{ "metadata": { "name": "", "signature": "sha256:38d704564aa6536fc6da296a78f2a33e8cb9eb20a3ce0fa8f700546de7fd07b5" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 9: Similarity" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.1, Page 291" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "import math\n", "\n", "\n", " #Initializing the variables\n", "Vp = 10;\n", "LpByLm = 20;\n", "rhoPbyRhoM = 1;\n", "muPbymuM = 1;\n", " #Calculations\n", "Vm = Vp*LpByLm*rhoPbyRhoM*muPbymuM;\n", " \n", "print \"Mean water tunnel flow velocity (m/s) :\",Vm" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Mean water tunnel flow velocity (m/s) : 200\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.2, Page 292" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "import math\n", " \n", "\n", " #Initializing the variables\n", "Vp = 3;\n", "LpByLm = 30;\n", "rhoPbyRhoM = 1;\n", "muPbymuM = 1;\n", "\n", " #Calculations\n", "Vm = Vp*LpByLm*rhoPbyRhoM*muPbymuM;\n", " \n", "print \"Mean water tunnel flow velocity (m/s):\",Vm" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Mean water tunnel flow velocity (m/s): 90\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.3, Page 293" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "import math\n", " \n", "\n", " #Initializing the variables\n", "Vp = 100;\n", "cP = 340;\n", "cM = 295;\n", "rhoM = 7.7;\n", "rhoP = 1.2;\n", "muM = 1.8*10**-5;\n", "muP = 1.2*10**-5;\n", "\n", " #Calculations\n", "Vm = Vp*(cM/cP);\n", "LmByLp = 1/((Vm/Vp)*(muM/muP)*(rhoM/rhoP));\n", "FmByFp = (rhoM/rhoP)*(Vm/Vp)**2*(LmByLp)**2;\n", "\n", "print 'Mean wind tunnel flow velocity(m/s) :',round(Vm,2)\n", "print \"Percentage ratio of forces (%) :\",round(FmByFp*100,2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Mean wind tunnel flow velocity(m/s) : 86.76\n", "Percentage ratio of forces (%) : 6.93\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.4, Page 295" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "import math\n", " \n", "\n", " #Initializing the variables\n", "def pLossRatio(RatRho,RatMu,RatL):\n", " Z = RatRho*RatMu**2*RatL**2;\n", " return Z\n", "\n", " #Calculations\n", " #Case (a) : water is used\n", "RatRho = 1;\n", "RatMu = 1;\n", "RatL = 10;\n", "print \"(a)Ratio of pressure losses between the model and the prototype if water is used :\",pLossRatio(RatRho,RatMu,RatL)\n", "\n", "# Case (b) : air is used\n", "RatRho = 1000/1.23;\n", "RatMu = 1.8*10**-5/10**-3;\n", "\n", "print \"(b)Ratio of pressure losses between the model and the prototype if air is used :\",round(pLossRatio(RatRho,RatMu,RatL),2)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a)Ratio of pressure losses between the model and the prototype if water is used : 100\n", "(b)Ratio of pressure losses between the model and the prototype if air is used : 26.34\n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.5, Page 296" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "import math\n", " \n", " #Initializing the variables\n", "scale = 1/50;\n", "ratArea = scale**2;\n", "Qp = 1200;\n", "\n", " #Calculations\n", "LmByLp = (ratArea)**0.5;\n", "VmByVp = (LmByLp)**0.5;\n", "Qm = Qp*ratArea*VmByVp;\n", "\n", "print \"Water flow rate (m3/s ):\",round(Qm,3)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Water flow rate (m3/s ): 0.068\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.6, Page 298" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "import math\n", " \n", " #Initializing the variables\n", "Qa = 2;\n", "Na = 1400;\n", "rhoA = 0.92;\n", "rhoS = 1.3;\n", "DaByDs = 1;\n", "dPa = 200;\n", "\n", " #Calculations\n", "Ns = Na*(rhoA/rhoS)*(DaByDs);\n", "Qs = Qa*(Ns/Na);\n", "dPs = dPa *(rhoS/rhoA)*(Ns/Na)**2*(1/DaByDs)**2;\n", "\n", "print \"Fan test speed (rev/s):\",round(Ns,1)\n", "print \"Flow rate (m3/s) :\",round(Qs,3)\n", "print \"Pressure rise (N/m2 ) :\",round(dPs,1) " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Fan test speed (rev/s): 990.8\n", "Flow rate (m3/s) : 1.415\n", "Pressure rise (N/m2 ) : 141.5\n" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 9.8, Page 304" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division\n", "import math\n", " \n", "\n", " #Initializing the variables\n", "V = 300 # Volume rate\n", "w = 3;\n", "d = 65;\n", "l = 30;\n", "scaleH = 30/1000/18;\n", "scaleV = 1/60;\n", "ZmByZr = 1/60;\n", "LmByLr = 1/600;\n", "rho = 1000;\n", "mu = 1.14*10**-3;\n", "\n", " #Calculations\n", "Vr = V/(w*d); \n", "Vm =Vr*(ZmByZr)**0.5;\n", "m = (w*d*scaleH*scaleV)/(d*scaleH + 2*w*scaleV);\n", "Rem = rho*Vm*m/mu;\n", "TmByTr = LmByLr*(1/ZmByZr)**0.5;\n", "Tm = 12.4*60*TmByTr;\n", "\n", "\n", "\n", "print \"Tidal Period (minutes):\",round(Tm,1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Tidal Period (minutes): 9.6\n" ] } ], "prompt_number": 8 } ], "metadata": {} } ] }