJCLNRR2EnFRhIcTE\nwIUXQkmJioNIa6MOQk7www/w+9/DW2/Byy/D0KF2JxIRO6hASD2ffgpjxljnGDZuhIsvtjuRiNhF\nU0wCWMtXn34arr8e7r0X5s9XcRBp7dRBCBUV1j5KtbVQVAQ9etidSER8gTqIVu6tt2DAAEhOtu4T\nreIgIseog2ilDhyAKVOs8wz5+dY1DiIix1MH0Qp9/LG1fDUoCNavV3EQkYapg2hFvv8eHnwQ/v53\nmD0bUlLsTiQivkwFopXYuNFavhoVZT3u0sXuRCLi6zTF1MK5XPDkk9ZJ6N/9zuoeVBxEpDHUQbRg\n//63dac3Y6y9lMLC7E4kIv5EHUQLZAy88QbExcGNN8KyZSoOIuI5dRAtzP79MHkybN4MH30E/fvb\nnUhE/JU6iBakoMBavhoSAuvWqTiIyNlRB9EC1NTAAw/Ae+/Ba69ZJ6RFRM6WOgg/V1JibZWxd6+1\nfFXFQUS8RQXCT7lc8Oc/wy9+Yd27IScHOne2O5WItCRNUiDy8/OJjIwkIiKCrKysE17funUrgwYN\nol27djz99NMejRXYsQOuvdY657BuHdx6KzgcdqcSkZbG6wXC5XIxdepU8vPz2bx5Mzk5OWzZsqXe\nMV26dOHZZ5/lt7/9rcdjWzNj4NVXYeBAGDnS2lPpssvsTiUiLZXXC0RxcTHh4eGEhYURGBhIeno6\neXl59Y4JCgoiLi6OwMBAj8e2Vl9/DaNGwV/+YhWG3/wG2miCUESakNdXMVVWVhIaGup+7nQ6KSoq\n8vrY6dOnux8nJSWRlJR0Rnn9weLFMHEijB5t3b+hXTu7E4mIPygsLKSwsPCMx3u9QDjOYjLck7HH\nF4iWqroa7r8fPvgA3nwTrrvO7kQi4k9++uF5xowZHo33+iRFSEgIFRUV7ucVFRU4nc4mH9vSrF0L\nsbHw7bfW8lUVBxFpbl4vEHFxcZSVlVFeXk5tbS25ubmkpqY2eKwx5ozHtlR1dfDHP1p7KD36qNU5\ndOpkdyoRaY28PsUUEBDArFmzSElJweVykZGRQVRUFNnZ2QBkZmayZ88e4uPj+e6772jTpg0zZ85k\n8+bNdOjQocGxrcX27XD77dC+vXUBXCttnkTERzjMTz/G+wGHw3FC9+HPjLHu8DZtGjz0ENx9t1Yo\niYj3efreqb2YbLZ3L0yaZN27Ydky6NvX7kQiIhZ9TrXRBx9YO65GRUFRkYqDiPgWdRA2OHwY7rsP\n/vEPmDcPrrnG7kQiIidSB9HMioqsruH7763lqyoOIuKr1EE0kyNH4LHH4IUX4Lnn4Kab7E4kInJq\nKhDNoKwMbrvNup6htBS6dbM7kYjI6WmKqQkZA9nZcNVV1vUN+fkqDiLiP9RBNJGvvrI22KushOXL\nrZVKIiL+RB1EE8jLs05ER0fDmjUqDiLin9RBeNGhQ3DvvbB0KbzzDlx9td2JRETOnDoIL1m92uoa\njh6FDRtUHETE/6mDOEtHjli7rr70Ejz/PKSl2Z1IRMQ7VCDOwrZt1vLVoCBr+WpwsN2JRES8R1NM\nZ8AY62K3q6+GCRPgww9VHESk5VEH4aHdu62i8PXXsHIlXHGF3YlERJqGOggP/Otf1m1A4+Nh1SoV\nBxFp2XTDIA8cOQKffgpXXtnsv1pE5Kx5+t6pAiEi0kp4+t6pKSYREWmQCoSIiDRIBUJERBqkAiEi\nIg1qkgKRn59PZGQkERERZGVlNXjM3XffTUREBDExMZSWlrq/HxYWRnR0NLGxsQwcOLAp4jWJwsJC\nuyM0yBdzKVPjKFPj+WIuX8zkKa8XCJfLxdSpU8nPz2fz5s3k5OSwZcuWescsWrSIzz//nLKyMl58\n8UUmT57sfs3hcFBYWEhpaSnFxcXejtdkfPUfgy/mUqbGUabG88VcvpjJU14vEMXFxYSHhxMWFkZg\nYCDp6enk5eXVO2bhwoWMGzcOgISEBA4ePMhXX33lfl1LWEVE7Of1AlFZWUloaKj7udPppLKystHH\nOBwOkpOTiYuL46WXXvJ2PBERaSzjZe+8846ZOHGi+/kbb7xhpk6dWu+YX/7yl+aTTz5xP7/hhhvM\n+vXrjTHa1M3bAAAIQElEQVTGVFZWGmOM2bt3r4mJiTHLly8/4XcA+tKXvvSlrzP48oTXN+sLCQmh\noqLC/byiogKn03nKY3bt2kVISAgA3bp1AyAoKIiRI0dSXFxMYmJivfFGU1AiIk3O61NMcXFxlJWV\nUV5eTm1tLbm5uaSmptY7JjU1lTlz5gCwZs0aOnXqRNeuXamurubQoUMAHD58mIKCAvr16+ftiCIi\n0ghe7yACAgKYNWsWKSkpuFwuMjIyiIqKIjs7G4DMzEyGDRvGokWLCA8P5/zzz+fVV18FYM+ePaT9\neEu2uro6xowZw5AhQ7wdUUREGsOjCSmbjR8/3lxyySWmb9++dkdx27lzp0lKSjK9e/c2ffr0MTNn\nzrQ7kqmpqTEDBw40MTExJioqyvzP//yP3ZHc6urqTP/+/c0vf/lLu6O4XX755aZfv36mf//+Jj4+\n3u44xhhjDhw4YEaNGmUiIyNNVFSUWb16ta15tm7davr37+/+uvDCC33i3/rjjz9uevfubfr27WtG\njx5tvv/+e7sjmWeeecb07dvX9OnTxzzzzDO25Wjo/XL//v0mOTnZREREmMGDB5sDBw6c8mf4VYFY\nvny5KSkp8akCsXv3blNaWmqMMebQoUOmV69eZvPmzTanMubw4cPGGGOOHDliEhISzIoVK2xOZHn6\n6afNrbfeaoYPH253FLewsDCzf/9+u2PUM3bsWDN79mxjjPXf8ODBgzYn+g+Xy2UuvfRSs3PnTltz\n7Nixw3Tv3t1dFG655Rbz2muv2Zrp008/NX379jU1NTWmrq7OJCcnm88//9yWLA29X95///0mKyvL\nGGPME088YR544IFT/gy/2mojMTGRiy66yO4Y9Vx66aX0798fgA4dOhAVFcWXX35pcypo3749ALW1\ntbhcLjp37mxzImsxwqJFi5g4caLPLTTwpTzffvstK1asYMKECYA1bduxY0ebU/3HkiVL6NmzZ72l\n6na48MILCQwMpLq6mrq6Oqqrq92LXeyydetWEhISaNeuHW3btuXaa6/l3XfftSVLQ++Xx1+DNm7c\nOBYsWHDKn+FXBcLXlZeXU1paSkJCgt1ROHr0KP3796dr165cd9119O7d2+5I3Hvvvfzv//4vbdr4\n1j87X7v2ZseOHQQFBTF+/HiuvPJKJk2aRHV1td2x3ObNm8ett95qdww6d+7Mb37zGy677DK6detG\np06dSE5OtjVT3759WbFiBd988w3V1dV8+OGH7Nq1y9ZMx/vqq6/o2rUrAF27dq13gXJDfOv/VD9W\nVVXFTTfdxMyZM+nQoYPdcWjTpg0bNmxg165dLF++3PbL/j/44AMuueQSYmNjferTOsDKlSspLS1l\n8eLFPPfcc6xYscLWPHV1dZSUlDBlyhRKSko4//zzeeKJJ2zNdExtbS3vv/8+N998s91R2L59O888\n8wzl5eV8+eWXVFVVMXfuXFszRUZG8sADDzBkyBCGDh1KbGysz30gOsbhcOBwOE55jG8m9zNHjhxh\n1KhR3HbbbYwYMcLuOPV07NiRG2+8kXXr1tmaY9WqVSxcuJDu3bszevRoli5dytixY23NdExwcDBQ\n/9obOzmdTpxOJ/Hx8QDcdNNNlJSU2JrpmMWLFzNgwACCgoLsjsK6deu46qqr6NKlCwEBAaSlpbFq\n1Sq7YzFhwgTWrVvHP//5Tzp16sQVPnTz+q5du7Jnzx4Adu/ezSWXXHLK41UgzpIxhoyMDHr37s09\n99xjdxwAvv76aw4ePAhATU0NH330EbGxsbZmevzxx6moqGDHjh3MmzeP66+/3n0tjJ188dqbSy+9\nlNDQUD777DPAmvPv06ePrZmOycnJYfTo0XbHAKxP62vWrKGmpgZjDEuWLPGJqdS9e/cCsHPnTt57\n7z2fmI47JjU1lddffx2A119//fQfaJvqDHpTSE9PN8HBweacc84xTqfTvPLKK3ZHMitWrDAOh8PE\nxMS4lwAuXrzY1kybNm0ysbGxJiYmxvTr1888+eSTtub5qcLCQp9ZxfTFF1+YmJgYExMTY/r06WMe\nf/xxuyMZY4zZsGGDiYuLM9HR0WbkyJE+sYqpqqrKdOnSxXz33Xd2R3HLyspyL3MdO3asqa2ttTuS\nSUxMNL179zYxMTFm6dKltuU49n4ZGBjofr/cv3+/ueGGGxq9zNVhjI9NCIuIiE/QFJOIiDRIBUJE\nRBqkAiEiIg1SgRARkQapQIh4oG3btsTGxhIdHU1aWhpVVVV2RxJpMioQIh5o3749paWlbNq0iQsv\nvNC9jb1IS6QCIXKGBg0axPbt2wFr24ehQ4cSFxfHNddcw7Zt2wC44447uOuuu4iPj+eKK67gww8/\ntDOyiEe8fsMgkdbA5XJRUFDADTfcAMCdd95JdnY24eHhFBUVMWXKFD7++GPAuqJ27dq1fP7551x3\n3XVs376dc845x874Io2iAiHigZqaGmJjY6msrCQsLIy77rqLqqoqVq9eXW8Du9raWsDaEO2WW24B\nIDw8nB49erBlyxZiYmJsyS/iCRUIEQ+cd955lJaWUlNTQ0pKCnl5eSQnJ9OpUydKS0sb9TN8dXdP\nkZ/Sv1SRM3Deeefx17/+lYceeogOHTrQvXt33nnnHcDawHHTpk3ux2+//TbGGLZv384XX3zhU7t7\nipyKCoSIB47fP79///6Eh4fz97//nblz5zJ79mz69+9P3759Wbhwofv4yy67jIEDBzJs2DCys7N1\n/kH8hjbrE2lC48ePZ/jw4aSlpdkdRcRj6iBERKRB6iBERKRB6iBERKRBKhAiItIgFQgREWmQCoSI\niDRIBUJERBqkAiEiIg36/9fGcNvjU2I2AAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x2b26690>"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 2, Page 267"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from scipy.optimize import fsolve \n",
      "import math \n",
      "\n",
      "#INPUT\n",
      "umf=0.12            #Velocity at minimum fluidization condition in cm/s\n",
      "uo=40.;              #Superficial gas velocity in cm/s\n",
      "ub=120;             #Velocity of the bubble in cm/s\n",
      "D=0.7;              #Diffusion coefficient of gas in cm**2/s\n",
      "abkbe1=1.;           #Bubble-emuslion interchange coefficient for non absorbing particles(m=0)\n",
      "abkbe2=18.;          #Bubble-emuslion interchange coefficient for highly absorbing particles(m=infinity)\n",
      "g=980.;              #Acceleration due to gravity in square cm/s**2\n",
      "\n",
      "#CALCULATION\n",
      "#For non absorbing particles m=0,etad=0\n",
      "Kbc=(ub/uo)*(abkbe1);\n",
      "dbguess=2;#Guess value of db\n",
      "def solver_func(db):        #Function defined for solving the system\n",
      "    return abkbe1-(uo/ub)*(4.5*(umf/db)+5.85*(D**0.5*g**0.25)/(db**(5/4.)));#Eqn.(10.27)\n",
      "\n",
      "d=fsolve(solver_func,dbguess)\n",
      "#For highly absorbing particles m=infinity, etad=1\n",
      "M=abkbe2-(uo/ub)*Kbc;\n",
      "#For intermediate condition\n",
      "alpha=100.;\n",
      "m=10.;\n",
      "etad=1./(1+(alpha/m));#Fitted adsorption efficiency factor from Eqn.(23)\n",
      "abkbe3=M*etad+(uo/ub)*Kbc;\n",
      "\n",
      "#OUTPUT\n",
      "print 'For non absorbing particles:\\tDiameter of bubble=%fcm\\tBubble-cloud interchange coefficient=%fs**-1'%(d,Kbc);\n",
      "print 'For highly absorbing partilces:\\tM=%f'%(M);\n",
      "print 'For intermediate condition:\\tFitted adsorption efficiency factor:%f\\tBubble-emuslion interchange coefficient:%fs**-1'%(etad,abkbe3);\n",
      "\n",
      "#====================================END OF PROGRAM ======================================================"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "For non absorbing particles:\tDiameter of bubble=6.010032cm\tBubble-cloud interchange coefficient=3.000000s**-1\n",
        "For highly absorbing partilces:\tM=17.000000\n",
        "For intermediate condition:\tFitted adsorption efficiency factor:0.090909\tBubble-emuslion interchange coefficient:2.545455s**-1\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 3, Page 273\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "rhos=1.3;                #Density of solids in g/cc\n",
      "phis=0.806;              #Sphericity of solids\n",
      "gammab=0.001;            #Ratio of volume of dispersed solids to that of bubble phase\n",
      "rhog=1.18E-3;            #Density of air in g/cc\n",
      "Pr=0.69;                 #Prandtl number\n",
      "myu=1.8E-4;              #Viscosity of gas in g/cm s\n",
      "Cpg=1.00;                #Specific heat capacity of gas in J/g K\n",
      "ephsilonmf=0.45;         #Void fraction at minimum fluidization condition\n",
      "kg=2.61E-4;              #Thermal concuctivity of gas in W/cm k\n",
      "dp=0.036;                #Particle size in cm\n",
      "umf=6.5;                 #Velocity at minimum fluidization condition in cm/s\n",
      "ut=150.;                 #Terminal velocity in cm/s\n",
      "db=0.4;                  #Equilibrium bubble size in cm\n",
      "etah=1;                  #Efficiency of heat transfer\n",
      "uo=[10.,20.,30.,40.,50.];#Superficial gas velocity in cm/s\n",
      "g=980.;                  #Acceleration due to gravity in square cm/s**2\n",
      "\n",
      "#CALCULATION\n",
      "Nustar=2+(((dp*ut*rhog)/myu)**0.5*Pr**(1./3));#Nusselt no. from Eqn.(25)\n",
      "Hbc=4.5*(umf*rhog*Cpg/db)+5.85*((kg*rhog*Cpg)**0.5*g**0.25/db**(5./4));#Total heat interchange across the bubble-cloud boundary from Eqn.(32)\n",
      "ubr=0.711*(g*db)**0.5;#Rise velocity of the bubble from Eqn.(6.7)\n",
      "n=len(uo);\n",
      "i=0;\n",
      "x = [0,0,0,0,0]\n",
      "Nubed = [0,0,0,0,0]\n",
      "Rep = [0,0,0,0,0]\n",
      "\n",
      "while i<n:\n",
      "    x[i]=(uo[i]-umf)/(ubr*(1-ephsilonmf));#The term delta/(1-epshilonf) after simplification\n",
      "    Nubed[i]=x[i]*(gammab*Nustar*etah+(phis*dp**2/(6*kg))*Hbc);#Nusselt no. from Eqn.(36)\n",
      "    Rep[i]=(dp*uo[i]*rhog)/myu;#Reynolds of the particle\n",
      "    i=i+1;\n",
      "\n",
      "#OUTPUT\n",
      "print 'The desired result is the relationship between Nubed and Rep which is in the form of a straight line y=mx+c'\n",
      "print 'Rep',\n",
      "print '\\t\\tNubed'\n",
      "i=0;\n",
      "while i<n:\n",
      "    print '%f'%Rep[i],\n",
      "    print '\\t%f'%Nubed[i]\n",
      "    i=i+1;\n",
      "import matplotlib.pyplot as plt\n",
      "plt.plot(Rep,Nubed);\n",
      "plt.xlabel(\"Rep\");\n",
      "plt.ylabel(\"Nubed\");\n",
      "plt.show()\n",
      " "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The desired result is the relationship between Nubed and Rep which is in the form of a straight line y=mx+c\n",
        "Rep \t\tNubed\n",
        "2.360000 \t0.046518\n",
        "4.720000 \t0.179427\n",
        "7.080000 \t0.312335\n",
        "9.440000 \t0.445244\n",
        "11.800000 \t0.578152\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEMCAYAAADJQLEhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9c1eX9//HHYWClLivL+sihDzZIQFM0yMxZaBrmkvxV\no9YsR0o6VzZdrvWtsK0mc+VMWsPSPrYUaf0QKmVldZamggmKpSmiDMSyNM3wF3J8f/+4NtQE+eE5\nvA/nPO+3W7fOkescXr3nzuu8rtf7ui6HZVkWIiISsILsDkBEROylRCAiEuCUCEREApwSgYhIgFMi\nEBEJcEoEIiIBziuJIC8vj6ioKCIjI0lPT69zjMvlolevXnTv3p2EhARvhCEiIo3g8PQ6ArfbTdeu\nXVm+fDmhoaHEx8eTlZVFdHR07Zj9+/fTr18//vnPf+J0OtmzZw8XX3yxJ8MQEZFG8nhFUFBQQERE\nBOHh4YSEhJCcnExOTs4pYxYtWsSoUaNwOp0ASgIiIjbyeCKorKwkLCys9rnT6aSysvKUMSUlJXzz\nzTcMGDCAuLg4/v73v3s6DBERaaRgT7+hw+FocMyxY8coLCzk/fff59ChQ/Tt25drr72WyMjIJr+X\niIicrimz/h6vCEJDQ6moqKh9XlFRUTsF9F9hYWHcdNNNnHfeeXTs2JHrr7+eDRs21Pl+lmXpH8vi\n8ccftz0GX/lH10LXQtfizP80lccTQVxcHCUlJZSVlVFdXU12djZJSUmnjLn11ltZuXIlbrebQ4cO\nkZ+fT0xMjKdDERGRRvD41FBwcDAZGRkkJibidrtJSUkhOjqazMxMAFJTU4mKimLIkCH06NGDoKAg\nxo0bp0QgImITj98+6kkOh6NZZY4/crlcWm/xH7oWJ+hanKBrcUJTPzuVCERE/ExTPzu1xYSISIBT\nIhARaUUOH4ZHHoF6du9pFiUCEZFW4r334KqrYNs2GDPGc+/r8buGRETEs776Ch58EFatgueeg6FD\nPfv+qghERHzU8ePw4ovQvTuEhsKnn3o+CYAqAhERn7RpE6SmQnW1mRLq2dN7v0sVgYiIDzl8GB59\nFG64AZKTzXSQN5MAqCIQEfEZy5fDhAkQGwsbNkDnzi3ze5UIRERs9vXX8Otfw4oVkJEBt9zSsr9f\nU0MiIjaxLJg/3zSDL7sMPvus5ZMAqCIQEbHF5s1w332mJ/DPf5rpILuoIhARaUFHjsBjj8H118Nt\nt8Hq1fYmAVBFICLSYt5/3zSDe/SA9evN2gBfoEQgIuJlX38NU6eCy2WawcOG2R3RqTQ1JCLiJZYF\nL71kmsEXX2yawb6WBEAVgYiIV3z+uWkGHzwIy5ZB7952R1Q/VQQiIh505AikpUH//jBqFKxZ49tJ\nAFQRiIh4zIcfmiqgWzcoKgKn0+6IGkeJQETkLO3ZY5rBH3wAc+bArbfaHVHTaGpIRKSZLAsWLDDN\n4IsuMs3g1pYEQBWBiEizbNlipoEOHIB33oGrr7Y7ouZTRSAi0gRHj8L06dCvHwwfDvn5rTsJgCoC\nEZFGc7lMFRAVZZrBYWF2R+QZSgQiIg3Yuxd+8xtzUticOaYS8CeaGhIRqYdlwcsvm9tBzz/fHB/p\nb0kAVBGIiNRp61azQdz+/fD22xAXZ3dE3qOKQETkJEePwu9/D9ddZ/YFys/37yQAXkoEeXl5REVF\nERkZSXp6+mk/d7lcdOjQgV69etGrVy/+8Ic/eCMMEZEm+egjczbA2rVQWAiTJ0NwAMybePw/0e12\nM2nSJJYvX05oaCjx8fEkJSURHR19yrgbbriB3NxcT/96EZEm++YbeOghc1LYs8+aPoDDYXdULcfj\nFUFBQQERERGEh4cTEhJCcnIyOTk5p42zLMvTv1pEpEksC155xTSD27UzK4NHjAisJABeSASVlZWE\nnXRzrdPppLKy8pQxDoeDVatW0bNnT4YOHcqmTZs8HYaIyBmVlMDgwfD005CbC7NnmzuDApHHp4Yc\njUilvXv3pqKigrZt27Js2TKGDx/O1q1b6xyblpZW+zghIYGEhAQPRSoigai6Gv70J/jLX+B3v4P7\n72/9fQCXy4XL5Wr26x2Wh+do1qxZQ1paGnl5eQD88Y9/JCgoiGnTptX7mi5durBu3TouuuiiU4Nz\nODSFJCIes2IFpKbCj35kjoz83/+1OyLvaOpnp8enhuLi4igpKaGsrIzq6mqys7NJSko6Zczu3btr\ngywoKMCyrNOSgIiIp3zzDYwbB3fcYW4Nzc313yTQHB4viIKDg8nIyCAxMRG3201KSgrR0dFkZmYC\nkJqaymuvvcbzzz9PcHAwbdu2ZfHixZ4OQ0QEy4JFi8xZAaNHm5XBgdoHOBOPTw15kqaGRKS5SkvN\nyuCvvoK5c+Gaa+yOqOXYPjUkImKn6mp46ino0wcSE+GTTwIrCTRHK++Vi4icsHKlaQaHh5sEEB5u\nd0StgxKBiLR6+/bBb39rNoebPRtGjQq8RWFnQ1NDItJqWRZkZZmVwcHBphk8erSSQFOpIhCRVmn7\ndpg4Eb74At54A6691u6IWi9VBCLSqhw7BjNmmAbwjTeaXoCSwNlRRSAircaqVaYZHBamZrAnKRGI\niM/btw8efhjeesvsEaQ+gGdpakhEfJZlweLFphkcFGS2ib7tNiUBT1NFICI+accO0wyurITXX4e+\nfe2OyH+pIhARn3LsGKSnQ3w8JCTAunVKAt6mikBEfMbq1aYZ3LkzFBTAFVfYHVFgUCIQEdvt328O\niVmyBGbNgttvVx+gJWlqSERsY1nw6qumGXz8uFkZ/NOfKgm0NFUEImKLsjL45S+hvBz+8Q+47jq7\nIwpcqghEpEUdOwYzZ0JcHPz4x1BYqCRgN1UEItJi1qwxzeDLLlMz2JcoEYiI1337rWkGv/kmPPOM\n+gC+RlNDIuI1lgWvvWaawTU1ZmVwcrKSgK9RRSAiXlFWBpMmmRXC2dnQr5/dEUl9VBGIiEfV1MCf\n/2yawdddB0VFSgK+ThWBiHhMQQGMHw+dOpnGcESE3RFJYygRiMhZO3AAHnnE9AOefhruuEN9gNZE\nU0Mi0myWZXYGjYmBo0dNM/jOO5UEWhtVBCLSLP/+t2kGb99uzgz48Y/tjkiaSxWBiDRJTY2Z/rn6\nanNWcFGRkkBrp4pARBpt7VrTDO7YUc1gf6KKQEQadOAA3H8/DBsGU6bAe+8pCfgTJQIRqZdlmW0h\nunWDQ4dMM/iuu9QM9jdeSQR5eXlERUURGRlJenp6vePWrl1LcHAwb7zxhjfCEJGzUF4Ow4ebPYIW\nLoQXXzRTQuJ/PJ4I3G43kyZNIi8vj02bNpGVlcXmzZvrHDdt2jSGDBmCZVmeDkNEmqmmxpwS1ru3\nWR28fj1cf73dUYk3ebxZXFBQQEREBOHh4QAkJyeTk5NDdHT0KePmzJnD6NGjWbt2radDEJFm+uQT\ns030BRfAqlVw5ZV2RyQtweOJoLKykrCwsNrnTqeT/Pz808bk5OTwwQcfsHbtWhxnmHBMS0urfZyQ\nkEBCQoKnQxYJeN99B//v/5nN4WbOVB+gtXG5XLhcrma/3uOJ4Ewf6v81efJkZsyYgcPhwLKsM04N\nnZwIRMTzliyBX/0KbrrJNIPVB2h9vv8lefr06U16vccTQWhoKBUVFbXPKyoqcDqdp4xZt24dycnJ\nAOzZs4dly5YREhJCUlKSp8MRkXpUVJgE8Pnn8MorcMMNdkckdvF4szguLo6SkhLKysqorq4mOzv7\ntA/47du3s2PHDnbs2MHo0aN5/vnnlQREWojbDbNnQ69epiG8YYOSQKDzeEUQHBxMRkYGiYmJuN1u\nUlJSiI6OJjMzE4DU1FRP/0oRaaR160wz+Pzz4eOPoWtXuyMSX+CwfPjezf/2EETk7FRVwaOPwqJF\n8Kc/wZgxagb7s6Z+dmplsYify8kx20Tv32+awXffrSQgp9KmcyJ+audO0wzetAkWLIABA+yOSHyV\nKgIRP+N2w7PPQmws9OxpmsFKAnImqghE/EhhoWkGt2sHK1dCVJTdEUlroIpAxA9UVZntoW++GX75\nS/jwQyUBaTwlApFW7q23zDbRe/fCp5/CPfeoGSxNo6khkVaqstIcFrNxI7z0EgwcaHdE0lqpIhBp\nZdxuyMgwzeDu3aG4WElAzo4qApFWZP16c2bweefBRx/B93Z3F2kWVQQirUBVFUydanYIve8+0wxW\nEhBPUSIQ8XFvv22mgL76yjSDf/ELCNL/c8WDNDUk4qN27YIHHjDTQS++CIMG2R2R+Ct9rxDxMW43\nPPecWRUcFWWawUoC4k2qCER8yIYNphncpg38619mszgRb1NFIOIDDh6Ehx6CwYNNIlASkJakRCBi\ns6VLTTN41y7TDE5JUTNYWpamhkRssmsXTJ5sNoqbO9dUAyJ2qDcRDBs2rPbx90+7cTgc5Obmejcy\nET/ldkNmJjz+uNkpdMECs0BMxC71JoIpU6YA8Oabb/Lll19y1113YVkWWVlZXHrppS0WoIg/KS42\nPYDgYHC5zGZxInZr8Mziq6++mnXr1jX4Z96gM4vFXxw8CE88YTaHe/JJ9QHEuzx+ZvGhQ4coLS2t\nfb59+3YOHTrUvOhEAtCyZaYZvHOn2Sl03DglAfEtDTaLZ82axYABA+jSpQsAZWVlzJ071+uBibR2\nX3wBDz4Ia9eansBNN9kdkUjdGpwaAjhy5AhbtmwBICoqinPOOcfrgYGmhqR1On7c3AX06KPm2/+j\nj6oZLC2rqZ+dDVYEBw8e5JlnnqG8vJwXXniBkpIStmzZwi233HJWgYr4o40bzZ1ADofZIbR7d7sj\nEmlYgzOVY8eOpU2bNqxatQqAzp0788gjj3g9MJHW5NAh+O1vzQEx99wDK1YoCUjr0WAiKC0tZdq0\nabRp0waAdu3aeT0okdYkL8986P/736YiGD9ezWBpXRqcGjrnnHM4fPhw7fPS0tIW6xGI+LIvvzTN\n4Px8+OtfYcgQuyMSaZ4Gv7ekpaUxZMgQdu7cyZ133snAgQNJT09vidhEfNLx4+YuoKuugvBwsz+Q\nkoC0Zo26a2jPnj3k5+djWRbXXnstF1988RnH5+XlMXnyZNxuN/feey/Tpk075ec5OTk89thjBAUF\nERQUxMyZMxlYx+nbumtIfM2nn5pm8H/vDLrqKrsjEjldUz87G0wElmXxxhtvsHLlShwOB/3792fE\niBH1jne73XTt2pXly5cTGhpKfHw8WVlZRJ90wOrBgwdrew0bN25kxIgRbNu27az/Y0S85fBh+P3v\n4YUXzL/VBxBf5vGVxRMnTiQzM5MePXrQvXt3MjMzmThxYr3jCwoKiIiIIDw8nJCQEJKTk8nJyTll\nzMkN56qqqgYrDBE7vfuuaQZv3272CrrvPiUB8S8NNos//PBDNm3aRNB//ubfc889xJzhxIzKykrC\nwsJqnzudTvLz808bt2TJEh5++GG++OIL3n333XrfLy0trfZxQkICCQkJDYUs4hG7d8Ovfw2rVplm\n8M032x2RSN1cLhcul6vZr28wEURERFBeXk54eDgA5eXlRERE1Dve4XA06hcPHz6c4cOHs2LFCn7+\n85/Xrlz+vpMTgUhLOH4c5s2DRx6BsWPhs8+gbVu7oxKp3/e/JE+fPr1Jr2/wPILvvvuO6Ohorrnm\nGhwOBwUFBcTHx9f7hqGhoVRUVNQ+r6iowOl01ju+f//+1NTUsHfvXjp27Nik4EU87bPPTDO4pgaW\nL4cePeyOSMT7GjyPoC5n+tYfFxdHSUkJZWVldO7cmezsbLKysk4ZU1payhVXXIHD4aCwsBBASUBs\ndfgw/OEP5k6gJ54wzeAf/MDuqERaRr2JoLlz8cHBwWRkZJCYmIjb7SYlJYXo6GgyMzMBSE1N5fXX\nX+fll18mJCSE9u3bs3jx4mb9LhFPeO89mDABeveGDRugc2e7IxJpWQ3ePtq+ffvaCqC6uppjx47R\nvn17Dhw44P3gdPuoeNFXX5lm8MqV8Nxz8JOf2B2RiGd4fPfRqqqq2sfHjx8nNzeXNWvWNC86ER9w\n/DjMnw+/+x3cfbfpC2gLLQlkjVpZ/H2xsbGsX7/eG/GcQhWBeNqmTWYdwNGjZpuI2Fi7IxLxPI9X\nBK+//nrt4+PHj7Nu3TrO0ykb0socOWLOCv7b3yAtzSQDNYNFjAYTwVtvvVXbIwgODiY8PPy0lcIi\nvuz9980Hf2ysmsEidWnW1FBL0dSQnI2vv4YpU+CjjyAjA3SongQKj00N1bcy7b/VwWOPPdbE0ERa\nhmXBSy/Bww/Dz39udgxt397uqER8V72JoF27dqctHDt48CDz5s1jz549SgTikzZvNtNAhw+bk8N6\n9bI7IhHf16ipoQMHDvDss88yb948br/9dqZMmUKnTp28H5ymhqSRjhyBp54ym8M9/jhMnKhmsAQu\nj941tHfvXmbNmsXChQsZM2YMhYWFXHjhhWcdpIgnffCBqQKuugrWr4czbG0lInWoNxFMnTqVN998\nk/Hjx1NcXMwPf/jDloxLpEFffw1Tp4LLBXPmQFKS3RGJtE71Tg0FBQXRpk0bQkJCTn+Rw6EtJsQ2\nlgULFsC0afCzn5lN4tQMFjnBY1NDx48f90hAIp60ZYvZJrqqCpYtMxvFicjZ0YF70iocPWpWBPfr\nByNHQn6+koCIpzS4sljEbi6XqQK6dVMzWMQblAjEZ+3ZY5rBH3xgmsG33mp3RCL+SVND4nP+2wzu\n1g0uvNBsE60kIOI9qgjEp2zZYtYEHDgAS5fC1VfbHZGI/1NFID7h6FFzG2i/fubbf36+koBIS1FF\nILb7179MM7hrVygqgrAwuyMSCSxKBGKbvXvhN78xh8fPmQPDh9sdkUhg0tSQtDjLgr//3TSDzz/f\nHB+pJCBiH1UE0qJKSkwzeN8+ePttiIuzOyIRUUUgLeLoUfj976FvX3NSWEGBkoCIr1BFIF730Uem\nGRwZCYWFcPnldkckIidTIhCv+eYbeOghc1LYs8/CiBHwvUPvRMQHaGpIPM6y4JVXICYG2rY1zeCR\nI5UERHyVKgLxqJISmDDB3BqamwvXXGN3RCLSEFUE4hHV1fDkk6YZfPPNsHatkoBIa+G1RJCXl0dU\nVBSRkZGkp6ef9vOFCxfSs2dPevToQb9+/SguLvZWKOJlK1dCbCysXg3r1sGUKRCsWlOk1aj3qMqz\n4Xa76dq1K8uXLyc0NJT4+HiysrKIjo6uHbN69WpiYmLo0KEDeXl5pKWlsWbNmlOD01GVPu2bb8xx\nkcuWwezZ6gOI+IqmfnZ6pSIoKCggIiKC8PBwQkJCSE5OJicn55Qxffv2pUOHDgD06dOHnTt3eiMU\n8QLLgkWLzMrgc88120SPGqUkINJaeaWAr6ysJOykncOcTif5+fn1jp83bx5Dhw6t82dpaWm1jxMS\nEkhISPBUmNIMpaWmGbx7NyxZAn362B2RiLhcLlwuV7Nf75VE4GjCV8MPP/yQ+fPn8/HHH9f585MT\ngdinuhr+/Gd45hn47W/hgQcgJMTuqEQETv+SPH369Ca93iuJIDQ0lIqKitrnFRUVOOs4aLa4uJhx\n48aRl5fHhRde6I1QxANWrjQrg8PD4ZNPzL9FxH94pUcQFxdHSUkJZWVlVFdXk52dTVJS0iljysvL\nGTlyJK+88goRERHeCEPO0r59JgH89KeQlmY2iVMSEPE/XqkIgoODycjIIDExEbfbTUpKCtHR0WRm\nZgKQmprKE088wb59+5gwYQIAISEhFBQUeCMcaSLLgsWLzW2gI0aYlcH/6euLiB/yyu2jnqLbR1ve\n9u0wcSLs2gVz58K119odkYg0lU/cPiqtz7FjMGOGWQ08cKBZGKYkIBIYtP5TWLXK9AKcTrM1RJcu\ndkckIi1JiSCA7d8PDz9sNod75hm4/XYtChMJRJoaCkCWBdnZZptoh8OsDP7pT5UERAKVKoIAs2OH\naQbv3Amvv252CxWRwKaKIEAcOwbp6RAfDwkJ5shIJQERAVUEAWH1atMM7tzZHBp/xRV2RyQivkSJ\nwI/t3w+/+53ZHO6ZZ9QHEJG6aWrID1kWvPqq2Sb6+HHTDE5OVhIQkbqpIvAzZWXwy1/Cv/9tkkG/\nfnZHJCK+ThWBnzh2DGbOhLg4+PGPTTNYSUBEGkMVgR/Iz4fx4+Gyy8zjH/3I7ohEpDVRImjFvv3W\nNIPfeMM0g9UHEJHm0NRQK2RZ8NprZmXwsWNmm+g77lASEJHmUUXQypSVwaRJZoVwdrbpB4iInA1V\nBK1ETY05MzguDq67DoqKlARExDNUEbQCBQWmGXzJJbBmDehkTxHxJFUEPuzAAfjVr+DWW+E3v4F3\n31USEBHPUyLwQZZldgaNiYEjR8zK4J/9TM1gEfEOTQ35mPJy0wzetg2ysqB/f7sjEhF/p4rAR9TU\nmLUAvXubc4PXr1cSEJGWoYrAB6xda5rBHTuaLaMjI+2OSEQCiSoCGx04APffD8OGwZQp8N57SgIi\n0vKUCGxgWfDmm2ab6IMHTTP4rrvUDBYRe2hqqIWVl5tbQrduhVdegRtusDsiEQl0qghaSE0NzJpl\nmsFxcaYZrCQgIr5AFUELWLfONIM7dIBVq+DKK+2OSETkBFUEXvTddzB5MvzkJ/DAA/D++0oCIuJ7\nvJYI8vLyiIqKIjIykvT09NN+/vnnn9O3b1/OPfdcnn76aW+FYZucHNMMPnAAPv0UxoxRM1hEfJNX\npobcbjeTJk1i+fLlhIaGEh8fT1JSEtHR0bVjOnbsyJw5c1iyZIk3QrBNRYW5JXTzZnj5ZUhIsDsi\nEZEz80pFUFBQQEREBOHh4YSEhJCcnExOTs4pYy655BLi4uIICQnxRggtzu2G2bOhVy+IjYUNG5QE\nRKR18EpFUFlZSVhYWO1zp9NJfn6+N36VT1i3DlJT4Yc/hI8/hq5d7Y5IRKTxvJIIHB6cDE9LS6t9\nnJCQQIIPfc2uqoJHH4VFi+BPf1IfQETs4XK5cLlczX69VxJBaGgoFRUVtc8rKipwOp3Neq+TE4Ev\nyc01u4QOHGhWBl98sd0RiUig+v6X5OnTpzfp9V5JBHFxcZSUlFBWVkbnzp3Jzs4mKyurzrGWZXkj\nBK/ZudM0gz/9FBYsgAED7I5IROTseCURBAcHk5GRQWJiIm63m5SUFKKjo8nMzAQgNTWVL7/8kvj4\neA4cOEBQUBCzZ89m06ZNtG/f3hshnTW3G557Dp54wlQCixbBuefaHZWIyNlzWD78ldzhcPhExVBU\nZFYGt2sHf/sbREXZHZGISP2a+tmplcVnUFVltoceMgQmToQPP1QSEBH/o0RQj7feMiuD9+wx/YCx\nY3VHkIj4J2069z2VlaYZvHEjvPSSuStIRMSfqSL4D7cbMjLMquBu3aC4WElARAKDKgLM2QDjx5u7\ngD76CE7aEklExO8FdEVw8CBMnQo33WS2iHC5lAREJPAEbCJ45x0zBbR7t2kGp6RAUMBeDREJZAE3\nNbRrlzkkZv16ePFFGDTI7ohEROwVMN+B3W7461+hZ0+zFqC4WElARAQCpCLYsMH0AEJC4F//gpgY\nuyMSEfEdfl0RHDwIDz0EgwfDvfcqCYiI1MVvE8HSpdC9u+kJbNxoEoGawSIip/O7qaEvvjDN4MJC\nmDvXVAMiIlI/v/mOfPw4PP889OgBkZGmClASEBFpmN9UBH/+M+TkmEVh3brZHY2ISOvhN+cRHD4M\n55yjPoCISFPPI/CbRCAiIoYOphERkSZRIhARCXBKBCIiAU6JQEQkwCkRiIgEOCUCEZEAp0QgIhLg\nlAhERAKcEoGISIBTIhARCXBKBCIiAc4riSAvL4+oqCgiIyNJT0+vc8z9999PZGQkPXv2pKioyBth\n+BWXy2V3CD5D1+IEXYsTdC2az+OJwO12M2nSJPLy8ti0aRNZWVls3rz5lDFLly5l27ZtlJSUMHfu\nXCZMmODpMPyO/pKfoGtxgq7FCboWzefxRFBQUEBERATh4eGEhISQnJxMTk7OKWNyc3O5++67AejT\npw/79+9n9+7dng5FREQaweOJoLKykrCwsNrnTqeTysrKBsfs3LnT06GIiEgjePyEMofD0ahx398r\nu77XNfb9AsH06dPtDsFn6FqcoGtxgq5F83g8EYSGhlJRUVH7vKKiAqfTecYxO3fuJDQ09LT30qE0\nIiLe5/Gpobi4OEpKSigrK6O6uprs7GySkpJOGZOUlMTLL78MwJo1a7jgggu49NJLPR2KiIg0gscr\nguDgYDIyMkhMTMTtdpOSkkJ0dDSZmZkApKamMnToUJYuXUpERATt2rXjpZde8nQYIiLSWJYPKi8v\ntxISEqyYmBirW7du1uzZs+0OyVY1NTVWbGysdcstt9gdiq327dtnjRo1yoqKirKio6Ot1atX2x2S\nbZ566ikrJibG6t69u3XHHXdYR44csTukFjN27FirU6dOVvfu3Wv/bO/evdagQYOsyMhIa/Dgwda+\nfftsjLDl1HUtpk6dakVFRVk9evSwRowYYe3fv7/B9/HJlcUhISHMmjWLzz77jDVr1vDcc8+dthYh\nkMyePZuYmJiAb5w/8MADDB06lM2bN1NcXEx0dLTdIdmirKyMF154gcLCQjZu3Ijb7Wbx4sV2h9Vi\nxo4dS15e3il/NmPGDAYPHszWrVu58cYbmTFjhk3Rtay6rsVNN93EZ599xoYNG7jyyiv54x//2OD7\n+GQiuOyyy4iNjQWgffv2REdHs2vXLpujssfOnTtZunQp9957b0A3z7/99ltWrFjBL37xC8BMQXbo\n0MHmqOxx/vnnExISwqFDh6ipqeHQoUN13mzhr/r378+FF154yp+dvDbp7rvvZsmSJXaE1uLquhaD\nBw8mKMh8tPfp06dRt+b7ZCI4WVlZGUVFRfTp08fuUGzx4IMPMnPmzNr/YQPVjh07uOSSSxg7diy9\ne/dm3LhxHDp0yO6wbHHRRRcxZcoULr/8cjp37swFF1zAoEGD7A7LVrt376694eTSSy/VAtX/mD9/\nPkOHDm1wnE9/ulRVVTF69Ghmz55N+/bt7Q6nxb399tt06tSJXr16BXQ1AFBTU0NhYSETJ06ksLCQ\ndu3aBUwrLCSWAAADm0lEQVT5/32lpaX85S9/oaysjF27dlFVVcXChQvtDstnOByOgJ9GBXjyySdp\n06YNd955Z4NjfTYRHDt2jFGjRnHXXXcxfPhwu8OxxapVq8jNzaVLly7ccccdfPDBB4wZM8busGzh\ndDpxOp3Ex8cDMHr0aAoLC22Oyh6ffPIJ1113HR07diQ4OJiRI0eyatUqu8Oy1aWXXsqXX34JwBdf\nfEGnTp1sjshe//d//8fSpUsb/QXBJxOBZVmkpKQQExPD5MmT7Q7HNk899RQVFRXs2LGDxYsXM3Dg\nwNr1F4HmsssuIywsjK1btwKwfPlyunXrZnNU9oiKimLNmjUcPnwYy7JYvnw5MTExdodlq6SkJBYs\nWADAggULAvbLI5jdn2fOnElOTg7nnntu417krduazsaKFSssh8Nh9ezZ04qNjbViY2OtZcuW2R2W\nrVwulzVs2DC7w7DV+vXrrbi4uCbdFuev0tPTa28fHTNmjFVdXW13SC0mOTnZ+p//+R8rJCTEcjqd\n1vz58629e/daN954Y8DdPvr9azFv3jwrIiLCuvzyy2s/OydMmNDg+zgsK8Ann0VEApxPTg2JiEjL\nUSIQEQlwSgQiIgFOiUBEJMApEYjU4Qc/+AG9evWiR48ejBw5kqqqKrtDEvEaJQKROrRt25aioiKK\ni4s5//zza7dRF/FHSgQiDejbty+lpaWA2d7h5ptvJi4ujuuvv54tW7YAcM8993DfffcRHx9P165d\neeedd+wMWaRJPH4wjYg/cbvdvPvuu9x4440AjB8/nszMTCIiIsjPz2fixIm8//77AJSXl7N27Vq2\nbdvGgAEDKC0tpU2bNnaGL9IoSgQidTh8+DC9evWisrKS8PBw7rvvPqqqqli9ejW33XZb7bjq6mrA\nbHR2++23AxAREcEVV1zB5s2b6dmzpy3xizSFEoFIHc477zyKioo4fPgwiYmJ5OTkMGjQIC644AKK\niooa9R6BvnW4tB76mypyBueddx7PPvssjzzyCO3bt6dLly689tprgNkcsbi4uPbxP/7xDyzLorS0\nlO3bt9O1a1c7QxdpNCUCkTqcvJ99bGwsERERvPrqqyxcuJB58+YRGxtL9+7dyc3NrR1/+eWXc801\n1zB06FAyMzPVH5BWQ5vOiXjA2LFjGTZsGCNHjrQ7FJEmU0UgIhLgVBGIiAQ4VQQiIgFOiUBEJMAp\nEYiIBDglAhGRAKdEICIS4JQIREQC3P8HJOZBYJAptYQAAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x269c250>"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 4, Page 274\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "rhog=1.2;       #Density of air in kg/m**3\n",
      "myu=1.8E-5;     #Viscosity of gas in kg/m s\n",
      "kg=2.6E-2;      #Thermal concuctivity of gas in W/m k\n",
      "dp=1E-4;        #Particle size in m\n",
      "rhos=8920;      #Density of solids in kg/m**3\n",
      "Cps=390;        #Specific heat capacity of the solid in J/kg K\n",
      "ephsilonf=0.5;  #Void fraction of the fluidized bed\n",
      "umf=0.1;        #Velocity at minimum fluidization condition in m/s\n",
      "uo=0.1;         #Superficial gas velocity in m/s\n",
      "pi=3.14\n",
      "\n",
      "#CALCULATION\n",
      "to=0;                 #Initial temperature of the bed\n",
      "T=100;                #Temperature of the bed\n",
      "t=0.99*T;             #Particle temperature i.e. when it approaches 1% of the bed temperature\n",
      "mp=(pi/6)*dp**3*rhos; #Mass of the particle\n",
      "A=pi*dp**2;           #Surface area of the particle\n",
      "Rep=(dp*uo*rhog)/myu; #Reynold's no. of the particle\n",
      "Nubed=0.0178;         #Nusselt no. from Fig.(6)\n",
      "hbed1=(Nubed*kg)/dp;  #Heat transfer coefficient of the bed\n",
      "t1=(mp*Cps/(hbed1*A))*math.log((T-to)/(T-t));#Time needed for the particle approach 1 percentage of the bed temperature in case(a)\n",
      "hbed2=140*hbed1;#Since from Fig.(6) Nup is 140 times Nubed\n",
      "t2=(mp*Cps/(hbed2*A))*math.log((T-to)/(T-t));#Time needed for the particle approach 1 percentage of the bed temperature in case(b)\n",
      "\n",
      "#OUTPUT\n",
      "print 'Case(a):Using the whole bed coefficient from Fig.(6)'\n",
      "print '\\tTime needed for the particle approach 1 percentage of the bed temperature is %.0fs'%t1\n",
      "print 'Case(b):Uisng the single-particle coefficient of Eqn.(25),also shown in Fig.(6)'\n",
      "print '\\tTime needed for the particle approach 1 percentage of the bed temperature is %.2fs'%t2"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Case(a):Using the whole bed coefficient from Fig.(6)\n",
        "\tTime needed for the particle approach 1 percentage of the bed temperature is 58s\n",
        "Case(b):Uisng the single-particle coefficient of Eqn.(25),also shown in Fig.(6)\n",
        "\tTime needed for the particle approach 1 percentage of the bed temperature is 0.41s\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}