{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 8 :Hydraulic Valves" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.1 pgno:293" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", " Results: \n", "\n", " The Cracking pressure is psi. 667.0\n", "\n", " The Full pump flow pressure is psi. 1000.0\n" ] } ], "source": [ "# Aim:Refer Example 8-1 for Problem Description \n", "# Given:\n", "# area of relief valve:\n", "A=0.75; #in**2\n", "# spring constant:\n", "k=2500.0; #lb/in\n", "# initial compressed length of spring:\n", "S=0.20; #in\n", "# poppet displacement to pass full pump flow:\n", "L=0.10; #in\n", "\n", "\n", "\n", "\n", "\n", "\n", "# Solution:\n", "# spring force excerted on poppet when it is fully closed,\n", "F=k*S; #lb\n", "# Cracking pressure,\n", "p_crack=F/A; #psi\n", "# spring force when poppet moves 0.10 in from its fully closed position,\n", "F_new=k*(L+S); #lb\n", "# Full pump flow pressure,\n", "p_ful_pump_flow=F_new/A; #psi\n", " \n", "# Results:\n", "print\"\\n Results: \" \n", "print\"\\n The Cracking pressure is psi.\",round(p_crack)\n", "print\"\\n The Full pump flow pressure is psi.\",p_ful_pump_flow\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.2 pgno:299" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", " Results: \n", "\n", " The Horsepower across the pressure relief valve is HP. 11.7\n" ] } ], "source": [ "# Aim:To compute horsepower across the pressure relief valve\n", "# Given:\n", "# pressure relief valve setting:\n", "p=1000.0; #psi\n", "# pump flow to the tank:\n", "Q=20.0; #gpm\n", "\n", "\n", "\n", "# Solution:\n", "# Horsepower across the valve,\n", "HP=((p*Q)/1714); #HP\n", " \n", "# Results:\n", "print\"\\n Results: \" \n", "print\"\\n The Horsepower across the pressure relief valve is HP.\",round(HP,1)\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.3 pgno:299" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", " Results: \n", "\n", " The Horsepower across the unloading valve is HP. 0.29\n" ] } ], "source": [ "# Aim:To compute horsepower across the unloading valve\n", "# Given:\n", "# pump pressure during unloading:\n", "p=25.0; #psi\n", "# pump flow to the tank:\n", "Q=20.0; #gpm\n", "\n", "\n", "\n", "\n", "# Solution:\n", "# Horsepower across the valve,\n", "HP=((p*Q)/1714); #HP\n", " \n", "# Results:\n", "print\"\\n Results: \" \n", "print\"\\n The Horsepower across the unloading valve is HP.\",round(HP,2)\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.4 pgno:302" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", " Results: \n", "\n", " The flow-rate through orifice is gpm. 252.0\n" ] } ], "source": [ "# Aim:To find flow-rate through given orifice\n", "# Given:\n", "# pressure drop across orifice:\n", "del_p=100.0; #psi\n", "# orifice diameter:\n", "D=1.0; #in\n", "# specific gravity of oil:\n", "SG_oil=0.9;\n", "# flow coefficient for sharp edge orifice:\n", "C=0.80;\n", "import math \n", "from math import pi\n", "\n", "# Solution:\n", "# flow-rate through orifice,\n", "Q=38.1*C*((pi*(D**2))/4)*(del_p/SG_oil)**0.5; #gpm\n", "\n", "# Results:\n", "print\"\\n Results: \" \n", "print\"\\n The flow-rate through orifice is gpm.\",round(Q)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.5 pgno:304" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", " Results: \n", "\n", " The capacity coefficient in English unit is gpm/sqrt(psi). 2.37\n", "\n", " The capacity coefficient in Metric unit is Lpm/sqrt(kPa). 3.43\n" ] } ], "source": [ "# Aim:To determine the capacity coefficient of flow control valve \n", "# Given:\n", "# pressure drop across flow control valve:\n", "del_p=100.0; #psi\n", "del_p1=687.0; #kPa\n", "# flow-rate across valve:\n", "Q=25.0; #gpm\n", "Q1=94.8; #Lpm\n", "# specific gravity of oil:\n", "SG_oil=0.9; \n", "\n", "\n", "\n", "\n", "\n", "# Solution:\n", "# capacity coefficient in English Units,\n", "Cv=Q/((del_p/SG_oil)**0.5); #gpm/sqrt(psi)\n", "# capacity coefficient in Metric Units,\n", "Cv1=Q1/((del_p1/SG_oil)**0.5); #Lpm/sqrt(kPA)\n", "\n", "# Results:\n", "print\"\\n Results: \" \n", "print\"\\n The capacity coefficient in English unit is gpm/sqrt(psi).\",round(Cv,2)\n", "print\"\\n The capacity coefficient in Metric unit is Lpm/sqrt(kPa).\",round(Cv1,2)\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 8.6 pgno:304" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", " Results: \n", "\n", " The capacity coefficient of needle valve is gpm/sqrt(psi). 0.37\n" ] } ], "source": [ "# Aim:To determine the capacity coefficient of needle valve \n", "# Given:\n", "# Desired cylinder speed:\n", "v2=10.0; #in/s\n", "# Cylinder piston area:\n", "A1=3.14; #in^2\n", "# Cylinder rod area:\n", "Ar=0.79; #in^2\n", "# Cylinder load:\n", "F_load=1000.0; #lb\n", "# Specific gravity of oil:\n", "SG_oil=0.9;\n", "# Pressure relief valve setting:\n", "p1=500.0; #psi\n", "\n", "\n", "\n", "\n", "\n", "# Solution:\n", "# annular area of cylinder,\n", "A2=A1-Ar; #in^2\n", "# back pressure in the rod end,\n", "p2=((p1*A1)-F_load)/A2; #psi\n", "# flow rate through needle valve based on desired cylinder speed,\n", "Q=(A2*v2*60)/231; #gpm\n", "# capacity coefficient of needle valve,\n", "Cv=Q/((p2/SG_oil)**0.5); #gpm/sqrt(psi)\n", "\n", "# Results:\n", "print\"\\n Results: \"\n", "print\"\\n The capacity coefficient of needle valve is gpm/sqrt(psi).\",round(Cv,2)\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }