{ "metadata": { "name": "", "signature": "sha256:a67e8661ab863efba6ffe8486e33132e755624949690c50df8ae76d2d928ed8b" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 7 - Flow of incompressible fluids in closed conduits" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1a - Pg 241" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the reynolds number of the flow\n", "#Initialization of variables\n", "import math\n", "z1=2. #ft\n", "Q=0.1 #gal/min\n", "alpha=2.\n", "g=32.2 #ft/s^2\n", "L=4. #ft\n", "D=1./96. #ft\n", "#calculations\n", "v2=Q/(7.48*60* math.pi/4. *D*D)\n", "hl=z1-alpha*v2*v2 /(2*g)\n", "Nr=64./hl *L/D *v2*v2 /(2*g)\n", "#results\n", "print '%s %d %s' %(\"Reynolds number is\",Nr,\".Hence the flow is laminar\")\n", "print '%s' %(\"The answers are a bit different from textbook due to rounding off error\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Reynolds number is 1459 .Hence the flow is laminar\n", "The answers are a bit different from textbook due to rounding off error\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1b - Pg 242" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the kinematic viscosity\n", "#Initialization of variables\n", "import math\n", "z1=2 #ft\n", "Q=0.1 #gal/min\n", "alpha=2.\n", "g=32.2 #ft/s^2\n", "L=4. #ft\n", "D=1./96. #ft\n", "#calculations\n", "v2=Q/(7.48*60* math.pi/4. *D*D)\n", "hl=z1-alpha*v2*v2/(2*g)\n", "Nr=64./hl *L/D *v2*v2 /(2*g)\n", "mu=v2*D/Nr\n", "#results\n", "print '%s %.2e %s' %(\"Kinematic viscosity =\",mu,\"ft^2/s\")\n", "print '%s' %(\"The answers are a bit different from textbook due to rounding off error\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Kinematic viscosity = 1.87e-05 ft^2/s\n", "The answers are a bit different from textbook due to rounding off error\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Exaple 1c - Pg 242" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the theoretical entrance transistion length\n", "#Initialization of variables\n", "import math\n", "z1=2. #ft\n", "Q=0.1 #gal/min\n", "alpha=2.\n", "g=32.2 #ft/s^2\n", "L=4. #ft\n", "D=1./96. #ft\n", "#calculations\n", "v2=Q/(7.48*60* math.pi/4. *D*D)\n", "hl=z1-alpha*v2*v2 /(2*g)\n", "Nr=64./hl *L/D *v2*v2 /(2*g)\n", "Ld=0.058*Nr*D\n", "#results\n", "print '%s %.3f %s' %(\"Theoretical entrance transistion length =\",Ld,\"ft\")\n", "print '%s' %(\"The answers are a bit different from textbook due to rounding off error\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Theoretical entrance transistion length = 0.882 ft\n", "The answers are a bit different from textbook due to rounding off error\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2 - Pg 246" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the horsepower required for the motor\n", "#Initialization of variables\n", "import math\n", "Q=350. #gal/min\n", "D=6. #in\n", "rho=0.84\n", "gam=62.4\n", "g=32.2 #ft/s^2\n", "mu=9.2e-5 #lb-sec/ft^2\n", "L=5280. #ft\n", "#calculations\n", "V=Q/(7.48*60*math.pi/4. *math.pow((D/12),2))\n", "Nr=V*D/12 *rho*gam/g /mu\n", "f=0.3164/math.pow((Nr),0.25)\n", "hl=f*L*12/D *V*V /(2*g)\n", "hp=hl*gam*Q*rho/(550*7.48*60.)\n", "#results\n", "print '%s %.2f %s' %(\"Horsepower required =\",hp,\"hp/mile\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Horsepower required = 4.44 hp/mile\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3 - Pg 250" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the values of the coefficients alpha and beta\n", "#Initialization of variables\n", "n=7.\n", "import math\n", "#calculations\n", "alpha= math.pow((n+1),3) *math.pow((2*n+1),3) /(4*math.pow(n,4) *(n+3)*(2*n+3))\n", "bet=math.pow((n+1),2) *math.pow((2*n+1),2) /(2*n*n *(n+2)*(2*n+2))\n", "#results\n", "print '%s %.2f' %(\"alpha = \",alpha)\n", "print '%s %.2f' %(\"\\n beta = \",bet)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "alpha = 1.06\n", "\n", " beta = 1.02\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 5 - Pg 252" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the mass flow rate and horsepower input of the fan\n", "#Initialization of variables\n", "import math\n", "spg=0.84\n", "z=1. #in\n", "gam=62.4\n", "patm=14.7 #psia\n", "T=459.6+85 #R\n", "R=53.3\n", "g=32.2 #ft/s^2\n", "D=3. #ft\n", "mu=3.88e-7 #lb-sec/ft^2\n", "#calculations\n", "dp=spg*z/12. *gam\n", "rho=patm*144. /(R*T*g)\n", "umax=math.sqrt(2*dp/rho)\n", "V=0.8*umax\n", "Nr=V*D*rho/mu\n", "V2=0.875*umax\n", "mass=rho*math.pi/4. *D*D *V2\n", "emf=V2*V2 /(2*g)\n", "hp=emf*mass*g/550.\n", "#results\n", "print '%s %.2f %s' %(\"Mass flow rate =\",mass,\"slug/sec\")\n", "print '%s %.2f %s' %(\"\\n Horsepower input of the fan =\",hp,\"hp\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Mass flow rate = 0.87 slug/sec\n", "\n", " Horsepower input of the fan = 2.34 hp\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7a - Pg 266" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the velocity using several equations listed above\n", "#Initialization of variables\n", "import math\n", "D=36. #in\n", "rho=0.00226 #slug/ft^3\n", "mu=3.88e-7 #lb-sec/ft^2\n", "umax=62.2 #ft/s\n", "V=54.5 #ft/s\n", "Nr=9.5e5\n", "r0=18. #in\n", "r=12. #in\n", "n=8.8\n", "k=0.4\n", "#calculations\n", "f=0.0032 + 0.221/(math.pow(Nr,0.237))\n", "Vs=math.sqrt(f/8) *V\n", "y=r0-r\n", "u1=umax*math.pow((y/r0),(1/n))\n", "u2=umax+ 2.5*Vs*math.log(y/r0)\n", "u3=umax+ Vs/k *(math.sqrt(1-y/r0) + math.log(1-math.sqrt(1-y/r0)))\n", "u4=Vs*(5.5+ 5.75*math.log10(Vs*y/12 *rho/mu))\n", "#results\n", "print '%s %.1f %s' %(\"Using equation 7-13, velocity =\",u1,\" ft/s\")\n", "print '%s %.1f %s' %(\"\\n Using equation 7-18, velocity =\",u2,\" ft/s\")\n", "print '%s %.1f %s' %(\"\\n Using equation 7-25, velocity =\",u3,\" ft/s\")\n", "print '%s %.1f %s' %(\"\\n Using equation 7-34a, velocity =\",u4,\" ft/s\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Using equation 7-13, velocity = 54.9 ft/s\n", "\n", " Using equation 7-18, velocity = 56.5 ft/s\n", "\n", " Using equation 7-25, velocity = 57.6 ft/s\n", "\n", " Using equation 7-34a, velocity = 56.7 ft/s\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7b - Pg 266" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the outer edge buffer zone distance and also its thickness\n", "#Initialization of variables\n", "import math\n", "D=36. #in\n", "rho=0.00226 #slug/ft^3\n", "mu=3.88e-7 #lb-sec/ft^2\n", "umax=62.2 #ft/s\n", "V=54.5 #ft/s\n", "Nr=9.5e5\n", "r0=18. #in\n", "r=12. #in\n", "n=8.8\n", "k=0.4\n", "#calculations\n", "f=0.0032 + 0.221/(math.pow(Nr,0.237))\n", "Vs=math.sqrt(f/8.) *V\n", "y=r0-r\n", "delta1=D*5*math.sqrt(8) /(Nr*math.sqrt(f))\n", "vss=70.\n", "thick=13*delta1\n", "#results\n", "print '%s %d' %(\"Outer edge of buffer zone is at \",vss)\n", "print '%s %.4f %s' %(\"\\n Thickness of buffer zone =\",thick,\"in\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Outer edge of buffer zone is at 70\n", "\n", " Thickness of buffer zone = 0.0645 in\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7c - Pg 266" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the velocity using the given equations\n", "#Initialization of variables\n", "import math\n", "D=36. #in\n", "rho=0.00226 #slug/ft^3\n", "mu=3.88e-7 #lb-sec/ft^2\n", "umax=62.2 #ft/s\n", "V=54.5 #ft/s\n", "Nr=9.5e5\n", "r0=18. #in\n", "r=12. #in\n", "n=8.8\n", "k=0.4\n", "#calculations\n", "f=0.0032 + 0.221/(math.pow(Nr,0.237))\n", "Vs=math.sqrt(f/8) *V\n", "delta1=D*5*math.sqrt(8.) /(Nr*math.sqrt(f))\n", "y=delta1\n", "u2=Vs*Vs *delta1/12. *rho/mu\n", "u1=62.2 *math.pow((delta1/18.),(1/n))\n", "#results\n", "print '%s %.1f %s' %(\"using equation 7-13, velocity =\",u1,\"ft/s\")\n", "print '%s %.1f %s' %(\"\\n using equation 7-30, velocity =\",u2,\"ft/s\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "using equation 7-13, velocity = 24.5 ft/s\n", "\n", " using equation 7-30, velocity = 10.4 ft/s\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7d - Pg 266" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the velocity using the listed equations\n", "#Initialization of variables\n", "import math\n", "D=36. #in\n", "rho=0.00226 #slug/ft^3\n", "mu=3.88e-7 #lb-sec/ft^2\n", "umax=62.2 #ft/s\n", "V=54.5 #ft/s\n", "Nr=9.5e5\n", "r0=18. #in\n", "r=12. #in\n", "n=8.8\n", "k=0.4\n", "#calculations\n", "f=0.0032 + 0.221/(math.pow(Nr,0.237))\n", "Vs=math.sqrt(f/8.) *V\n", "delta1=D*5*math.sqrt(8.) /(Nr*math.sqrt(f))\n", "y=14*delta1\n", "u2=62.2*math.pow((y/18.),(1/n))\n", "u3=Vs*(5.50 + 5.75*math.log10(Vs*y/12 *rho/mu))\n", "#results\n", "print '%s %.1f %s' %(\"Using equation 7-13, velocity =\",u2,\"ft/s\")\n", "print '%s %.1f %s' %(\"\\n using equation 7-34a, velocity =\",u3,\"ft/s\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Using equation 7-13, velocity = 33.1 ft/s\n", "\n", " using equation 7-34a, velocity = 33.5 ft/s\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7e - Pg 266" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the shearing stress using both the equations\n", "#Initialization of variables\n", "import math\n", "D=36. #in\n", "rho=0.00226 #slug/ft^3\n", "mu=3.88e-7 #lb-sec/ft^2\n", "umax=62.2 #ft/s\n", "V=54.5 #ft/s\n", "Nr=9.5e+5\n", "r0=18. #in\n", "r=12. #in\n", "n=8.8\n", "k=0.4\n", "#calculations\n", "f=0.0032 + 0.221/(math.pow(Nr,0.237))\n", "Vs=math.sqrt(f/8.) *V\n", "delta1=D*5*math.sqrt(8.) /(Nr*math.sqrt(f))\n", "u2=Vs*Vs *delta1/12. *rho/mu\n", "T0=rho*Vs*Vs\n", "T02=mu*u2/delta1 *12.\n", "#results\n", "print '%s %.5f %s' %(\"Using equation 7-9a, shearing stress =\",T0,\"lb/ft^2\")\n", "print '%s %.5f %s' %(\"\\n Using equation 7-28, shearing stress =\",T02,\"lb/ft^2\")\n", "print '%s' %(\"The answers are a bit different due to rounding off error in textbook\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Using equation 7-9a, shearing stress = 0.00979 lb/ft^2\n", "\n", " Using equation 7-28, shearing stress = 0.00979 lb/ft^2\n", "The answers are a bit different due to rounding off error in textbook\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 8 - Pg 273" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the required velocity\n", "#Initialization of variables\n", "import math\n", "umax=62.2 #ft/s\n", "r0=18. #in\n", "e=0.0696 #in\n", "r=6. #in\n", "#calculations\n", "Vs=umax/(8.5 + 5.75*math.log10(r0/e))\n", "u=Vs*(8.5 + 5.75*math.log10(r/e))\n", "#results\n", "print '%s %.1f %s' %(\"Velocity =\",u,\"ft/s\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Velocity = 54.6 ft/s\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9 - Pg 277" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the flow rate and roughness factor\n", "#Initialization of variables\n", "import math\n", "d=8. #in\n", "V=3.65 #ft/s\n", "u1=4.75 #ft/s\n", "r0=4. #in\n", "#calculations\n", "f=0.0449\n", "Q=V*math.pi/4. *math.pow((d/12),2)\n", "Vs=(u1-V)/3.75\n", "r0e=math.pow(10,((u1/Vs - 8.5)/5.75))\n", "e=r0/r0e\n", "#results\n", "print '%s %.2f %s' %(\"Flow rate =\",Q,\"ft^3/s\")\n", "print '%s %.3f %s' %(\"\\n roughness factor =\",e,\"in\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Flow rate = 1.27 ft^3/s\n", "\n", " roughness factor = 0.184 in\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 10 - Pg 285" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the pressure difference per foot of horizontal pipe\n", "#Initialization of variables\n", "import math\n", "e0=0.00085 #ft\n", "alpha=0.25 #/year\n", "t=15. #years\n", "r0=3. #in\n", "Q=500. #gal/min\n", "d=6. #in\n", "mu=2.04e-5 #lb-sec/ft^2\n", "rho=1.94 #slugs/ft^3\n", "g=32.2 #ft/s^2\n", "L=1. #ft\n", "gam=62.4\n", "#calculations\n", "e15=e0*(1+ alpha*t)\n", "ratio=r0/(12.*e15)\n", "V=Q/(7.48*60*math.pi/4. *math.pow((d/12),2))\n", "Nr=V*d*rho/(mu*12)\n", "f=0.036\n", "hl=f*L/(d/12.) *V*V /(2*g)\n", "dp=gam*hl\n", "#results\n", "print '%s %.2f %s' %(\"Pressure difference =\",dp,\"lb/ft^2 per foot of horizontal pipe\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Pressure difference = 2.25 lb/ft^2 per foot of horizontal pipe\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 11 - Pg 289" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the horsepower required\n", "#Initialization of variables\n", "import math\n", "d2=4. #in\n", "d1=3. #in\n", "e=0.0005 #ft\n", "mu=3.75e-5 #lb-sec/ft^2\n", "rho=1.94 #slugs/ft^3\n", "Q=100. #gal/min\n", "L=100. #ft\n", "g=32.2 #ft/s^2\n", "gam=62.4\n", "#calculations\n", "A=math.pi/4. *(math.pow((d2/12),2) -math.pow((d1/12),2))\n", "WP=math.pi*(d1+d2)/12.\n", "R=A/WP\n", "RR= 2*R/e\n", "V= Q/(7.48*60*A)\n", "Nr=V*4*R*rho/mu\n", "f=0.035\n", "hl=f*L/(4*R) *V*V /(2*g)\n", "hp=hl*Q/(7.48*60) *gam/550.\n", "#results\n", "print '%s %.2f %s' %(\"horsepower required =\",hp,\" hp/100 ft\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "horsepower required = 0.56 hp/100 ft\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12 - Pg 296" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the discharge flow\n", "#Initialization of variables\n", "import math\n", "p1=25. #psig\n", "p2=20. #psig\n", "d1=18. #in\n", "d2=12. #in\n", "Cl=0.25\n", "gam=62.4\n", "g=32.2 #ft/s^2\n", "#calculations\n", "Vr=(d2/d1)*(d2/d1)\n", "xv=(p2-p1)*144/gam\n", "V22=xv/(-1-Cl+Vr*Vr) *2*g\n", "V2=math.sqrt(V22)\n", "Q=V2*math.pi/4. *(d2/12.)*(d2/12.)\n", "#results\n", "print '%s %.1f %s' %(\"Discharge =\",Q,\"ft^3/s\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Discharge = 20.9 ft^3/s\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 13 - Pg 300" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the discharge flow rate\n", "#Initialization of variables\n", "import math\n", "V61=10.8 #ft/s\n", "V81=6.05 #ft/s\n", "r0=3 #in\n", "e=0.00015\n", "d1=6. #in\n", "rho=1.94 #slugs/ft^3\n", "mu=2.34e-5 #ft-lb/s^2\n", "#calculations\n", "roe=r0/(12*e)\n", "Nr1=V61*(d1/12.)*rho/mu\n", "f6=0.0165\n", "V6=11.6 #ft/s\n", "V8=6.52 #ft/s\n", "Q=V6*math.pi/4 *(d1/12.)*(d1/12.)\n", "#results\n", "print '%s %.2f %s' %(\"Discharge =\",Q,\"ft^3/s\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Discharge = 2.28 ft^3/s\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 14 - Pg 302" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the diameter of steel pipe\n", "#Initialization of variables\n", "import math\n", "L=1000. #ft\n", "Q=2000/(7.48*60) #ft63/s\n", "g=32.2 #ft/s^2\n", "p=5. #psi/1000 ft\n", "gam=62.4\n", "sp=0.7\n", "f=0.02\n", "r0=0.904/2.\n", "e=0.00015\n", "mu=7e-6 #lb-ft/s^2\n", "L=1000. #ft\n", "#calculations\n", "hl=p*144/(sp*gam)\n", "D5=f*8*L*Q*Q /(math.pi*math.pi *g*hl)\n", "D=math.pow(D5,(1./5.))\n", "Nr=4*Q*sp*gam/(g*(math.pi*D*mu))\n", "f2=0.0145\n", "D5=f2*8*L*Q*Q /(math.pi*math.pi *g*hl)\n", "D1=math.pow(D5,(1./5.))\n", "#results\n", "print '%s %.3f %s' %(\"Diameter of steel pipe =\",D1,\" ft\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Diameter of steel pipe = 0.848 ft\n" ] } ], "prompt_number": 19 } ], "metadata": {} } ] }