{ "metadata": { "name": "", "signature": "sha256:525b51e826bc42c9a4490de8234c350df60c3a09744a8e35af1f480f12f531bc" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 11 - Flow of liquids in open channels" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1a - Pg 454" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the discharge using darcy equation\n", "#Initialization of variables\n", "import math\n", "rho=1.94 #slugs/ft^3\n", "mu=2.34e-5 #lb-sec/ft^2\n", "y=5 #ft\n", "T=25 #ft\n", "d=10 #ft\n", "slope=3./2. \n", "g=32.2 #ft/s^2\n", "S=0.001\n", "#calculations\n", "A=y*d+ 2*0.5*y*(slope*y)\n", "WP=d+ 2*math.sqrt(3*3 +2*2) /2 *y\n", "R=A/WP\n", "e=0.01 #ft\n", "rr=2*R/e\n", "f=0.019\n", "C=math.sqrt(8*g/f)\n", "V=C*math.sqrt(R*S)\n", "Q=V*A\n", "#results\n", "print '%s %.1f %s' %(\"Discharge using Darcy equation =\",Q,\"ft^3/s\")\n", "print '%s' %(\"The answer is a bit different due to rounding off error in textbook\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Discharge using Darcy equation = 569.3 ft^3/s\n", "The answer is a bit different due to rounding off error in textbook\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1b - Pg 453" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the discharge using kutter ganguillet method\n", "#Initialization of variables\n", "import math\n", "rho=1.94 #slugs/ft^3\n", "mu=2.34e-5 #lb-sec/ft^2\n", "y=5 #ft\n", "T=25 #ft\n", "d=10 #ft\n", "slope=3./2. \n", "g=32.2 #ft/s^2\n", "S=0.001\n", "n=0.017\n", "#calculations\n", "A=y*d+ 2*0.5*y*(slope*y)\n", "WP=d+ 2*math.sqrt(3*3 +2*2) /2 *y\n", "R=A/WP\n", "e=0.01 #ft\n", "rr=2*R/e\n", "f=0.019\n", "C=(41.65 + 0.00281/S + 1.811/n)/(1+( 41.65 + 0.00281/S)*n/math.sqrt(R))\n", "V=C*math.sqrt(R*S)\n", "Q=V*A\n", "#results\n", "print '%s %.1f %s' %(\"Discharge using kutter ganguillet formula =\",Q,\" ft^3/s\")\n", "print '%s' %(\"The answer is a bit different due to rounding off error in textbook\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Discharge using kutter ganguillet formula = 517.0 ft^3/s\n", "The answer is a bit different due to rounding off error in textbook\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1c - Pg 455" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the discharge using bazin formula\n", "#Initialization of variables\n", "import math\n", "rho=1.94 #slugs/ft^3\n", "mu=2.34e-5 #lb-sec/ft^2\n", "y=5. #ft\n", "T=25. #ft\n", "d=10. #ft\n", "slope=3./2.\n", "g=32.2 #ft/s^2\n", "S=0.001\n", "m=0.21\n", "#calculations\n", "A=y*d+ 2*0.5*y*(slope*y)\n", "WP=d+ 2*math.sqrt(3*3 +2*2) /2 *y\n", "R=A/WP\n", "e=0.01 #ft\n", "rr=2*R/e\n", "f=0.019\n", "C=157.6 /(1+ m/math.sqrt(R))\n", "V=C*math.sqrt(R*S)\n", "Q=V*A\n", "#results\n", "print '%s %.1f %s' %(\"Discharge using bazin formula =\",Q,\" ft^3/s\")\n", "print '%s' %(\"The answer is a bit different due to rounding off error in textbook\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Discharge using bazin formula = 688.7 ft^3/s\n", "The answer is a bit different due to rounding off error in textbook\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1d - Pg 456" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the discharge using darcy equation\n", "#Initialization of variables\n", "import math\n", "rho=1.94 #slugs/ft^3\n", "mu=2.34e-5 #lb-sec/ft^2\n", "y=5. #ft\n", "T=25. #ft\n", "d=10. #ft\n", "slope=3./2. \n", "g=32.2 #ft/s^2\n", "S=0.001\n", "n=0.017\n", "#calculations\n", "A=y*d+ 2*0.5*y*(slope*y)\n", "WP=d+ 2*math.sqrt(3*3 +2*2) /2 *y\n", "R=A/WP\n", "e=0.01 #ft\n", "rr=2*R/e\n", "f=0.019\n", "C=1.486*math.pow(R,(1./6.)) /n\n", "V=C*math.sqrt(R*S)\n", "Q=V*A\n", "#results\n", "print '%s %.1f %s' %(\"Discharge using Darcy equation =\",Q,\"ft^3/s\")\n", "print '%s' %(\"The answer is a bit different due to rounding off error in textbook\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Discharge using Darcy equation = 516.6 ft^3/s\n", "The answer is a bit different due to rounding off error in textbook\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1e - Pg 456" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the froude number\n", "#Initialization of variables\n", "import math\n", "rho=1.94 #slugs/ft^3\n", "mu=2.34e-5 #lb-sec/ft^2\n", "y=5. #ft\n", "T=25. #ft\n", "d=10. #ft\n", "slope=3./2. \n", "g=32.2 #ft/s^2\n", "S=0.001\n", "n=0.017\n", "#calculations\n", "A=y*d+ 2*0.5*y*(slope*y)\n", "WP=d+ 2*math.sqrt(3*3 +2*2) /2 *y\n", "R=A/WP\n", "e=0.01 #ft\n", "rr=2*R/e\n", "f=0.019\n", "C=(41.65 + 0.00281/S + 1.811/n)/(1+( 41.65 + 0.00281/S)*n/math.sqrt(R))\n", "V=C*math.sqrt(R*S)\n", "T=d+ 2*(slope*y)\n", "yh=A/T\n", "Nf=V/(math.sqrt(g*yh))\n", "#results\n", "print '%s %.2f' %(\"froude number = \",Nf)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "froude number = 0.56\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 1f - Pg 456" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the critical depth\n", "#Initialization of variables\n", "import math\n", "rho=1.94 #slugs/ft^3\n", "mu=2.34e-5 #lb-sec/ft^2\n", "y=5. #ft\n", "T=25. #ft\n", "d=10. #ft\n", "slope=3./2. \n", "g=32.2 #ft/s^2\n", "S=0.001\n", "n=0.017\n", "#calculations\n", "A=y*d+ 2*0.5*y*(slope*y)\n", "WP=d+ 2*math.sqrt(3*3 +2*2) /2 *y\n", "R=A/WP\n", "e=0.01 #ft\n", "rr=2*R/e\n", "f=0.019\n", "C=(41.65 + 0.00281/S + 1.811/n)/(1+( 41.65 + 0.00281/S)*n/math.sqrt(R))\n", "V=C*math.sqrt(R*S)\n", "Q=V*A\n", "T=d+ 2*(slope*y)\n", "yh=A/T\n", "yc=2.88 #ft\n", "#results\n", "print '%s' %(\"yc is obtained using trial and error method\")\n", "print '%s %.2f %s' %(\"Critical depth =\",yc,\"ft\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "yc is obtained using trial and error method\n", "Critical depth = 2.88 ft\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 2 - Pg 459" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the minimum scale ratio\n", "#Initialization of variables\n", "import math\n", "Re=4000.\n", "rho=1.94 #slugs/ft^3\n", "vm=5.91 #ft/s\n", "mu=3.24e-5 #ft-lb/s^2\n", "Rm=3.12 #ft\n", "#calculations\n", "lam3=Re*mu/(vm*4*Rm*rho)\n", "lam=math.pow(lam3,(2./3.))\n", "#results\n", "print '%s %.2e' %(\"Minimum scale ratio = \",lam)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Minimum scale ratio = 9.36e-03\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3 - Pg 462" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the discharge, depth of the channel, froude numbers and also the force applied\n", "#Initialization of variables\n", "import math\n", "yc=2. #ft\n", "g=32.2 #ft/s^2\n", "d=10. #ft\n", "gam=62.4\n", "rho=1.94\n", "B=10. #ft\n", "#calculations\n", "Vc=math.sqrt(g*yc)\n", "Ac=yc*d\n", "Q=Vc*Ac\n", "y1=5.88 #ft\n", "y2=0.88 #ft\n", "V1=2.73 #ft/s\n", "V2=18.25 #ft/s\n", "Nf1=0.198\n", "Nf2=3.43\n", "F= 0.5*gam*y1*y1 *B - 0.5*gam*y2*y2 *B - Q*rho*V2 +Q*rho*V1\n", "#results\n", "print '%s %.1f %s' %(\"Discharge in the channel =\",Q,\"ft^3/s\")\n", "print '%s %.2f %s %.2f %s' %(\"\\n Depth of the channel at upstream and downstream =\",y1,\"ft and\",y2, \"ft\")\n", "print '%s %.3f %s %.3f' %(\"\\n froude numbers at upstream and downstream =\",Nf1,\" and \",Nf2)\n", "print '%s %d %s' %(\"\\n Force applied =\",F,\"lb\")\n", "print '%s' %(\"The answers are a bit different from textbook due to rounding off error\")" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Discharge in the channel = 160.5 ft^3/s\n", "\n", " Depth of the channel at upstream and downstream = 5.88 ft and 0.88 ft\n", "\n", " froude numbers at upstream and downstream = 0.198 and 3.430\n", "\n", " Force applied = 5713 lb\n", "The answers are a bit different from textbook due to rounding off error\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 4 - Pg 470" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#calculate the distance from vena contracta and also the total distance\n", "#Initialization of variables\n", "import math\n", "S0=0.0009\n", "n=0.018\n", "w=20 #ft\n", "d=0.5 #ft\n", "Q=400 #ft^3/s\n", "g=32.2 #ft/s^2\n", "#calculations\n", "y2=4 #ft\n", "V2=Q/(w*y2)\n", "Nf2=V2/math.sqrt(g*y2)\n", "yr=0.5*(math.sqrt(1+ 8*Nf2*Nf2) -1)\n", "y1=yr*y2\n", "L1=32.5\n", "L2=37.1 \n", "L3=51.4\n", "L=L1+L2+L3\n", "#results\n", "print '%s %.1f %s %.2f %s' %(\"distance from vena contracta =\",y2,\"ft and\",y1,\"ft\")\n", "print '%s %.1f %s' %(\"\\n Total distance =\",L,\" ft\")\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "distance from vena contracta = 4.0 ft and 1.20 ft\n", "\n", " Total distance = 121.0 ft\n" ] } ], "prompt_number": 9 } ], "metadata": {} } ] }