{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 2:Physical Properties of Hydraulic Fluids " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.1 pgno:42" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "the weight is 129.0\n" ] } ], "source": [ "# Aim:To Find Weight of Body\n", "# Given:\n", "# Mass of the Body:\n", "m=4; #slugs\n", "\n", "# Solutions:\n", "# we know acceleration due to gravity,\n", "g=32.2; #ft/s**2\n", "W=(m*g);\n", "\n", "# Results:\n", "print \"the weight is\",round(W)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.2 pgno:43" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Results: \n", " The specific weight of Body is lb/ft**3. 71.7\n" ] } ], "source": [ "# Aim:To find the specific weight of a body\n", "# Given:\n", "# Weigth of the Body:\n", "W=129; #lb\n", "# Volume of the Body:\n", "V=1.8; #ft**3\n", "\n", "# Solution:\n", "# we know specific weight,\n", "# gamma=(Weigth of the Body/Volume of the Body)\n", "gamma1=(W/V); #lb/ft^3\n", "# rounding off the above answer\n", "#gamma1=round(gamma1)+(round((gamma1-round(gamma1))*10)/10); #lb/ft^3\n", " \n", "# Results:\n", "print \" Results: \"\n", "print \" The specific weight of Body is lb/ft**3.\",round(gamma1,1)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.3 pgno:44" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Results: \n", "The specific gravity of air 0.00121\n" ] } ], "source": [ "# Aim:To find the specific gravity of air at 68 degF\n", "# Given:\n", "# specific weight of air at 68 degF:\n", "gamma_air=0.0752; #lb/ft**3\n", "\n", "\n", "# Solution:\n", "# we know,\n", "# specific gravity of air=(specific weight of air/specific weight of water)\n", "# also we know,specific weight of water at 68 degF,\n", "gamma_water=62.4; #lb/ft**3\n", "SG_air=gamma_air/gamma_water;\n", "\n", "# Results:\n", "print \"Results: \"\n", "print \"The specific gravity of air \",round(SG_air,5) \n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.4 pgno:45" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Results: \n", "The Density of Body is slugs/ft**3. 2.22\n", " The Density of Body is slugs/ft**3. 2.22\n" ] } ], "source": [ "# Aim:To find Density of body of Example 2-1 and 2-2\n", "# Given:\n", "# mass of the Body:\n", "m=4; #slugs\n", "# Volume of the Body:\n", "V=1.8; #ft**3\n", "\n", "# Solution:\n", "# we know density,\n", "# rho1=(mass of the Body/Volume of the Body)\n", "rho1=(m/V); #slugs/ft**3\n", "# also density,rho2=(specific weight/acceleration due to gravity)\n", "g=32.2; #ft/s**2\n", "gamma1=71.6; #lb/ft**3\n", "rho2=(gamma1/g); #slugs/ft**3\n", "\n", "# Results:\n", "print \" Results: \"\n", "print \"The Density of Body is slugs/ft**3.\",round(rho1,2)\n", "print \" The Density of Body is slugs/ft**3.\",round(rho2,2)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.5 pgno:48" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Results: \n", " The pressure on skin diver is psi. 26.0\n" ] } ], "source": [ "# Aim:To find pressure on the skin diver\n", "# Given:\n", "# Depth of Water Body:\n", "H=60; #ft\n", "\n", "# Solution:\n", "# specific Weight of water,\n", "gamma1=0.0361; #lb/in**3 \n", "# Conversion: \n", "# 1 feet = 12 inches\n", "# 1 lb/in**2 = 1 psi \n", "# we know pressure,\n", "# p=(specific weight of liquid * liquid column height)\n", "p=(gamma1*H*12); #psi\n", "\n", "# Results:\n", "print \" Results: \"\n", "print \" The pressure on skin diver is psi.\",round(p)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.6 pgno:50" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Results: \n", " The Height of water column is ft. 34.0\n" ] } ], "source": [ "# Aim:To find tube height of a Barometer\n", "# Given:\n", "# liquid used is Water instead of Mercury.\n", "\n", "# Solution:\n", "# specific Weight of water,\n", "gamma1=0.0361; #lb/in**3 \n", "# We also knows Atmospheric Pressure,\n", "p=14.7; #psi\n", "# Conversion: \n", "# 1 feet = 12 inches\n", "# 1 lb/in**2 = 1 psi \n", "# we know pressure,\n", "# p=(specific weight of liquid * liquid column height)\n", "# Therefore,\n", "H=(p/gamma1); #in\n", "# He=Height in Feet.\n", "He=H*0.083; #ft\n", "\n", "# Results:\n", "print \" Results: \"\n", "print \" The Height of water column is ft.\",round(He,0)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.7 pgno:51" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Results: \n", " The Absolute Pressure is psi. 9.7\n" ] } ], "source": [ "# Aim:To convert given pressure into absolute pressure\n", "# Given:\n", "# Gage Pressure:\n", "Pg=-5; #psi\n", "\n", "# Solution:\n", "# Atmospheric Pressure,\n", "Po=14.7; #psi \n", "# Absolute Pressure(Pa) =Gage Pressure + Atmospheric Pressure\n", "Pa=Pg+Po;\n", "\n", "# Results:\n", "print \" Results: \"\n", "print \" The Absolute Pressure is psi.\",Pa\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## example 2.8 pgno:51" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Results: \n", "The Absolute Pressure is psi. 40.7\n" ] } ], "source": [ "# Aim:To find absolute pressure on skin diver of Example 2-5\n", "# Given:\n", "# Gage Pressure:\n", "Pg=26; #psi\n", "\n", "# Solution:\n", "# Atmospheric Pressure,\n", "Po=14.7; #psi \n", "# Absolute Pressure(Pa) =Gage Pressure + Atmospheric Pressure\n", "Pa=Pg+Po; #psi\n", "\n", "# Results:\n", "print \" Results: \"\n", "print \"The Absolute Pressure is psi.\",Pa\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.9 pgno:56" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Results: \n", "The specific weights is N/m**3. 8792\n", " The answer in the program is different than that in textbook. It may be due to no.s of significant digit in data and calculation\n" ] } ], "source": [ "# Aim:To Determine specific weights in N/m**3\n", "# Given:\n", "# specific weight:\n", "gamma1=56; #lb/ft**3\n", "\n", "\n", "# Solution:\n", "# We know,\n", "# 1 N/m**3 = 157 lb/ft**3\n", "gamma2=157*gamma1; #N/m**3\n", "\n", "# Results:\n", "print \" Results: \"\n", "print \"The specific weights is N/m**3.\",gamma2\n", "print \" The answer in the program is different than that in textbook. It may be due to no.s of significant digit in data and calculation\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.10 pgno:56" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Results: \n", " The temp at which Fahrenheit and Celsius values are equal is deg. -40.0\n" ] } ], "source": [ " # Aim:To find Temperature at which Fahrenheit and Celsius values are equal \n", "# Given:\n", "# T(degF) = T(degC) #Eqn - 1\n", "\n", "# Solution:\n", "# We know that,\n", "# T(degF)=((1.8*T(degC))+32) #Eqn - 2 \n", "# From Eqn 1 and 2\n", "# ((1.8*T(degC))+32)= T(degC)\n", "# (1-1.8)*T(degC)=32\n", "# -0.8*T(degC)=32\n", "TdegC=-32/0.8;\n", "\n", "# Results:\n", "print \" Results: \"\n", "print \" The temp at which Fahrenheit and Celsius values are equal is deg.\",TdegC\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.11 pgno:57" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Results: \n", " The change in volume of oil is in^3. -0.076\n" ] } ], "source": [ "# Aim:To find change in volume of the oil\n", "# Given:\n", "# Volume of original oil:\n", "V=10.0; #in^3\n", "# Initial Pressure:\n", "P1=100.0; #psi\n", "# Final pressure:\n", "P2=2000.0; #psi\n", "# Bulk Modullus:\n", "betaa=250000.0; #psi\n", "\n", "\n", "\n", "# Solution:\n", "# Change in pressure,\n", "delP=P2-P1; #psi\n", "# Change in volume,\n", "delV=-((V*delP)/betaa); #in^3 ,- sign indicates oil is being compressed\n", "\n", "# Results:\n", "print \" Results: \"\n", "print \" The change in volume of oil is in^3.\",delV\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example2.12 pgno:62" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Results: \n", " The viscosity of oil in centistokes is cS. 50.0\n", " The viscosity of oil in centipoise is cP. 45.0\n" ] } ], "source": [ "# Aim:To find viscosity of oil in centistokes and centipoise\n", "# Given:\n", "# viscosity of oil:\n", "nu=230; #SUS at\n", "t=150; #degF.\n", "# specific gravity of oil:\n", "gamma1=0.9;\n", "# Solution:\n", "# kinematic viscosity of oil in centistokes,\n", "nu_cs=((0.220*nu)-(135/230)); #centistokes\n", "# absolute viscosity of oil in centipoise,\n", "mu_cp=(gamma1*nu_cs); #centipoise\n", "from math import floor\n", "# Results:\n", "print \" Results: \"\n", "print \" The viscosity of oil in centistokes is cS.\",floor(nu_cs)\n", "print \" The viscosity of oil in centipoise is cP.\",floor(mu_cp)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.13 pgno:62" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Results: \n", " The viscosity of oil in centistokes is cS. 25.0\n", " The viscosity of oil in centipoise is cP. 22.3\n" ] } ], "source": [ "# Aim:To find kinematic and absolute viscosity of oil in cS and cP respectively\n", "# Given:\n", "# Density of oil:\n", "Den=0.89; #g/cm^3\n", "# Time flow:\n", "t=250; #s\n", "# Calibration constant:\n", "cc=0.100;\n", "\n", "# Solution:\n", "# kinematic viscosity of oil in centistokes,\n", "nu_cs=(t*cc); #centistokes\n", "# absolute viscosity of oil in centipoise,\n", "SG=Den;\n", "mu_cp=(SG*nu_cs); #centipoise\n", "# rounding off the above answer\n", "mu_cp=round(mu_cp)+(round(round((mu_cp-round(mu_cp))*10))/10); #centipoise\n", "\n", "# Results:\n", "print \" Results: \"\n", "print \" The viscosity of oil in centistokes is cS.\",nu_cs\n", "print \" The viscosity of oil in centipoise is cP.\",mu_cp\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.14 pgno:65" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Results: \n", " The viscosity of sample oil at 100 degF is SUS. 200\n" ] } ], "source": [ "# Aim:To find viscosity of oil at 100 degF in SUS\n", "# Given:\n", "# Viscosity Index:\n", "VI=80;\n", "# viscosity of O-VI oil at 100 degF:\n", "L=400; #SUS\n", "# viscosity of 100-VI oil at 100 degF:\n", "H=150; #SUS\n", "\n", "\n", "\n", "# Solution:\n", "# viscosity of sample oil at 100 degF,\n", "U=L-(((L-H)*VI)/100); #SUS\n", "\n", "# Results:\n", "print \" Results: \"\n", "print \" The viscosity of sample oil at 100 degF is SUS.\",U\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.15 pgno:67" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Results: \n", " The pressure on skin diver is kPa. 179.0\n" ] } ], "source": [ "# Aim:To find pressure on the skin diver in SI units\n", "# Given:\n", "# Depth of Water Body:\n", "H=18.3; #m\n", "\n", "# Solution:\n", "# specific Weight of water,\n", "gamma1=9800; #N/m^3 \n", "# we know pressure,\n", "# p=(specific weight of liquid * liquid column height)\n", "p=(gamma1*H); #Pa\n", "pK=p/1000; #kPa\n", "\n", "# Results:\n", "print \" Results: \"\n", "print \" The pressure on skin diver is kPa.\",round(pK)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.16 pgno:67" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Results: \n", " The Absolute Pressure is Pa. 67000\n" ] } ], "source": [ "# Aim:To convert given pressure into absolute pressure\n", "# Given:\n", "# Gage Pressure:\n", "Pg=-34000; #Pa\n", "\n", "\n", "# Solution:\n", "# Atmospheric Pressure,\n", "Po=101000; #Pa \n", "# Absolute Pressure(Pa) =Gage Pressure + Atmospheric Pressure\n", "Pa=Pg+Po; #Pa\n", "\n", "# Results:\n", "print \" Results: \"\n", "print \" The Absolute Pressure is Pa.\",Pa\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.17 pgno:67" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Results: \n", " The Percentage change in volume of oil is -0.76\n" ] } ], "source": [ "# Aim:To find % change in volume of the oil\n", "# Given:\n", "# Volume of original oil:V=164 #cm^3\n", "# Initial Pressure:\n", "P1=687.0; #kPa\n", "# Final pressure:\n", "P2=13740.0; #kPa\n", "# Bulk Modullus:\n", "betaa=1718.0; #MPa\n", "\n", "\n", "# Solution:\n", "# Change in pressure,\n", "delP=P2-P1; #kPa \n", "betaa=betaa*1000; #kPA\n", "# % Change in volume,\n", "delV=-(delP/betaa)*100; #% ,- sign indicates oil is being compressed\n", "\n", "# Results:\n", "print \" Results: \"\n", "print \" The Percentage change in volume of oil is \",round(delV,2)\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 2.18pgno:68" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Results: \n", " The viscosity of oil is Ns/m**2. 0.05\n", " The viscosity of oil is cP. 50.0\n" ] } ], "source": [ "# Aim:To find absolute viscosity of oil in Ns/m**2 and cP\n", "# Given:\n", "# Area of moving plate surface in contact with oil:\n", "A=1; #m**2\n", "# Force applied to the moving plate:\n", "F=10; #N \n", "# velocity of the moving plate:\n", "v=1; #m/s\n", "# oil film thickness:\n", "y=5; #mm\n", "y=5*0.001; #m\n", "\n", "\n", "# Solution:\n", "# absolute viscosity of oil,\n", "mu=(F/A)/(v/y); #Ns/m**2\n", "# absolute viscosity of oil in cP,\n", "mu_P=(F*100000*y*100)/(v*100*A*10000); #poise\n", "mu_cP=mu_P*100; #centipoise\n", "\n", "# Results:\n", "print \" Results: \"\n", "print \" The viscosity of oil is Ns/m**2.\",mu\n", "print \" The viscosity of oil is cP.\",mu_cP\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }