{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Chapter 7 : Fluid Resistance"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Example 7.1 Page no 245"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Reynolds number for water = 7463.0\n",
      "R > 2000 the flow is turbulent for water\n",
      "\n",
      "\n",
      "Reynolds number for glycerine = 8.7\n",
      "R < 2000 the flow is laminar for glycerine\n"
     ]
    }
   ],
   "source": [
    "# Is the flow laminar or turbulent\n",
    "\n",
    "from math import *\n",
    "\n",
    "from __future__ import division\n",
    "\n",
    "# Given\n",
    "\n",
    "nu1 = 0.804*10**-6               # viscosity in m**2/s\n",
    "\n",
    "V = 0.3                        # velocity in m/s\n",
    "\n",
    "D = 0.02                       # diameter in m/s\n",
    "\n",
    "# for water \n",
    "\n",
    "rho = 995.7                    # density in kg/m**3\n",
    "\n",
    "# for gylcerine\n",
    "\n",
    "mu = 8620*10**-4               # viscosity in Ns/m**2\n",
    "\n",
    "S = 1.26                       # specific gravity\n",
    "\n",
    "nu2 = mu/(S*rho)                # viscosity of glycerine in Ns/m**2\n",
    "\n",
    "# Solution\n",
    "\n",
    "R1 = V*D/nu1\n",
    "\n",
    "print \"Reynolds number for water =\",round(R1,0)\n",
    "\n",
    "print \"R > 2000 the flow is turbulent for water\"\n",
    "\n",
    "print \"\\n\"\n",
    "R2 = V*D/nu2\n",
    "\n",
    "print \"Reynolds number for glycerine =\",round(R2,1)\n",
    "\n",
    "print \"R < 2000 the flow is laminar for glycerine\"\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Example 7.2 Page no 248"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0.7/y\n",
      "Turbulence constant =  0.46\n",
      "Mixing length =  13.8 cm\n",
      "Eddy viscosity = 44.1 Nm/s**2\n"
     ]
    }
   ],
   "source": [
    "# Eddy Viscosity; mixing length ; turbulence constant\n",
    "\n",
    "from math import *\n",
    "\n",
    "from __future__ import division\n",
    "\n",
    "from scipy import *\n",
    "\n",
    "import numpy as np\n",
    "\n",
    "from sympy import *\n",
    "\n",
    "y = Symbol('y')\n",
    "\n",
    "d = 0.0175           # diameter in m\n",
    "\n",
    "s = 0.3              # shear stress at a distance in m\n",
    "\n",
    "tau = 103            # shear stress in Pa\n",
    "\n",
    "rho = 1000           # density in kg/m**3\n",
    "\n",
    "#y = 0.3\n",
    "\n",
    "# solution\n",
    "\n",
    "Up = diff(8.5+0.7*log(y),y)\n",
    "\n",
    "print Up\n",
    "\n",
    "Up = (0.7/0.3)                     # for y = 0.3\n",
    "\n",
    "k = sqrt(tau/(rho*s**2*Up**2))\n",
    "\n",
    "print \"Turbulence constant = \",round(k,2)\n",
    "\n",
    "Ml = k*s*100             # mixing length\n",
    "\n",
    "print \"Mixing length = \",round(Ml,1),\"cm\"\n",
    "\n",
    "Eta = rho*(Ml/100)**2*Up\n",
    "\n",
    "print \"Eddy viscosity =\",round(Eta,1),\"Nm/s**2\"\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Example 7.3 Page no 256"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEICAYAAABS0fM3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4jOfeB/DvIFQkJIKIpUlatWQjEdI6lvHaKY21cQ6i\nHMfh7eoQVRzROkRRb9HFabXoYqmtWpU6WhN7I5EQseS0miAmSCUkksgyz/vHTWTImGQyzzyzfD/X\nNZfMZPI8v5lr3L957uV3qyRJkkBERA6rltIBEBGRspgIiIgcHBMBEZGDYyIgInJwTARERA6OiYCI\nyMHJlgiKiooQFhaGTp06wc/PD3PmzAEAREdHo1WrVggODkZwcDBiY2PlCoGIiKpAJec6goKCAjg7\nO6O0tBTdu3fH8uXL8dNPP8HV1RUzZsyQ67RERFQNsnYNOTs7AwCKi4tRVlYGd3d3AADXsBERWRFJ\nRmVlZVLHjh0lFxcXadasWZIkSVJ0dLTk7e0tBQUFSZMmTZJycnL0/gYAb7zxxhtvJtxMJesVQa1a\ntZCcnIwrV67g4MGD0Gg0mDZtGn7//XckJyfDy8sL//jHPx75O0mSeDPTbcGCBYrHYE83vp98P631\nVqO2ukZ/XUWNGjXCkCFDkJCQgGbNmkGlUkGlUuGvf/0r4uPjzX6+7Gzg8GGzH5aIyC7Jlgiys7OR\nm5sLACgsLMR//vMfBAcHIysrq/w5O3fuRGBgoNnPfekSMHo0kJdn9kMTEdmdOnIdWKvVIjIyEjqd\nDjqdDuPHj0efPn0wYcIEJCcnQ6VSwdfXF2vXrjX7uUNCgL59geXLgYULzX54m6JWq5UOwa7w/TQv\nvp/WQdbpo6ZQqVQ17u8CgIwMkRBSUoAWLcwQGBGRFatJ22m3iQAAoqKA3Fzg3/82y+GIyMY1btwY\nOTk5SodRI+7u7rh58+YjjzMRGJCbC7RtCxw4APj7m+WQRGTDzNm+KMXQa6jJa7PrWkNubsCcOcCb\nbyodCRGR9bLrRAAA06cDqamARqN0JERE1snuE0G9esDixcCsWYBOp3Q0RETWx+4TAQCMGQOoVMCW\nLUpHQkRUdRMnTsT8+fNlP49DJIJatYBly4C33gLu3lU6GiKiqrlfhUFuDpEIAKBXLyAwEPjgA6Uj\nISKqOkvMcnKYRAAAMTHiZuPTiInITiUlJSEkJAQNGzZEREQEioqKLHJeh0oEfn7A8OFi8JiIyJoU\nFxcjPDwckZGRyMnJwejRo7F9+3Z2DckhOhr47DMgPV3pSIjIKqlUNb+Z4Pjx4ygtLcVrr72G2rVr\nY+TIkejSpYuZX1zlHC4ReHkBr7wCzJundCREZJUkqeY3E1y9ehUtW7bUe8zb25tjBHKZORP4+Wcg\nMVHpSIiIBC8vL2RmZuo9lpGRwa4hubi4AAsWiEVmNl52hIjsRLdu3VCnTh2sWrUKJSUl2LFjB06c\nOGGRcztkIgCAyZMBrRbYu1fpSIiIACcnJ+zYsQPr16+Hh4cHtm7dipEjR1rk3HZdfdSY3bvFIrNT\np4DatS1ySiJSEKuPVs5hrwgAYOhQwMMDWL9e6UiIiJTj0FcEABAfL9YWpKUBDRpY7LREpABeEVTO\noa8IAKBrV6BHD2DlSqUjISJShsNfEQDAxYsiIaSmAp6eFj01EVkQrwgMHJOJQHjjDaC4mEXpiOwZ\nE4GBYzIRCH/8AbRvDxw+DLRrZ/HTE5EFMBFUzuHHCO7z8BALzObMUToSIiLLki0RFBUVISwsDJ06\ndYKfnx/m3Gthb968iX79+qFt27bo378/cnNz5Qqh2l59VZSdOHxY6UiIiCxH1q6hgoICODs7o7S0\nFN27d8fy5cuxe/duNGnSBFFRUVi6dClycnIQExPzICCFL92++AL48EPg6FGTiwgSkZVSun0xBzm6\nhurUNKjHcXZ2BiDqbJeVlcHd3R27d+9GXFwcACAyMhJqtVovEQBAdHR0+c9qtRpqtVrOMPX85S/A\ne+8B27cDo0ZZ7LRERPDx8cFnn32G//mf/zH6XI1GA41GY5bzynpFoNPpEBISgt9++w3Tpk3Du+++\nC3d3d+Tc2yJMkiQ0bty4/D5gHRl7/35g2jQxnbRuXUVDISIzsob25XF8fX3x6aefok+fPgafY3OD\nxbVq1UJycjKuXLmCgwcP4sCBA3q/t9TGzNXVty/Qpg2wdq3SkRCRoxg/fjwuXbqEoUOHwtXVFcuX\nL7fYuS0ya6hRo0YYMmQIEhMT4enpiaysLACAVqtFs2bNLBFCtS1dCixaBNy6pXQkROQIvvjiCzz5\n5JP4/vvvkZeXh5kzZ1rs3LIlguzs7PIZQYWFhfjPf/6D4OBgDBs2DBs2bAAAbNiwAeHh4XKFUCNB\nQcCQISIhEJHjUGinSkXJNlis1WoRGRkJnU4HnU6H8ePHo0+fPggODsaYMWOwbt06+Pj4YOvWrXKF\nUGNvvw107CjGC1q3VjoaIrIEKx5CkA1XFhsxdy5w9Srw+edKR0JENWVt7cvDnnrqKXz66aePnTVk\nc4PF9mD2bLGL2alTSkdCRPbO09MTv/32m8XPy0RgRMOGwLx5IiEQEclpzpw5WLRoEdzd3fHee+9Z\n7LzsGqqCkhLA319UJu3XT+loiMhU1ti+VBe7hhTi5AQsWSKK0ul0SkdDRGReTARVNGIE4OwMfPml\n0pEQEZkXu4aq4ehRICICuHABqF9f6WiIqLqsuX2pKnYNKaxbN6BLF2DVKqUjISJTuLu7l5e2sdWb\nu7u72d8XXhFUU1qaSAjnzwNNmigdDRGRwK0qLezll4E6dYD/+z+lIyEiEpgILOz6dcDPD/jlF+Dp\np5WOhoiIYwQW16wZ8MYbwFtvKR0JEVHN8YrARAUFQNu2YiezsDCloyEiR8crAgU4O4vqpLNmOWa1\nQiKyH0wENRAZCeTkALt3Kx0JEZHp2DVUQ3v3ivGClBRRioKISAnsGlLQwIFAq1bAunVKR0JEZBpe\nEZjByZNiW8u0NMDVVeloiMgRybqOIDU1FQcPHkR6ejpUKhV8fHzQo0cP+Pv7m3RCowHZYCIAgPHj\ngaeeAhYuVDoSInJEsiSCL774AqtXr4aHhwe6du2KFi1aQJIkaLVaxMfHIzs7G6+99hrGjRtXo+Af\nCchGE0FGBhASIsYKWrRQOhoicjQ1aTsNbl6fk5ODn376Ca4G+jpu376N9evXm3RSe+TtDUyeDERH\nA//+t9LREBFVHccIzCg3VywyO3BA7GhGRGQpss0aio2Nxbp165Cenq73+DpOkamUmxswZw7w5ptK\nR0JEVHUGE8GcOXOwePFipKSkoE+fPlhVoQj/mjVrjB748uXL6N27N/z9/REQEFD+99HR0WjVqhWC\ng4MRHByM2NhYM7wM6zF9OpCaCmg0SkdCRFQ1BruGAgICkJSUBCcnJ+Tm5mLs2LFo164dVq5ciZCQ\nECQlJT32wFlZWcjKykKnTp2Qn5+Pzp07Y9euXdi6dStcXV0xY8aMygOy4a6h+zZvBpYvB+LjgVpc\nqUFEFiBL11BZWRmc7i2VdXNzw3fffYfbt29j9OjRKC4uNnrg5s2bo1OnTgAAFxcXdOjQAZmZmQBg\n8w29MWPGiASwZYvSkRARGWdw1tBTTz0FjUYDtVotnlinDj777DPMmzcPO3bsqNZJ0tPTkZSUhGef\nfRZHjhzB6tWrsXHjRoSGhmLFihVwc3PTe350dHT5z2q1ujwGW1GrFrBsGTBxotj0vl49pSMiInuj\n0WigMVMftMGuocLCQgBA/Up2ab9y5QpatWpVpRPk5+dDrVZj3rx5CA8Px/Xr19G0aVMAwPz586HV\navUGn+2ha+i+YcMAtRow0AtGRGQ2snQN1a9fH2vXrgUAvYFiAFVOAiUlJRg5ciTGjRuH8PBwAECz\nZs3KN2H+61//ivj4eJMCtwUxMeKWk6N0JEREhj12KNPV1RXLli1DgwYNqn1gSZIwefJk+Pn54fXX\nXy9/XKvVlv+8c+dOBAYGVvvYtsLPDxg+HFi8WOlIiIgMM9g1tHDhQhQUFOD999/Hq6++igYNGmDB\nggVVPvDhw4fRs2dPBAUFQaVSAQAWL16MTZs2ITk5GSqVCr6+vli7di08PT0fBGRHXUMAoNUCAQFA\nYiLg46N0NERkr2QrOjdv3jz0798f+/btw6JFi0wOsFoB2VkiAETZiV9/Bb78UulIiMheyVJrCAB6\n9uyJnj17Vmm6KBk2c6YoPZGYCHTurHQ0RET6HjtGcPbsWb1/yTQuLsCCBdzfmIisk2yDxaRv8mQx\nXrB3r9KREBHpM5gIFi5ciLS0NMyfPx8XLlzAQu64UiN16gBLlwJRUUBpqdLREBE9YDARLFiwAE5O\nTti3bx/q1q1brRlDVLmhQwEPD2DDBqUjISJ6gIPFFqRSidITw4cDEREAe9yIyBpUaWOaU6dOIT09\nHaX3+jRUKhVGjBghT0B2OH30YRERYm3BvHlKR0JE9kLWzetfeuklpKSkwN/fH7Uq1FT+/PPPTTqh\n0YAcIBFcvAh07Sr2Laiwlo6IyGSyJgI/Pz+kpqaWrw6WmyMkAgB44w2guBj44AOlIyEieyDbVpUA\n0KVLF64jkMG8ecDWrcCFC0pHQkSOzugVgUajwbBhw9C8eXPUu1dYX6VS4fTp0/IE5CBXBADw7rvA\nsWPAzp1KR0JEtk7WrqGnn34aK1euREBAgN4YgY9MFdQcKREUFQHt2gFffQV07650NERky2RNBM89\n9xyOHTtm0sFN4UiJAAC++AL48EPg6FExvZSIyBSyJoLp06cjNzcXQ4cORd26dctPyOmj5qHTiUJ0\nc+cCo0YpHQ0R2SpZE8HEiRPLT1IRp4+az/79wN//Dpw9C9zLtURE1SJLIvj6668xYMAAeHh41Ci4\nagfkgIkAAAYNAgYPBl55RelIiMgWyZIIYmJisG/fPhQXF6Nv374YNGgQunbtKvt6AkdNBKdPA/36\nAWlpQKNGSkdDRLZG1q6h27dvY//+/fjxxx8RHx+P9u3bY9CgQRgwYIDeFpPm4qiJAAAmTQKaN+ce\nx0RUfbImgoelpqZi79692LdvH/bt22fSSR8bkAMngitXgI4dgeRkoHVrpaMhIlsiSyK4dOmSwT+S\nJAne3t4mndBoQA6cCAAxeygzE1i/XulIiMiWyJIIAgICKh0PuHHjBm7cuIGysjKTTmg0IAdPBLdv\ni/2Nf/xRXB0QEVWFLJvXnzlzRu9+eno6YmJisH//fsydO9ekk5FxDRuKOkRRUSIZEBHJzWjRubS0\nNEycOBEDBw5E586dce7cObzCOY6ymjoV+P13QIYhGCKiRxhMBCkpKYiIiMDIkSPRp08fpKamYsqU\nKXBycqrSgS9fvozevXvD398fAQEBWLVqFQDg5s2b6NevH9q2bYv+/fsjNzfXPK/Ejjg5AUuWiKsC\nmXrgiIjKGRwjqF27Nlq1aoXnn39er9gcIPqi7jfshmRlZSErKwudOnVCfn4+OnfujF27duHzzz9H\nkyZNEBUVhaVLlyInJwcxMTF6x3bkMYL7JAn405/EiuMJE5SOhoisnSyDxevvTVt5eMBYkiSoVCpE\nRkZW60Th4eF4+eWX8fLLLyMuLg6enp7IysqCWq3G+fPnHwTERFDu6FGxreWFC0D9+kpHQ0TWzKLr\nCEyRnp6OXr164cyZM3jyySeRk5MDQCSVxo0bl98HxItZsGBB+X21Wg21Wi13iFZr5EixreXs2UpH\nQkTWRKPRQKPRlN9fuHCh+RPBpEmTMG3aNHTp0qXSP/zll1/w8ccfGy0+l5+fj169emH+/PkIDw+H\nu7u7XsPfuHFj3Lx580FAvCLQk5YGdOsGnD8PNGmidDREZK1kmT76xhtvYNmyZTh+/DjatWsHLy8v\nSJKErKwsXLhwAd26dcPMmTMfe/CSkhKMHDkS48ePR3h4OACUdwk1b94cWq0WzZo1MylwR9G2rege\neucd4P33lY6GiOyR0a6hu3fvIikpCRkZGVCpVPD29kbHjh3xxBNPPPbAkiQhMjISHh4eWLlyZfnj\nUVFR8PDwwOzZsxETE4Pc3FwOFhtx/Trg5wccPw60aaN0NERkjWQfI7h79y7S0tKgUqnQrl27Kk0h\nPXz4MHr27ImgoKDyAeclS5aga9euGDNmDC5dugQfHx9s3boVbm5uZnkx9uxf/wJOnRIb3hMRPUzW\nRKDRaBAZGVleW+jSpUvYsGEDevXqZdIJjQbERFCpggLRTbR9OxAWpnQ0RGRtZE0EISEh2LRpE9q1\nawdArDSOiIjAyZMnTTqh0YCYCAz67DPg88+Bgwe5vzER6atJ22m0xERpaWl5EgCAtm3borS01KST\nUc1ERgK5ucDu3UpHQkT2xOgVwUsvvYTatWtj3LhxkCQJX331FXQ6HT777DN5AuIVwWPt3Qu88QaQ\nkiJKURARATJ3DRUVFeGDDz7AkSNHAAA9evTA9OnTUa9ePZNOaDQgJoLHkiSxpeWoUaL8BBERYAMr\ni6uDicC4kyeBIUPEYjNXV6WjISJFFRYCyclQdesmXyLw9fV99I9UKly8eNGkExoNiImgSsaPB3x9\ngbffVjoSIrKYkhLRL5yQAJw4IW5paUCHDlCdPClfIsjOzi7/uaioCNu2bcMff/yBd955x6QTGg2I\niaBKMjKAkBDxmWjRQuloiMjsyspExcmKjX5KCuDjA3TpAoSGin87dgSeeMLyXUMhISGcPmoFoqKA\nnBzgk0+UjoSIakSSxG5UFRv9kyeBpk31G/2QEIP9wbLUGrovMTGxfGWwTqdDQkKCbPsVU/W89ZZY\nZPb664C/v9LREFGVXb2q3+gnJAD16j1o9OfMEf96eFgkHKNXBGq1ujwR1KlTBz4+Ppg5c6be2gKz\nBsQrgmpZuRL46Sfg+++VjoSIKnXzpn6jf+IEUFSk/02/S5ca9/Fy1pADu3sX6NABWLcO6N1b6WiI\nHFx+vujSqdjo37ghunQqNvq+vmYvDyB7Ivj+++9x9uxZFBUVlT/2z3/+06QTGg2IiaDaNm8Gli8H\n4uOBWkbXihORWRQVAadP6zf66elAYKD+t/127YDatWUPR9ZEMHXqVBQWFuLnn3/GlClT8M033yAs\nLAzr1q0z6YRGA2IiqDadDnj2WbHieOxYpaMhskOlpcDZs/qN/rlzYpCuYqMfEADUratIiLImgsDA\nQKSkpCAoKAinT59Gfn4+Bg4ciMOHD5t0QqMBMRGYJC4OmDhR7GQm06JvIseg0wG//qrf6J86BbRq\npd/od+oEODsrHW05WWcN1b+3a7qzszMyMzPh4eGBrKwsk05G8unVS1yRfvABMGOG0tEQ2QhJAi5f\n1m/0ExMBN7cHjf477wCdOwONGikdrWyMJoLnn38eOTk5mDVrFjp37gwAmDJliuyBUfXFxABqNfDS\nS4C7u9LREFmha9cenbapUj1o9P/xD/Gvg22hW6Wic/e3pSwqKiq/b2yrSpMDYtdQjUydKtabLF+u\ndCRECsvNFd/uK37bz8sTDX3FGTytWtnFBh+yb0zz8Cpiriy2XlqtGK9KTBQr0YkcQkEBkJSk3+hf\nvQoEB+s3+k8/bbdT62QZI9Bqtbh69SoKCgpw8l4xI5VKhdu3b6OgoMDkYEleXl7AK68Ac+cCX32l\ndDREMiguFjV3Kjb6v/4qlteHhgJ9+gBvvikW2NQx2vtNeMwVwYYNG7B+/XokJCQgNDS0/HFXV1dM\nnDgRI0aMkCcgXhHUWH6+mNX23XdijIvIZpWVialwFRv9M2fEN/uK3/SDghx+upysXUPbtm3DqFGj\nTDq4KZgIzGPtWmDLFlF+wg66P8kRSBJw8aJ+o5+UBDRvrt/oBwcDLi5KR2t1LFpiYteuXfDy8kJY\nWJhJJzQaEBOBWZSWiumkK1YAgwcrHQ1RJTIz9Rv9hASgQQP9ufqhoZwCV0UWTQRz5szBmTNnUFJS\ngtjYWJNO+tiAmAjMZvduUaE0OZldpaSw7OxHp22WlDxaeK15c6UjtVlWWXRu0qRJ2LNnD5o1a4aU\nlBQAQHR0ND799FM0bdoUALBkyRIMHDhQPyAmArORJLGuYPBgsciMm92TReTl6U/bTEgA/vhDFF67\n3+B36QJ4e7Pf0oxkTQS5ubk4duwY0tPToVKp4OPjg+eeew6NjKyyO3ToEFxcXDBhwoTyRLBw4UK4\nurpixmOWvjIRmNeZM8CUKWJSxciRohZR9+4WqYFFjqCoSFxyVuziuXRJ7JpV8Zt+27Z2O23TWsgy\nffTQoUNYtmwZ0tPTERwcjBYtWkCSJBw7dgxRUVHw8fFBVFQUunfvXunf9+jRA+np6Y88zkbesgIC\ngGPHxOZHW7YAr70mquKOGSOSQpcu/FJGVVRSAqSm6jf6Fy4A7duLRr9HD3Hp6e/Py08bYzAR7Ny5\nEytWrMAzzzxT6e/T0tLw8ccfG0wEhqxevRobN25EaGgoVqxYATc3t0eeEx0dXf6zWq2GWq2u1jno\nUb6+Ymr1m2+KoombNwPjxonZeRER4hYYqHSUZDV0OrEpesVG//Rp0Z1z/5v+pEnim/+9emRkWRqN\nBhqNxizHknVjmvT0dAwdOrS8a+j69evl4wPz58+HVqt9pJw1u4YsR5LEVf2mTSIxNGz4ICm0aaN0\ndGQxkgRkZOj36Scmim0SK3bvhISIDwlZJVnHCHJycrBx40akp6ejtLS0/ISrVq0yevCHE0FVfsdE\noAydTnQhbd4MfPONKL8ydqzoQmrdWunoyKyysvQb/RMnxLSyigO5oaFAkyZKR0rVIGsZ6sGDB+O5\n555DUFAQatWqVV5qwhRarRZeXl4ARNdTIPsirEatWsCf/iRuK1cCGo1ICp06iS7fiAhg1CiHK8po\n+3JyHp22eefOg2/6f/sb8MknQMuWSkdKCjKp6FxVjB07FnFxccjOzoanpycWLlwIjUaD5ORkqFQq\n+Pr6Yu3atfD09NQPiFcEVuXuXWDfPpEU9uwBwsJEUhg+XJRsJyty547+frkJCeLbf3Cw/rf9p57i\nDAE7JGvX0PLly9GwYUMMHToU9SrU8mjcuLFJJzQaEBOB1bpzRySDTZuAn38GevcWSWHoULEglCzo\n7l39/XITEkR5hoAA/X799u05V9hByJoI1qxZg7lz58LNzQ217s0DVqlUuHjxokknNBoQE4FNuHUL\n2LVLJIXjx4FBg8SYwoABDl/7y/xKS8VUr4qNfmoq8Mwz+o1+YKBi++WS8mRNBL6+vjhx4gSaWGjg\niInA9ty4AWzfLpJCSgoQHi6SQu/eLG1RbZKkv19uQoIovNaihX73TnCwVe2XS8qTNRH0798fO3fu\nRAMLXfszEdi2K1eArVvFmEJGBjB6tOg+6taNC0sfIUniDavY6CckiCmaFb/pd+7MARkyStZEEB4e\njtTUVPTu3bt8jKCq00dNCoiJwG789ptICJs3i66kF18USSEkxEHHKm/ceHTapk736LTNhyZQEFWF\nrIlg/fr15ScBUD59NDIy0qQTGg2IicAunTnzICnUqvVg4Zqfn9KRyeTWrQeF1+43+rm54tt9xYa/\ndWsHzYpkbrImgvz8fNSvXx+17808KCsrQ1FRkWxdRUwE9k2SRLu4ebOofeThIRLCiy+KWY02qbDw\nwX659xv9K1dE+YWKjX6bNuwfI9nImgieffZZ7N+/Hy73dgTKy8vDgAEDcPToUZNOaDQgJgKHodMB\nhw+LpLBtm0gEERFiNXOLFkpHZ0BJyYP9cu83+mlpYn/cio2+nx9HysmiZE0EnTp1QnJystHHzIWJ\nwDGVlIi1CZs3A99+K75Mjx0rSmd7eCgcnFYL7N0rFlH89JNYhVux0Q8KAp54QuEgydHJWmKiQYMG\nSExMROd7u6AnJCSgPqsNkpk5OYk1CAMGiBL3sbFiOuqsWaLsxdixwAsvWKjmWVmZ+Kb/ww+i8b94\nEejfHxg2DPjoI9bZILtj9IrgxIkTiIiIKK8RpNVqsWXLFoSGhsoTEK8IqIL8fOC770RSiIsD+vUT\n3UdDhpi5+nFODvDjj6Lxj40Vjf2QIWJ7t27dWF+frJ7sW1UWFxfjwoULAIB27dqhroyrF5kIyJCc\nHGDHDtF9lJAAPP+8SAr9+pmwoFaSxFSm+9/6k5OBnj0fNP7e3rK8BiK5yJIINBqN0Q1hDhw4gN69\ne5t0YoMBMRFQFVy7Jsplb94MnD8PjBghkkKvXo8prXPnjhiI2LNHJIDatUXDP2SI2NyZXZ5kw2RJ\nBDNnzsTBgwfRt29fhIaGwsvLCzqdDllZWUhISMD+/fvRu3dvvPvuuzUK/pGAmAiomi5dElNRN28G\nrl4Vs44iIoBnnwVUv18UDf+ePcCRI2LB1v3Gv317zuEnuyFb11BeXh6+/fZbHDlyBBkZGQAAb29v\ndO/eHS+88EL5lFJzYiKgmrhwphhbll/Bpu8aoPB2KSLq7sDYftkI+ksgVP37AY0aKR0ikSxkHyOw\nJCYCqraHp3e2awdp0GCcbjsKm0/7YfMWFZ54QlwljB0LtG2rdMBE5id7Ivj+++9x9uxZFBUVlT/2\nz3/+06QTGg2IiYCMMTS9c/BgUQ/7oemdkgT88ovoOtq6FWjeXCSEF18EnnxSoddAZGayJoKpU6ei\nsLAQP//8M6ZMmYJvvvkGYWFhj2w6by5MBFQpM03vLCsDDh4USWH7dqBdO5EURo9mrTeybbImgsDA\nQKSkpCAoKAinT59Gfn4+Bg4ciMOHD5t0QqMBMREQYJHpncXFwP79Yo3Cd9+JceSxY8UMJHd3M7wG\nIguSdWXx/VXEzs7OyMzMhIeHB7Kyskw6GdFjGZreOWeOLNM769YVOWXwYFE3bs8ecaUwY4aYhhoR\nIRYTyzAngsiqGE0Ezz//PHJycjBr1qzyMhNTpkyRPTByEBcNTO/88UeLTu+sXx8YNUrcbt8W9Y6+\n+gqYNg0YOFAkhUGDWFKI7JPRrqGioiI8ce/TX1RUVH7/CZn+R7BryM4VF4uSo/cb/9xc0cIOGSKW\nCFvZ9M4//hBjCZs3i96pYcPEkISPj+idevJJrkMj6yDrGEFISAhOnjxp9DFzYSKwQ5VM78TgwaLx\nDwmxmRra57EmAAAPH0lEQVT9V6+KpJCcLLbhzMgALl8Wuet+Yrh/q3jfIoXyyOHJMkag1Wpx9epV\nFBQU4OTJk+U7k92+fRsFBQUmB0sOwE6rd7ZoAbzyiv5jOh2QlfUgMWRkAKmp4qXfv+/k9PhE4eHB\nBc6kLINXBOvXr8f69euRmJioV2nU1dUVEydOxIgRIx574EmTJmHPnj1o1qwZUlJSAAA3b97Eiy++\niIyMDPj4+GDr1q1we2hTbl4R2ChW76yUJInupYqJIj1d/35xsX6SeDhRNG9uMxdNpCBZu4a2b9+O\nkSNHVvvAhw4dgouLCyZMmFCeCKKiotCkSRNERUVh6dKlyMnJQUxMjH5ATAS2gdU7zeb27ccnitxc\nsbWxoUTRqhU3QyOZEsGKFSvKD6yqcN16//6MGTOMHjw9PR1Dhw4tTwTt27dHXFwcPD09kZWVBbVa\njfPnz5vtxZDMWL1TEYWForCeoUSRlQV4eRlOFE8+ydlOjkCWMYK8vDy9BGAO165dg+e95Zuenp64\ndu1apc+Ljo4u/1mtVhsth00yspLpnY6sfn0xvt6uXeW/LykBrlzRTxRHj4qFcvcHtBs3NpwovL0B\nV1dLviIyB41GA41GY5ZjyVp07uErAnd3d+Tk5JT/vnHjxrh586Z+QLwiUJaNTe8k48rK9Ae0H76i\nSE8XyeZxiaJxY+Z8ayfryuILFy5g+vTpyMrKQmpqKk6fPo3du3dj3rx51T7Z/S6h5s2bQ6vVopmN\nzh6xO4amd375pU1N76TK1a4NtGwpbt26Pfp7SQKys/UTw8WLwIEDD5JGWdnjE4WnJz8mtszoFUHP\nnj2xbNky/P3vf0dSUhIkSUJAQABSU1ONHvzhK4KoqCh4eHhg9uzZiImJQW5uLgeLlVDN6p1Et24Z\nvprIyADy8vQHtB9OFC1bckBbbrJeERQUFCAsLEzvZE5VmAo4duxYxMXFITs7G61bt8bbb7+NN998\nE2PGjMG6devKp4+ShRia3vneew49vZOqplEjIChI3CpTUCAGtCsmitjYB/dv3NAf0H44UTz5JFCv\nngVfEOkxmgiaNm2KX3/9tfz+tm3b4OXlZfTAmzZtqvTx/fv3VyM8qpGSEuDrr4F16/Snd779tvif\nSGQmzs5i7kD79pX/vrhYDGhXTBSHD4vex4wMIDNTLKwzlCi8vVn8T05Gu4Z+++03TJ06FUePHoWb\nmxt8fX3x1VdfwUemhoRdQ2Zw9y6wfj0QEwP4+gJvvAH07cvpnWS1ysrEUJWhrqdLl0SyMZQofHwA\nNzfHHtCWbR1BRUVFRdDpdHB2dq7yOgKTAmIiMF1hIfDpp8C77wIBAcC8ecCf/qR0VEQ1Jkmie8lQ\nosjIEM95XKJo1sy+E4Ws6wguXLiAEydOYNiwYQCAL774Al27djUtUpJHfj7w8cfAihVAWBiwYwfQ\npYvSURGZjUolGvJmzQBDzU9u7qOJ4vjxBz/n54uxCEOJokULMcPKERntGurRowd++OEHuN5bcZKX\nl4fBgwfj0KFD8gTEK4Kqu3ULWLMGeP99sbJ37lygY0eloyKySnfu6CeJh68osrNFMjCUKFq3FpsZ\nWStZZw1dv35db5aQk5MTrl+/btLJyEz++EM0/h9+KKZ8xsUBHTooHRWRVWvQAPDzE7fK3L0rVmFX\nTBRxcQ9+vnoVaNLEcKLw9hbjGLbIaCKYMGECunbtihEjRkCSJOzatQuRkZGWiI0edv266P755BOx\nse4vvwBPP610VER2oV49oE0bcatMaalIBhUTRWKi6Im9P6Dt4vL4RPFQsWWrUaUSE4mJiTh06BBU\nKhV69uyJ4OBg+QJi19CjMjOBZcuAjRvF7uqzZ4vOTiKyGjqd+K5mqOspPV2svn5comja1PQBbVnL\nUFsaE0EFGRliCuiWLcDEicDMmaITk4hsjiSJdZ2PKzleUCC+4xlKFF5ehge0ZR0jIAX8+iuweLHY\nQf1vfwPOn2fZByIbp1KJ4n2NGwOGOlXy8x9NFN999+D+H3+Ich2VJYqaYCKwJmfPigQQGwu8/DLw\n3/+KTw0ROQQXF8DfX9wqU1SkP6Cdni6KA2Zk1Oy87BqyBsnJwL/+BRw8CLz+OjB9Oss9E1G11KTt\nZOFYJcXHiw3dBw8GnntOVAGdM4dJgIgsil1DSjh0CFi0CDh3TswA2rKFdYCISDFMBJYiSWK/33fe\nEROO58wBIiOte6kiETkEJgK5SZLY/eudd8TcsbfeAv78Z+7SQURWg62RXHQ6Mf1z0SJRjH3ePGDU\nKMetakVEVouJwNzKyoBvvhGzgOrWBebPFwPC3NCViKwUE4G53N8NbPFisdXSu+8CAwfadwF0IrIL\nTAQ1dfcusGGDKAXh7Q189BHQuzcTABHZDCYCU1XcDczfXxSE695d6aiIiKqNiaC6Ku4G1rUrdwMj\nIpvHRFBVt24BH3wgNoTp1UvUA+JuYERkB5gIjLl5UzT+H3wADBokKjwZ2uKIiMgGKZIIfHx80LBh\nQ9SuXRtOTk6Ij49XIozHu34deO89sRtYeLjYBdvQ1kVERDZMkUSgUqmg0WjQ2BpLLGdmAsuXi5lA\nY8cCJ0+K2UBERHZKsVVOVldqOiNDlH8ODBRTP8+cEd1BTAJEZOcUuyLo27cvateujalTp2LKlCl6\nv4+Oji7/Wa1WQ61WyxfMr78CS5YAu3YBU6ZwNzAisgkajQYajcYsx1JkYxqtVgsvLy/cuHED/fr1\nw+rVq9GjRw8RkKU2pjl3TpSBiI0F/vd/gdde425gRGSzbG5jGi8vLwBA06ZNMXz4cMsOFp86BYwe\nLaaA+vkBv/0GLFzIJEBEDsviiaCgoAB5eXkAgDt37mDfvn0IDAyU/8QnTgAvvCCmgD77rNgN7K23\nuBsYETk8i48RXLt2DcOHDwcAlJaW4i9/+Qv69+8v3wkPHxaloFNTxW5gmzdzNzAiogrsc/P6+7uB\nLVokZgNxNzAisnM1aTvtc2Xxhx+KWkDR0WItgJOT0hEREVkt+7siuHwZCA4WXULt25svMCIiK2Zz\ns4ZkI0liKuirrzIJEBFVkX11DW3fLqaDbtumdCRERDbDfrqGcnKAgACxX3C3buYPjIjIitWka8h+\nEsHf/gbUqSMGiomIHAxnDR08CPzwg1grQERE1WL7g8VFReJqYPVqrhImIjKB7SeCJUtEzaB7q5WJ\niKh6bHuMIDUVUKuB5GSgZUtZ4yIismaOuY5ApxNdQm+/zSRARFQDtpsI1q4V/06dqmwcREQ2zja7\nhjIzgU6dgLg4MT5AROTgHK9r6JVXxP7CTAJERDVme+sIdu4Ezp4Fvv5a6UiIiOyCbXUN3boF+PsD\nmzYB9/Y4JiIiRyoxMX06UFb2YKCYiIgAOEqJiSNHgG+/ZRkJIiIzs43B4rt3gSlTgPffB9zclI6G\niMiu2EYiWLoUaNMGGDlS6UiIiOyO9Y8RnDsH9OwJnDwJtG6tXGBERFbMftcR6HRi5fCCBUwCREQy\nse5E8OmnQHExMG2a0pHYLI1Go3QIdoXvp3nx/bQOiiSC2NhYtG/fHs888wyWLl1a+ZO0WmDuXOCT\nT4DatS0boB3hfzTz4vtpXnw/rYPFE0FZWRlefvllxMbG4uzZs9i0aRPOnTv36BNffVVUFw0MtHSI\nREQOxeKJID4+Hm3atIGPjw+cnJwQERGBb7/9Vv9Ju3cDp04B8+dbOjwiIodj8VlD27Ztw48//ohP\nPvkEAPDll1/il19+werVq0VAKpUlwyEishs2s7LYWENvZbNZiYjsnsW7hlq2bInLly+X3798+TJa\ntWpl6TCIiOgeiyeC0NBQ/Pe//0V6ejqKi4uxZcsWDBs2zNJhEBHRPRbvGqpTpw7WrFmDAQMGoKys\nDJMnT0aHDh0sHQYREd2jyDqCQYMG4cKFC1izZg02bNjw2PUEr776Kp555hl07NgRSUlJFo7Udhhb\nm6HRaNCoUSMEBwcjODgYixYtUiBK2zBp0iR4enoi8DFTl/m5rDpj7yc/m9Vz+fJl9O7dG/7+/ggI\nCMCqVasqfV61PqOSQkpLS6Wnn35a+v3336Xi4mKpY8eO0tmzZ/Wes2fPHmnQoEGSJEnS8ePHpbCw\nMCVCtXpVeS8PHDggDR06VKEIbcvBgwelkydPSgEBAZX+np/L6jH2fvKzWT1arVZKSkqSJEmS8vLy\npLZt29a47VSsxERV1hPs3r0bkZGRAICwsDDk5ubi2rVrSoRr1aq0NgOckVVVPXr0gLu7u8Hf83NZ\nPcbeT4Cfzepo3rw5OnXqBABwcXFBhw4dcPXqVb3nVPczqlgiyMzMROsKheRatWqFzMxMo8+5cuWK\nxWK0FVV5L1UqFY4ePYqOHTti8ODBOHv2rKXDtBv8XJoXP5umS09PR1JSEsLCwvQer+5nVLEdyqq6\ncOzhbwpccPaoqrwnISEhuHz5MpydnbF3716Eh4cjLS3NAtHZJ34uzYefTdPk5+dj1KhReP/99+Hi\n4vLI76vzGVXsiqAq6wkefs6VK1fQsmVLi8VoK6ryXrq6usLZ2RmAGKwvKSnBzZs3LRqnveDn0rz4\n2ay+kpISjBw5EuPGjUN4ePgjv6/uZ1SxRFCV9QTDhg3Dxo0bAQDHjx+Hm5sbPD09lQjXqlXlvbx2\n7Vr5N4T4+HhIkoTGjRsrEa7N4+fSvPjZrB5JkjB58mT4+fnh9ddfr/Q51f2MKtY1ZGg9wdq1awEA\nU6dOxeDBg/HDDz+gTZs2aNCgAT7//HOlwrVqVXkvt23bho8++gh16tSBs7MzNm/erHDU1mvs2LGI\ni4tDdnY2WrdujYULF6KkpAQAP5emMPZ+8rNZPUeOHMGXX36JoKAgBAcHAwAWL16MS5cuATDtM2p1\nW1USEZFlWfcOZUREJDsmAiIiB8dEQETk4JgIiIgcHBMBURWcOHECHTt2xN27d3Hnzh0EBARwBSzZ\nDc4aIqqi+fPno6ioCIWFhWjdujVmz56tdEhEZsFEQFRFJSUlCA0NRf369XHs2DGWlSC7wa4hoirK\nzs7GnTt3kJ+fj8LCQqXDITIbXhEQVdGwYcPw5z//GRcvXoRWq8Xq1auVDonILBQrMUFkSzZu3Ih6\n9eohIiICOp0O3bp1g0ajgVqtVjo0ohrjFQERkYPjGAERkYNjIiAicnBMBEREDo6JgIjIwTEREBE5\nOCYCIiIH9/84dLhcBD/ZrQAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x446d2d0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# PLot boundary layer distribution and total drag on the plate\n",
    "\n",
    "from math import *\n",
    "\n",
    "from __future__ import division\n",
    "\n",
    "from pylab import plt\n",
    "\n",
    "from numpy import *\n",
    "\n",
    "from scipy import *\n",
    "\n",
    "from sympy import *\n",
    "\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "# Given\n",
    "\n",
    "# for glycerine\n",
    "\n",
    "S = 1.26                  # specific gravity \n",
    "\n",
    "mu = 0.862                # dynamic viscosity in Ns/m**2\n",
    "\n",
    "rho = S *1000             # density in kg/m**3\n",
    "\n",
    "K2 = 0.332\n",
    "\n",
    "V=1                       # velocity in m/s\n",
    "\n",
    "# Solution\n",
    "\n",
    "# from blasius equation\n",
    "\n",
    "x = [0,0.1,0.5,1.0,2.0];\n",
    "\n",
    "d = 0.1307*np.sqrt(x)*100\n",
    "\n",
    "tauo = K2*rho*V**2/(sqrt(1462)*np.sqrt(x))\n",
    "\n",
    "#plt.figure()\n",
    "plt.plot(x, d, 'r')\n",
    "plt.xlabel('x(m)')\n",
    "plt.ylabel('delta(cm),tauo(N/m**2)')\n",
    "#plt.title('delta v/s x')\n",
    "#plt.legend('d')\n",
    "\n",
    "plt.plot(x, tauo, 'b')\n",
    "plt.xlabel('x')\n",
    "#plt.ylabel('tauo(N/m**2)')\n",
    "#plt.title('tauo v/s x(m)')\n",
    "plt.legend('d''t')\n",
    "plt.show()\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Example 7.4 page no 260"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEXCAYAAACpuuMDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYVVX+x/E3ApV4xUuNAkUJAd5RsLA0HFMTlSzK0MnU\nMYeanElrsotNYaOmpU5jNqX9SjNH1OkipoKFxWRewNRRR0vxgiFpimJeSLm4f3/sPIqoHJDNOZzz\neT0Pz8PmbPb5nv3o/rDW3mstD8MwDERERH5Vy9EFiIiIc1EwiIhIKQoGEREpRcEgIiKlKBhERKQU\nBYOIiJSiYBCXNHToUP7617/atW9gYCArV660uCKRmkPBIC7Jw8MDDw+PCu+bmJjI4MGDrSyNV199\nlbFjx1r6HiJXQ8EgLstZx24uX76cPn36OLoMkctSMIhL2LRpEx06dKB+/frEx8dz+vTpUq8vXbqU\n9u3b4+vryx133MHWrVvLHCM1NZVXX32VhQsXUq9ePcLDwwGYPXs2LVu2pH79+rRo0YJZs2ZdsoYz\nZ87QsGFDtm3bZvvZ4cOH8fHxIS8vD4D8/Hx27txJVFQUeXl59O3bF19fXxo3bkzXrl0vGWZr1qyh\nadOm7N+/H4DNmzfTqFEjdu7cWbmTJVIOBYPUeIWFhfTv358hQ4aQn5/Pgw8+yMcff2zrHtq0aRPD\nhw/n3Xff5ejRoyQkJBAbG0tRUVGp49xzzz288MILxMfHc+LECTZt2gTADTfcwLJlyzh+/DizZ89m\n9OjRttcudO211xIXF0dSUpLtZ4sWLSI6OpomTZoAsGLFCu6++248PDyYOnUqAQEB5OXlcejQIV59\n9dVLdn917tyZhIQEhgwZwi+//MLDDz/M+PHjufXWW6vsHIpcSMEgNd66desoLi7mySefxNPTk7i4\nOCIjI22vz5o1i4SEBCIjI/Hw8OCRRx7h2muvZd26dWWOZRhGmb/aY2JiuPnmmwHo2rUrPXv2ZNWq\nVZesZdCgQSxYsMC2PX/+fAYNGmTbXrZsGTExMQBcc801HDhwgOzsbDw9Pbnjjjsu+xkTExP5+eef\n6dSpEwEBAfzxj3+048yIVI6CQWq8H3/8ET8/v1I/u+mmm2zf79u3j6lTp+Lr62v72r9/Pz/++KNd\nx09JSeH222+ncePG+Pr6snz5co4cOXLJfaOjoykoKCAzM5Ps7Gw2b97MfffdB8DZs2dJS0vjnnvu\nAeCZZ54hKCiInj170qJFCyZPnnzZGry8vBgyZAjbtm3j6aeftqtukcpSMEiN16xZM3Jzc0v9bN++\nfbbvb7zxRsaOHUt+fr7t6+TJkzz00ENljnVxV86ZM2eIi4tjzJgxHDp0iPz8fGJiYi57Y9vT05MB\nAwaQlJREUlIS/fr1o06dOgCsX7+em266icaNGwNQt25dpkyZwu7du1myZAnTpk3jyy+/vORxc3Nz\neeWVV/j973/PU089RWFhof0nSKSCFAxS43Xu3BkvLy+mT59OUVERn3zyCevXr7e9PmLECN555x0y\nMzMxDINTp06xbNkyTp48WeZYv/nNb8jOzrZd+AsLCyksLKRJkybUqlWLlJQUPv/88yvWc6476eJu\npOXLl9O3b1/b9rJly9i1axeGYVC/fn08PT3x9PQsczzDMBg6dCiPPvoo//d//0ezZs3sHqMhUhkK\nBqnxvL29+eSTT5gzZw6NGzdm0aJFxMXF2V7v2LEj7777LiNHjqRRo0YEBwczd+7cS97offDBBwFo\n3LgxERER1KtXj+nTpzNgwAAaNWpEUlIS99577xXr6dSpE3Xr1uXAgQP07t3b9vPly5fb7i8AZGVl\n0aNHD+rVq0fnzp154oknuOuuu8ocb/r06eTl5fG3v/0NMJ+Smj17NqtXr67YiRKxk4cW6hGx3k8/\n/USHDh3KdHmJOCNLWwypqamEhoYSHBx8yRtrU6ZMITw8nPDwcNq0aYOXlxfHjh2zsiQRhzh+/DjT\npk1zdBkidrGsxVBSUkJISAhpaWn4+fkRGRlJUlISYWFhl9x/6dKlvPHGG6SlpVlRjoiI2MmyFkNm\nZiZBQUEEBgbi7e1NfHw8ycnJl91//vz5DBw40KpyRETETl5WHTg3N5eAgADbtr+/PxkZGZfct6Cg\ngBUrVvDPf/6zzGv2ToQmIiKlVbZDyLIWQ0Uu6J999hl33nknDRs2vOTr50ajuvvXyy+/7PAanOVL\n50LnQufiyl9Xw7Jg8PPzIycnx7adk5ODv7//JfddsGCBupFERJyEZcEQERFBVlYW2dnZFBYWsnDh\nQmJjY8vs9/PPP/P111+X+2y4iIhUD8vuMXh5eTFjxgx69epFSUkJw4cPJywsjJkzZwKQkJAAwOLF\ni+nVqxe1a9e2qhSXER0d7egSnIbOxXk6F+fpXFQNpx/g5uHhcdX9ZSIi7uZqrp2WtRhERJxdo0aN\nyM/Pd3QZV8XX15ejR49W6THVYhARt+UK15fLfYar+WyaRE9EREpRMIiISCkKBhERKUXBICIipSgY\nRESkFAWDiIgTCgwMZOXKlQ55bwWDiIgT8vDwcNjs0goGEREpRSOfRUSupCr+aq9hg+gUDCIiV1LD\nLupVQV1JIiJSioJBRERKUVeSiIiTKiws5PTp07Ztb29vPD09LX9ftRhERJxUTEwMPj4+tq9x48ZV\ny/tq2m0RcVuucH2xYtptdSWJiPs5cwY++8zRVTgtBYOIuAfDgA0bYM4cWLAA2rZ1dEVOS8EgIq7t\n4EH417/MQDh1CoYOhW+/hcBAfBs1cti0E1XF19e3yo+pewwi4nrOnIGlS80wWLUK7rvPDIQuXaCW\nezxzo3sMIiKGAZs2wezZZldR69ZmGCQlQd26jq6uRlEwiEjN9tNP57uKTpyAIUMgMxNuvtnRldVY\nlrapUlNTCQ0NJTg4mMmTJ19yn/T0dMLDw2ndujXR0dFWliMirqKwED75BGJjISQEtmyB6dNh925I\nTFQoXCXL7jGUlJQQEhJCWloafn5+REZGkpSURFhYmG2fY8eOcccdd7BixQr8/f3Jy8ujSZMmpQvU\nPQYRAbOr6L//NVsG8+dDq1ZmV1FcHNSr5+jqnI5T3mPIzMwkKCiIwMBAAOLj40lOTi4VDPPnzycu\nLg5/f3+AMqFwTmJiou376OhotSxE3MmhQ+e7in7+2ewqWrcOWrRwdGVOJT09nfT09Co5lmXBkJub\nS0BAgG3b39+fjIyMUvtkZWVRVFREt27dOHHiBE8++SSDBw8uc6wLg0FE3EBhISxbZobBf/4D994L\nb7wBd93lNk8VVdTFfzRfzfQZlgWDPc8GFxUVsXHjRlauXElBQQFRUVHcfvvtBAcHW1WWiDizC7uK\nQkPNrqJ589RVVM0sCwY/Pz9ycnJs2zk5ObYuo3MCAgJo0qQJtWvXpnbt2nTt2pXNmzcrGETcyaFD\nZhDMmQP5+WZX0Zo1EBTk6MrclmVtsoiICLKyssjOzqawsJCFCxcSGxtbap97772Xb775hpKSEgoK\nCsjIyKBly5ZWlSQizqKoCBYvhv794dZbYeNGmDYN9u6FV15RKDiYZS0GLy8vZsyYQa9evSgpKWH4\n8OGEhYUxc+ZMABISEggNDeWee+6hbdu21KpVixEjRigYRFzZ5s1my+Bf/zIfMx06FObOhfr1HV2Z\nXEBTYoiItQ4fPt9VdOSI2VU0ZIhaBRa7mmungkFEql5REaSkmNNTfPkl9OsHw4ZBt256qqiaKBhE\nxDls2XK+qyg42OwqevBBaNDA0ZW5Hacc4CYibiIv73xX0eHDZjfRN9+YwSA1kloMIlJxRUWQmmp2\nFa1cCX37mq2D3/4WqmGxeimfupJEpHps3Xq+q6hFCzMMBgxQV5ETUleSiFgnL89c02DOHHOK6yFD\n4OuvzfEH4pLUYhCRsoqLza6iOXPgiy+gTx+zddC9u7qKagh1JYlI1fjf/8wwmDcPbrnlfFdRw4aO\nrkwqSF1JIlJ5R46c7yo6cAAeecSc0TQkxNGViYOoxSDijoqLYcUKMww+/xxiYszWwd13q6vIRagr\nSUTss23b+a6im24yRyM/9JC6ilyQupJE5PKOHoUFC8xAyM2FwYPNaSouWE1R5EJqMYi4ouJis4to\nzhyzy6h37/NdRV76e9AdqCtJREzbt5/vKgoION9V5Ovr6MqkmqkrScSdHTt2/qminByzqygtDbS2\niVSSWgwiNdWRI+aqZ++8Yw48GzYMevRQV5EAajGIuJe8PJg6FWbNggcegA0bIDDQ0VWJC9GKGSI1\nxeHD8Nxz5sCz/HxzneSZMxUKUuUUDCLO7tAhGDPGDITjx2HTJrP76KabHF2ZuCgFg4izOnQInnnG\nHG9w6hRs3gz//CfceKOjKxMXp2AQcTYHD8LTT0NoKJw+bQbCW2+Zj5+KVAMFg4izOHAARo82HzMt\nKjIXxXnzTfD3d3Rl4mYsDYbU1FRCQ0MJDg5m8uTJZV5PT0+nQYMGhIeHEx4ezvjx460sR8Q5HTgA\no0ZBq1ZgGObU19Ong5+foysTN2XZ46olJSWMHDmStLQ0/Pz8iIyMJDY2lrCL5me56667WLJkiVVl\niDiv3FyYPNkcpTxkiDnBXbNmjq5KxLoWQ2ZmJkFBQQQGBuLt7U18fDzJycll9tPgNXE7ubnwpz9B\nmzbg7W1OY/H3vysUxGlY1mLIzc0l4IKbZf7+/mRkZJTax8PDgzVr1tCuXTv8/PyYMmUKLS8xjD8x\nMdH2fXR0NNHR0VaVLWKdnByYNMmcvuL3v4fvvoMbbnB0VeIi0tPTSU9Pr5JjWRYMHh4e5e7ToUMH\ncnJy8PHxISUlhf79+7Nz584y+10YDCI1Tk4OvPoqLFwIw4fD99/D9dc7uipxMRf/0Txu3LhKH8uy\nriQ/Pz9ycnJs2zk5Ofhf9HRFvXr18PHxAaB3794UFRVx9OhRq0oSqV779sFjj0H79lC/vhkIr72m\nUBCnZ1kwREREkJWVRXZ2NoWFhSxcuJDY2NhS+/z000+2ewyZmZkYhkGjRo2sKkmkemRnQ0ICdOhg\nTne9Y4fZhdS0qaMrE7GLZV1JXl5ezJgxg169elFSUsLw4cMJCwtj5syZACQkJPDRRx/x9ttv4+Xl\nhY+PDwsWLLCqHBHr7d0LEyfCJ5+YLYWdO6FxY0dXJVJhmnZb5Grt2WMGwqefwuOPm4PUFAjiYFdz\n7dTIZ5HK2r3bfLqoUydo3hyysmD8eIWC1Hhaj0GkonbtggkT4LPP4IknzEDQ0pniQhQMIvY61yJY\ntswcoLZrFzRs6OiqRKqcgkGkPDt2mIGQmqpAELegewwil/P99/Dww3DnneYiObt2wUsvKRTE5SkY\nRC723XcwaBB07WpOgb17N7z4IjRo4OjKRKqFgkHknO3bYeBAuOsuc4K73bvhhRfMUcsibkTBIPK/\n/8FDD0G3bub0Fbt3w/PPQ716jq5MxCEUDOK+tm6FAQOge3fo2NEMhGefVSCI21MwiPvZsgUeeAB6\n9DAHp+3ZA2PGQN26jq5MxCkoGMR9/Pe/cP/90KsXREWZLYS//AXq1HF0ZSJORcEgrm/TJrjvPoiJ\ngS5dzEB4+mkFgshlKBjEdW3cCPfeC336mE8a7dplTnD36xogInJpCgZxPRs2QGws9Otn3ljevRtG\njVIgiNhJwSCuY/166NvXbCX07GkGwp//DLVrO7oykRpFwSA1X2am2V10//3Qu7fZZTRyJFx3naMr\nE6mRNIme1Fzr1sG4cbBtmzkg7ZNP4NprHV2VSI2nYJCaZ80aMxC+/94MhMWLFQgiVUhdSVJzrF5t\n3jsYOBDi4sz1ER57TKEgUsXUYhDnt2qV2UI4N6ndkCFwzTWOrkrEZSkYxHl9/bUZCHv3wtix8Mgj\n4O3t6KpEXF65wXDs2DHWrl1LdnY2Hh4eBAYGEhUVRQPNTS9WSU83A+GHH8x1EB5+WIEgUo08DMMw\nLvXCqlWreP3118nOziY8PJzmzZtjGAYHDhxg06ZNBAYGMmbMGO68805rC/Tw4DIliisxjPOBsH+/\nGQi/+50CQaSSruraaVzG6NGjjZ07d17uZWPHjh3G6NGjL/u6YRhGSkqKERISYgQFBRmTJk267H6Z\nmZmGp6en8fHHH5d57Qoliis4e9Yw0tIMo0sXwwgKMowPPjCMoiJHVyVS413NtfOyLYarVVJSQkhI\nCGlpafj5+REZGUlSUhJhYWFl9uvRowc+Pj4MGzaMuLi4Uq+rxeCiDANWroTERDh82GwhDBwIXrrt\nJVIVrubaWe7/wvz8fObOnUt2djbFxcW2N5w+ffoVfy8zM5OgoCACAwMBiI+PJzk5uUwwvPnmmzzw\nwAOsX7++Uh9AahjDgC++MLuMjhyBv/4V4uPB09PRlYnIr8oNhpiYGKKiomjbti21atXCMAw8PDzK\nPXBubi4BAQG2bX9/fzIyMsrsk5yczJdffsn69esve9zExETb99HR0URHR5f7/uJkDAM+/9xsIRw7\nZgbCQw8pEESqSHp6Ounp6VVyrHKD4cyZM0ybNq3CB7YnPEaNGsWkSZNsTZ7LNXsuDAapYQwDUlPN\nFsLx4/DSS/DggwoEkSp28R/N48aNq/Sxyg2GQYMGMWvWLPr168e1F4wwbdSo0RV/z8/Pj5ycHNt2\nTk4O/v7+pfbZsGED8fHxAOTl5ZGSkoK3tzexsbEV+hDihAwDUlLMQDh1ymwhPPCAAkGkBij35vOM\nGTMYO3YsDRs2pFYtcwYNDw8P9uzZc8UDFxcXExISwsqVK2nevDmdOnW65M3nc4YNG0a/fv24//77\nSxeom881i2HAsmVmIJw+bbYQ4uKglmZfEalOlt58njp1Krt376ZJkyYVO7CXFzNmzKBXr16UlJQw\nfPhwwsLCmDlzJgAJCQmVKliclGHAZ5/BK69AYSG8/LK5nKYCQaTGKbfF0LNnTz799FPqOGh9XLUY\nnJxhwJIlZgvh7FmzhdC/vwJBxMEsbTH4+PjQvn17unXrZrvHYM/jquLizp6F5GSzhQBmCyE2VoEg\n4gLKDYb+/fvTv39/21NG9j6uKi7KMODTT80Wgqen+fhpbCzo34SIyyi3K+nkyZPUrl0bz1+fJikp\nKeH06dPV1rWkriQncuIEPPoobN8OEyea6ysrEESc0tVcO8tt999999388ssvtu2CggJ69OhRqTeT\nGmzLFoiIgAYNzDWW+/VTKIi4qHKD4fTp09StW9e2Xa9ePQoKCiwtSpzM7NnQvbs5n9GsWVC7tqMr\nEhELlXuPoU6dOmzYsIGOHTsC8O2331JbFwb3UFAAI0fCunXmlNitWjm6IhGpBuUGwxtvvMGAAQNo\n1qwZAAcOHGDhwoWWFyYOtnOnOVK5TRuz6+iCVqOIuDa7pt0uLCxkx44dAISEhHBNNa63q5vPDrBo\nETzxBIwfD3/4g+4liNRAV3PtvGwwpKenlzuL6VdffUW3bt0q9cb2UjBUozNn4C9/geXL4d//hg4d\nHF2RiFSSJQPcli5dypgxY7j77ruJiIigWbNmnD17loMHD/Ltt9+SlpZGt27dLA8GqSbZ2TBgAPj5\nwYYN0LChoysSEQe5YlfSiRMnSE5OZvXq1ezbtw+Am266iTvvvJN777231NNKlhWoFoP1li6F4cPh\n2Wdh9Gh1HYm4AEu6kpyFgsFCxcUwdiwkJcGCBdC5s6MrEpEqYulcSWB2K23fvp3Tp0/bfvbSSy9V\n6g3FSfz4o7mkpo+P2XXUtKmjKxIRJ1HuALeEhAQWLVrE9OnTMQyDRYsW2bqVpIZaudIcxdyjh3mj\nWaEgIhcotyupTZs2bN26lbZt27JlyxZOnjzJPffcwzfffFM9BaorqeqcPQsTJsDbb8OHH5qjmUXE\nJVnalXRulLOPjw+5ubk0btyYgwcPVurNxIEOH4aHH4ZffoFvv4XmzR1dkYg4qXK7kvr27Ut+fj7P\nPPMMHTt2JDAwkIEDB1ZHbVJVVq82xySEh8OXXyoUROSKyu1KOn36NNddd53t+3Pb535meYHqSqo8\nw4Bp0+C11+C998xpskXELVg67XbnCx5hvO6662jYsGGpn4mTOnYM7r8fFi6EjAyFgojY7bL3GA4c\nOMCPP/5IQUEBGzdutK3cdvz4cU277ew2bDBHMffpY45P+HVJVhERe1w2GFasWMGcOXPIzc3l6aef\ntv28Xr16TJw4sVqKkwoyDJg5E/76V3jrLTMcREQqqNx7DB9//DFxcXHVVU8Zusdgp5MnISEBtm6F\njz6CW291dEUi4kCWTIkxdepU24E9Lpg759z2U089VblqK1qggqF827ebaydERcGbb5qjmUXErVly\n8/nEiROcOHGCkydP2r6/cNseqamphIaGEhwczOTJk8u8npycTLt27QgPD6djx458+eWXlfoQbu3D\nD+Guu2DMGPPJI4WCiFwlyybRKykpISQkhLS0NPz8/IiMjCQpKYmwsDDbPqdOnaJOnToAbN26lfvu\nu49du3aVLlAthkv75Rd48kn4z3/MrqM2bRxdkYg4EUsfV92xYwfdu3en1a/r/W7ZsoXx48eXe+DM\nzEyCgoIIDAzE29ub+Ph4kpOTS+1zLhQATp48SZMmTSpav3vatcucCfX4cXMUs0JBRKpQuVNijBgx\ngtdff53HHnsMMOdOGjhwIC+++OIVfy83N5eAgADbtr+/PxkZGWX2W7x4Mc8//zwHDhzg888/v+Sx\nEhMTbd9HR0eXu7KcS/v4Y3j8cXj5ZfjjH7V2gogA5qqb6enpVXKscoOhoKCA2267zbbt4eGBt7d3\nuQf2sPOC1b9/f/r378+qVasYPHiwbW3pC10YDG6rsNBcSGfxYli2DCIjHV2RiDiRi/9oHjduXKWP\nVW5XUtOmTUv1+3/00Uc0a9as3AP7+fmRk5Nj287JycHf3/+y+3fp0oXi4mKOHDlS7rHdzg8/mDeY\nd+0yB68pFETEQuUGw4wZM3jsscfYsWMHzZs35+9//ztvv/12uQeOiIggKyuL7OxsCgsLWbhwIbGx\nsaX22b17t+3myMaNGwFo3LhxZT6H60pJgU6dzOktkpOhUSNHVyQiLu6K4xgudPr0ac6ePYuPj4/d\n4xhSUlIYNWoUJSUlDB8+nOeff56ZM2cC5gJAr732GnPnzsXb25u6desybdo0Ii/6a9htn0oqLobE\nRJgzx1x6s0sXR1ckIjWIJQPcEhMT8fDwYMeOHaxfv9721/5nn31Gp06dmDdvXuUrrkiB7hgMBw/C\nwIHg6Qnz58P11zu6IhGpYSwJhnO6dOnC8uXLqVevHmAOfIuJiWHVqlWVesMKF+huwZCeDr/7HTz6\nKLz0khkOIiIVZOkKbocOHSr1FJK3tzeHDh2q1JvJFZw9C5MmmVNafPAB9Ozp6IpExE2VGwyPPPII\nnTp14v7778cwDBYvXsyQIUOqozb3ceQIPPII/PwzrF8PV3h6S0TEanZNibFhwwZWrVqFh4cHXbt2\nJTw8vDpqA9ygKykjAx56CB58ECZOBDvGiIiIlMfSewyO5rLBYBgwfTpMmADvvgv33uvoikTEhVh6\nj0Es8PPP5s3lPXtg3Tq45RZHVyQiYlPuADepYps3Q0QENG0Kq1crFETE6SgYqothmOsl3H03jBsH\n//wnXHedo6sSESlDXUnV4dQpcybUDRtg1SoIDXV0RSIil6UWg9W+/x7OzU6bkaFQEBGnp2Cw0rk5\njkaNMuc8umBhIhERZ6WuJCucOQOjR8MXX5hf7ds7uiIREbupxVDV9uyBO+6AQ4fMZTcVCiJSwygY\nqlJyMtx+OwweDP/+NzRo4OiKREQqTF1JVaGoCF54ARYtgiVLzHAQEamhFAxXa/9+iI+H+vVh40bQ\nCnQiUsOpK+lqfPGFuf5ynz6wdKlCQURcgloMlVFSAn/7mzn5XVISREc7uiIRkSqjYKioQ4fMFdaK\ni82RzL/5jaMrEhGpUupKqohVq6BjR3Mk8xdfKBRExCWpxWAPw4CpU2HKFJg9G3r3dnRFIiKWUTDY\n48sv4e23ITMTbrzR0dWIiFhKK7jZ47e/hSFDzC8RkRrgaq6dlt5jSE1NJTQ0lODgYCZPnlzm9X/9\n61+0a9eOtm3bcscdd7BlyxYry6mctWth714YNMjRlYiIVAvLWgwlJSWEhISQlpaGn58fkZGRJCUl\nERYWZttn7dq1tGzZkgYNGpCamkpiYiLr1q0rXaCjWwx9+5rjFB5/3HE1iIhUkFO2GDIzMwkKCiIw\nMBBvb2/i4+NJTk4utU9UVBQNfp1P6LbbbmP//v1WlVM5//0vbNoEw4Y5uhIRkWpj2c3n3NxcAgIC\nbNv+/v5kZGRcdv/33nuPmJiYS76WmJho+z46Opro6hpQNnEiPP20luAUEaeXnp5Oenp6lRzLsmDw\n8PCwe9+vvvqK999/n9WrV1/y9QuDodp89x2kp5uPp4qIOLmL/2geN25cpY9lWTD4+fmRk5Nj287J\nycHf37/Mflu2bGHEiBGkpqbi6+trVTkVN2kS/PnPWnVNRNyOZcEQERFBVlYW2dnZNG/enIULF5KU\nlFRqnx9++IH777+fefPmERQUZFUpFbd3rzkp3u7djq5ERKTaWRYMXl5ezJgxg169elFSUsLw4cMJ\nCwtj5syZACQkJPDKK6+Qn5/P478+8ePt7U1mZqZVJdnvtdfgscegYUNHVyIiUu00wO1iP/4IrVvD\njh3QtGn1va+ISBVyysdVa6wpU8wRzgoFEXFTajFcKC8Pbr0Vtm4FP7/qeU8REQuoxVBV3ngDHnxQ\noSAibk0thnN+/hlatDBnUL3lFuvfT0TEQmoxVIW33oKYGIWCiLg9tRgATp0yAyE9HS6Y5E9EpKZS\ni+FqzZoFXbooFEREUIsBzpwxWwtLl0J4uHXvIyJSjdRiuBpz5kC7dgoFEZFfuXeLobjYHLcwbx50\n7mzNe4iIOIBaDJWVlAQ33aRQEBG5gPu2GM6ehVat4M034e67q/74IiIOpBZDZXzyCdSvD927O7oS\nERGn4p7BYBjmsp1jx0IFVpoTEXEH7hkMKSnmjee+fR1diYiI03G/YDAMGD/ebC3Ucr+PLyJSHve7\nMqanw5EQLuh9AAALZElEQVQj8MADjq5ERMQpuV8wTJgAzz0Hnp6OrkRExCm5VzBkZEBWFjz8sKMr\nERFxWu4VDBMmwJgx4O3t6EpERJyW+wxw27wZeveG3buhdu2rP56IiBPTADd7TJwITz2lUBARKYd7\ntBh27DDXW9izB+rWrZrCREScmNO2GFJTUwkNDSU4OJjJkyeXef37778nKiqK6667jqlTp1pXyKRJ\nMHKkQkFExA6WtRhKSkoICQkhLS0NPz8/IiMjSUpKIuyCVdIOHz7Mvn37WLx4Mb6+vjz99NNlC7za\nFsO+fdChA+zaBb6+lT+OiEgN4pQthszMTIKCgggMDMTb25v4+HiSk5NL7dO0aVMiIiLwtvIpodde\ngz/8QaEgImInL6sOnJubS0BAgG3b39+fjIyMSh0rMTHR9n10dDTR0dH2/eKBA+aaC99/X6n3FRGp\nKdLT00lPT6+SY1kWDB5VOGvphcFQIVOnwuDBcP31VVaLiIgzuviP5nHjxlX6WJYFg5+fHzk5Obbt\nnJwc/P39rXq7so4cgfffhy1bqu89RURcgGX3GCIiIsjKyiI7O5vCwkIWLlxIbGzsJfe15P73P/4B\ncXFQnWEkIuICLB3HkJKSwqhRoygpKWH48OE8//zzzJw5E4CEhAQOHjxIZGQkx48fp1atWtSrV4/t\n27dT94LHSit1Z/34cbjlFli3DoKCqvIjiYjUCFfzVJJrDnCbNAn+9z+YN8+aokREnJyC4UIFBWZr\nYeVKaNXKusJERJyYU45jcJh334XOnRUKIiKV5FothjNnzHsKixdDx47WFiYi4sTUYjhn7lyzpaBQ\nEBGpNNdpMRQXQ0gIfPAB3Hmn9YWJiDgxtRgAFiwwxywoFEREroplI5+r1dmz8Oqr8Pe/O7oSEZEa\nzzVaDIsXg48P9Ojh6EpERGq8mh8MhgETJsDYsVCFE/eJiLirmh8MK1ZAYSFcZh4mERGpmJodDIYB\n48fDCy9ArZr9UUREnEXNvpp+/TX89BMMGODoSkREXEbNDoYJE+C558DT09GViIi4jJo7wG39enO9\nhV274Jprqr8wEREn5p4D3CZMgGeeUSiIiFSxmtli2LoVevaEPXugdm3HFCYi4sTcr8UwcSKMHq1Q\nEBGxQM1rMWRlmest7NkD9eo5rjARESfmXi2GSZPgiScUCiIiFqlZLYYffoDwcLPV0KiRYwsTEXFi\n7tNieP11ePRRhYKIiIVqTovh4EFo2RK++w5uuMHRZYmIODX3aDFMmwa/+51bh0J6erqjS3AaOhfn\n6Vycp3NRNSwNhtTUVEJDQwkODmby5MmX3OfPf/4zwcHBtGvXjk2bNl36QEePwnvvmQPa3Jj+0Z+n\nc3GezsV5OhdVw7JgKCkpYeTIkaSmprJ9+3aSkpL47rvvSu2zfPlydu3aRVZWFrNmzeLxxx+/9MGm\nT4f+/eHGG60qV0REfmVZMGRmZhIUFERgYCDe3t7Ex8eTnJxcap8lS5YwZMgQAG677TaOHTvGTz/9\nVPZgb71lTpYnIiLWMyzy73//23j00Udt2x9++KExcuTIUvv07dvXWL16tW27e/fuxrfffltqH0Bf\n+tKXvvRVia/K8sIiHnYus2lcdNf84t+7+HUREbGWZV1Jfn5+5OTk2LZzcnLw9/e/4j779+/Hz8/P\nqpJERMQOlgVDREQEWVlZZGdnU1hYyMKFC4m9aF3m2NhY5s6dC8C6deto2LAhN7jx46giIs7Asq4k\nLy8vZsyYQa9evSgpKWH48OGEhYUxc+ZMABISEoiJiWH58uUEBQVRp04dZs+ebVU5IiJir0rfnahi\nKSkpRkhIiBEUFGRMmjTpkvv86U9/MoKCgoy2bdsaGzdurOYKq09552LevHlG27ZtjTZt2hidO3c2\nNm/e7IAqq4c9/y4MwzAyMzMNT09P4+OPP67G6qqXPefiq6++Mtq3b2+0atXKuOuuu6q3wGpU3rk4\nfPiw0atXL6Ndu3ZGq1atjNmzZ1d/kdVg2LBhxvXXX2+0bt36svtU5rrpFMFQXFxstGjRwti7d69R\nWFhotGvXzti+fXupfZYtW2b07t3bMAzDWLdunXHbbbc5olTL2XMu1qxZYxw7dswwDPM/iDufi3P7\ndevWzejTp4/x0UcfOaBS69lzLvLz842WLVsaOTk5hmGYF0dXZM+5ePnll43nnnvOMAzzPDRq1Mgo\nKipyRLmW+vrrr42NGzdeNhgqe910iikxqnTMQw1nz7mIioqiQYMGgHku9u/f74hSLWfPuQB48803\neeCBB2jatKkDqqwe9pyL+fPnExcXZ3vIo0mTJo4o1XL2nItmzZpx/PhxAI4fP07jxo3x8rKs59xh\nunTpgq+v72Vfr+x10ymCITc3l4CAANu2v78/ubm55e7jihdEe87Fhd577z1iYmKqo7RqZ++/i+Tk\nZNuoeXsfk65p7DkXWVlZHD16lG7duhEREcGHH35Y3WVWC3vOxYgRI9i2bRvNmzenXbt2/OMf/6ju\nMp1CZa+bThGhVTXmwRVU5DN99dVXvP/++6xevdrCihzHnnMxatQoJk2aZJtJ8uJ/I67CnnNRVFTE\nxo0bWblyJQUFBURFRXH77bcTHBxcDRVWH3vOxcSJE2nfvj3p6ens3r2bHj16sHnzZuq54QJflblu\nOkUwaMzDefacC4AtW7YwYsQIUlNTr9iUrMnsORcbNmwgPj4egLy8PFJSUvD29i7zaHRNZ8+5CAgI\noEmTJtSuXZvatWvTtWtXNm/e7HLBYM+5WLNmDWPHjgWgRYsW3HzzzezYsYOIiIhqrdXRKn3drJI7\nIFepqKjIuOWWW4y9e/caZ86cKffm89q1a132hqs952Lfvn1GixYtjLVr1zqoyuphz7m40NChQ132\nqSR7zsV3331ndO/e3SguLjZOnTpltG7d2ti2bZuDKraOPedi9OjRRmJiomEYhnHw4EHDz8/POHLk\niCPKtdzevXvtuvlckeumU7QYNObhPHvOxSuvvEJ+fr6tX93b25vMzExHlm0Je86Fu7DnXISGhnLP\nPffQtm1batWqxYgRI2jZsqWDK6969pyLF154gWHDhtGuXTvOnj3La6+9RiMXXPlx4MCB/Oc//yEv\nL4+AgADGjRtHUVERcHXXTadfwU1ERKqXUzyVJCIizkPBICIipSgYRESkFAWDiIiUomAQsdOhQ4fo\n06dPhX7nqaeeYtWqVRZVJGINBYOInWbMmMHQoUMr9DuPP/44r7/+ujUFiVhEwSBykfXr19OuXTvO\nnDnDqVOnaN26Ndu2beOjjz6ytRjmzJlD//796dmzJzfffDMzZsxgypQpdOjQgaioKPLz8wEIDg4m\nOzubY8eOOfIjiVSIgkHkIpGRkcTGxvLiiy/y7LPPMnjwYJo0aYKnpyc+Pj62/bZt28ann37K+vXr\nGTt2LPXr12fjxo1ERUXZViYECA8PZ+3atY74KCKV4hQjn0WczUsvvURERAS1a9fmzTffJDMzk2bN\nmtle9/DwoFu3btSpU4c6derQsGFD+vXrB0CbNm3YsmWLbd/mzZuTnZ1d3R9BpNIUDCKXkJeXx6lT\npygpKeGXX34Bys5See2119q+r1Wrlm27Vq1aFBcX214zDMMlZwIW16WuJJFLSEhIYPz48QwaNIhn\nn32WwMBADh48aHv9SjPJXPzagQMHCAwMtKpUkSqnFoPIRebOncu1115LfHw8Z8+epXPnzmzfvp3i\n4mIKCgrw8fHBw8OjVCvg4u8v3N60aRPTp0+v1s8gcjU0iZ6InRITEwkLC+Ohhx6y+3d27tzJX/7y\nF5YsWWJhZSJVS11JInZ64okn+OCDDyr0O++88w5jxoyxqCIRa6jFICIipajFICIipSgYRESkFAWD\niIiUomAQEZFSFAwiIlKKgkFEREr5f1iGZ/dHpXkqAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x4b3b910>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEXCAYAAACgUUN5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdYFNf+BvB3KQFBMICKiCjYoihVihrL2g2WoCYWropR\nFNSoUWNM4o0hiS3XFkuMUSNqYsmNFQEbwVWsgAIqqCQqVhQRUGlSdn5/eN2fRBAEdoZl38/z8Dy7\nO7MzL8d1v5wzM2dkgiAIICIiraUjdQAiIpIWCwERkZZjISAi0nIsBEREWo6FgIhIy7EQEBFpORYC\nqhHGjBmDr776qlzr2tra4s8//1RzIiLNwUJANYJMJoNMJnvjdQMDAzFq1Ch1RsPChQsxZ84cte6D\nqDJYCKjGqK7XRoaFhaFfv35SxyAqFQsBaaTY2Fi4urrC1NQUw4cPR15eXrHlISEhcHZ2hpmZGd59\n911cvHjxlW0cPHgQCxcuxO+//w4TExO4uLgAAIKCgmBvbw9TU1M0a9YM69atKzHDs2fP8PbbbyMh\nIUH12sOHD2FkZIS0tDQAQEZGBpKSktChQwekpaWhf//+MDMzg4WFBbp06VJi8Tp16hTq1auHO3fu\nAADi4+Nhbm6OpKSkijUWURlYCEjj5Ofnw9vbG76+vsjIyMCHH36IXbt2qYZ7YmNjMW7cOKxfvx7p\n6enw9/fHwIEDUVBQUGw7ffv2xZdffonhw4fj6dOniI2NBQBYWloiNDQUT548QVBQEKZPn65a9jID\nAwMMGTIE27dvV7323//+F3K5HHXr1gUAHDp0CD179oRMJsPSpUthY2ODtLQ0pKamYuHChSUOZ3Xs\n2BH+/v7w9fVFbm4uRo4ciXnz5qFly5ZV1oZEL2MhII1z5swZFBYWYtq0adDV1cWQIUPg7u6uWr5u\n3Tr4+/vD3d0dMpkMo0ePhoGBAc6cOfPKtgRBeOWvci8vL9jZ2QEAunTpgt69eyMyMrLELD4+Ptix\nY4fq+bZt2+Dj46N6HhoaCi8vLwDAW2+9hZSUFCQnJ0NXVxfvvvtuqb9jYGAgHj9+DA8PD9jY2GDS\npEnlaBmiimEhII1z7949WFtbF3utSZMmqsc3b97E0qVLYWZmpvq5c+cO7t27V67tHzhwAO3bt4eF\nhQXMzMwQFhaGR48elbiuXC5HTk4OoqKikJycjPj4eAwaNAgAoFQqER4ejr59+wIAZs2ahebNm6N3\n795o1qwZvv/++1Iz6OnpwdfXFwkJCZg5c2a5chNVFAsBaRwrKyvcvXu32Gs3b95UPW7cuDHmzJmD\njIwM1U9WVhaGDRv2yrb+OTTz7NkzDBkyBJ999hlSU1ORkZEBLy+vUg9E6+rqYujQodi+fTu2b9+O\nAQMGwNjYGAAQHR2NJk2awMLCAgBQu3ZtLFmyBNeuXUNwcDCWLVuGiIiIErd79+5dfPvttxg7dixm\nzJiB/Pz88jcQ0RtiISCN07FjR+jp6WHlypUoKCjA7t27ER0drVo+fvx4rF27FlFRURAEAdnZ2QgN\nDUVWVtYr22rQoAGSk5NVX/T5+fnIz89H3bp1oaOjgwMHDuDw4cOvzfNieOifw0JhYWHo37+/6nlo\naCj+/vtvCIIAU1NT6OrqQldX95XtCYKAMWPGwM/PDxs2bICVlVW5r5EgqggWAtI4+vr62L17NzZt\n2gQLCwv897//xZAhQ1TL27Vrh/Xr1+Pjjz+Gubk5WrRogS1btpR4YPbDDz8EAFhYWMDNzQ0mJiZY\nuXIlhg4dCnNzc2zfvh3vv//+a/N4eHigdu3aSElJwXvvvad6PSwsTHV8AAD++usv9OrVCyYmJujY\nsSMmT56Mrl27vrK9lStXIi0tDd999x2A52cxBQUF4eTJk2/WUETlJOONaYiq3oMHD+Dq6vrKEBZR\ndaS2HsHYsWNhaWkJBwcH1Wvp6eno1asXWrZsid69eyMzM1NduyeS1JMnT7Bs2TKpYxCVi9oKwUcf\nfYSDBw8We23RokXo1asXkpKS0KNHDyxatEhduyeSVIsWLUo8OE1UHal1aCg5ORkDBgxQXdXZqlUr\nHDt2DJaWlrh//z7kcjmuXLmirt0TEVE56Im5swcPHsDS0hLA86s3Hzx48Mo65Z04jIiIiqvo3/WS\nnTX0utkiX1ztWV1+vv76a8kzaEKm6pqLmZhJG3JVhqiF4MWQEACkpKSgfv36Yu6eiIhKIGohGDhw\nIDZv3gwA2Lx5M7y9vcXcPRERlUBthWDEiBHo2LEjrl69ChsbGwQFBeHzzz/HkSNH0LJlS0RERODz\nzz9X1+6rlFwulzrCK6pjJqB65mKm8mGm8quuuSqq2l1QJpPJKj3eRUSkbSrz3SnqWUNERFIwNzdH\nRkaG1DGqhJmZGdLT06t0m+wREFGNV5O+V0r7XSrzO3LSOSIiLcdCQESk5VgIiIi0HAsBEZGGu5Z+\nrVLvZyEgItJQ2fnZmBMxB54bPCu1HRYCIiIJ1a5dGyYmJjAxMYGOjg6MjIxUz7dv317iewRBwI5L\nO9Dqx1ZIzkxGfEB8pTLwOgIiIgm9fC9tOzs7/PLLL+jevftr39Ntczc8fvYY24dsR6fGnSqdgYWA\niEjDDGszDBPaTYCujm6VbI+FgIgIgOybqrkXivC1+i9cm+g+sUq3x0JARARxvsCrKx4sJiLSciwE\nRERajoWAiEjLsRAQEWk5TkNNRDVeTfpe4TTURERU5VgIiIi0nCSFYMWKFXBwcEDbtm2xYsUKKSIQ\nkRYxMzODTCarET9mZmZV3j6iF4JLly5hw4YNiI6ORnx8PEJCQnDtWuWmUCUiep309HQIgiD6T5Gy\nCOvPrYflYktM2D8BD7MfVnqbVX2/YkCCK4uvXLkCT09PGBoaAgC6du2K3bt3Y9asWWJHISJSmzN3\nzmDKgSl4S/cthP0rDK5WrlJHKpXohaBt27aYM2cO0tPTYWhoiNDQUHh4eBRbJzAwUPVYLpdDLpeL\nG5KIqILuZ93H5+Gf48j1I1jUYxFGOo6ETFY18xi9TKFQQKFQVMm2JDl9dOPGjVizZg2MjY3Rpk0b\nGBgYYPny5c8D1aDTvIhIexQUFWBV1CosiFyAsS5j8VWXr2BiYCLa/ivz3Sn5dQRffvklGjdujICA\ngOeBWAiISMMcuXYE0w5OQ+M6jbGi7wq8U/cd0TNU5rtTktlHU1NTUb9+fdy6dQt79uzB2bNnpYhB\nRFQpyZnJmHFoBuLux+GHvj9gQMsBahkGUjdJCsEHH3yAR48eQV9fH2vWrIGpqakUMYiIKiSnIAff\nn/weq6NWY3r76dg2ZBsM9QyljlVhkg8N/ROHhoiouhIEAbsv78bMwzPh2cgTi3stRuM6jaWOBUAD\nh4aIiDRNQmoCph2chgfZDxD0fhC62XWTOlKV4RQTRESv8TjvMaYfmg75Zjnef+d9xPrH1qgiALAQ\nEBGVSCkoERQbhFY/tkJWfhYSJyViiucU6OnUvIGUmvcbERFVUtTdKEw5MAUyyBA8PBju1u5SR1Ir\nFgIiov95kPUAX0Z8iQN/HcDCHgsxymkUdGQ1f+Ck5v+GRERlKCgqwA9nfkDbn9rCzNAMlydfhq+z\nr1YUAYA9AiLSchE3IjDlwBRYm1jj+JjjaF2vtdSRRMdCQERa6WbmTXx65FPE3IvBst7L4N3KWyOv\nCq4K2tHvISL6n9yCXHx77Fu4rnOFQ30HJE5KxKDWg7S2CADsERCRlhAEAXuv7MWMwzPQzqodzk84\njyZvN5E6VrXAQkBENd7lh5cx7eA03H16FxsGbECPpj2kjlStcGiIiGqsJ8+eYObhmeiyqQu8Wngh\nzj+ORaAELAREVOMoBSU2x21Gq9WtkJmXiYRJCfik/SfQ19WXOlq1xKEhIqpRYu7FYMqBKShSFmHv\n8L3wsPYo+01ajoWAiGqEh9kP8WXElwhJCsH87vMxxnmM1lwQVllsJSLSaIXKQqw8uxL2a+xR+63a\nuDz5Msa6jGUReAPsERCRxjp64yimHpwKS2NLHBtzDPb17KWOpJFYCIhI49x6fAufHv4UUXejsLT3\nUgxuPVirLwirLPadiEhj5BXmYd7xeXD52QWt67VG4uREDLEfwiJQSZIUgoULF6JNmzZwcHCAj48P\nnj17JkUMItIQgiBg35V9aLOmDc6nnEfM+Bh8I/8GRvpGUkerEUS/eX1ycjK6d++Oy5cvw8DAAMOG\nDYOXlxd8fX2fB+LN64noJVfTrmLawWm4+fgmVvZdiV7NekkdqVrSqJvXm5qaQl9fHzk5OdDV1UVO\nTg6sra2LrRMYGKh6LJfLIZfLxQ1JRJLLLcjF/Mj5WBuzFl92/hJTPKbwgrCXKBQKKBSKKtmW6D0C\nAFi3bh1mzpyJWrVqoU+fPvj111//PxB7BERa7+DfBzE5bDLcGrpheZ/laGjSUOpI1V5lvjtFP0Zw\n7do1/PDDD0hOTsa9e/eQlZWFrVu3ih2DiKqhe0/vYdjOYZgUOgk/ev2I3z/4nUVABKIXgpiYGHTs\n2BEWFhbQ09PD4MGDcerUKbFjEFE1UqQswuqo1XBa64Tm5s1xadIl9G3eV+pYWkP0YwStWrXCd999\nh9zcXBgaGiI8PBweHpwLhEhbnU85D/8QfxjpG/GiMImIXgicnJwwevRouLm5QUdHB66urpgwYYLY\nMYhIYk+ePcHco3Ox/dJ2LOqxCGOcx/B6AIlIcrD4dXiwmKhmEwQBuy/vxieHPkHvZr3xfc/vUdeo\nrtSxNJ5GnT5KRNrrRsYNfHzgY9zIuIGtg7eiS5MuUkcicIoJIhJBQVEBFp1YBPf17uhk0wlxAXEs\nAtUIewREpFYnbp1AQEgAbOrYIGp8FJqaNZU6Ev0DCwERqcWjnEeYHT4bB/8+iOV9luMD+w94MLia\n4tAQEVUpQRCwOW4z2qxpAyN9IyROTsSHbT5kEajG2CMgoipzJe0KAkICkJWfhRCfELg1dJM6EpUD\newREVGm5Bbn46uhX6LSxEwa3HoyzfmdZBDQIewREVCmHrx3GpNBJcLVyRXxAPKxNrct+E1UrLARE\nVCEpT1Mw/dB0RN2Nwmqv1fBq4SV1JKogDg0R0RspUhZhTfQaOK51RFOzprg06RKLgIZjj4CIyi02\nJRb+If4w0DOAwleBNvXbSB2JqgALARGV6emzp5irmIttF7dhYY+FGOM8BjoyDijUFPyXJKJSvZgg\nzn6NPTLzMpEwKQFjXcayCNQw7BEQUYmSM5Mx5cAUXEu/ht8G/Yautl2ljkRqwrJORMUUFBXgPyf/\nA7d1bmhv3R5xAXEsAjUcewREpHLy1kkEhAbA2sQaZ/3Oopl5M6kjkQhYCIgI6bnpmB0+G2F/hWF5\nn+X40J5zA2kTDg0RaTFBEPBr/K9os6YNDPUMkTgpEUPbDGUR0DKi9wiuXr2K4cOHq55fv34d3333\nHaZOnSp2FCKtdjXtKiaGTkRmXiaChwfD3dpd6kgkEUnvWaxUKmFtbY2oqCjY2Ng8D8R7FhOpVV5h\nHhZELsCa6DX4qstXmOwxGXo6HCXWdBp7z+Lw8HA0a9ZMVQSISL2OXDuCSWGT4GTpxAniSEXSQrBj\nxw74+Pi88npgYKDqsVwuh1wuFy8UUQ10P+s+ZhyagdN3TmP1e6vRr2U/qSNRJSkUCigUiirZlmRD\nQ/n5+bC2tkZiYiLq1av3/4E4NERUZZSCEj/H/Iy5irkY5zIOc7vOhZG+kdSxSA00cmjowIEDaNeu\nXbEiQERVJ+5+HAJCAqCno4ejvkfRtn5bqSNRNSVZIdi+fTtGjBgh1e6Jaqys/CzMPToXWy9uxYLu\nC/CRy0ecG4heS5KhoezsbDRp0gQ3btyAiYlJ8UAcGiKqsL1X9mLqganobtcdi3stRj1j9ri1RWW+\nOyU9fbQkLAREb+5m5k1MPTgVV9OuYm3/tZDbyqWORCKrzHcn+4tEGqygqACLTy5Gu3Xt4N7QHfEB\n8SwC9MbKPEaQmZmJ06dPIzk5GTKZDLa2tujQoQPq1KkjRj4iKsXp26fhH+IPKxMrnPE7g+bmzaWO\nRBqq1KGhyMhILF68GMnJyXBxcUHDhg0hCAJSUlIQGxsLW1tbfPbZZ+jUqVPVBuLQENFrZeRm4PM/\nP0dIUgiW9V7GuYEIgJpOH92zZw+WLl2KFi1alLg8KSkJa9eurfJCQEQlEwQBWy9uxawjszC49WAk\nTErA24ZvSx2LagAeLCbSAEmPkjAxdCLSc9Pxc/+f4WHtIXUkqmbUekFZRkYGtmzZguTkZBQWFqp2\nuHLlygrtkIjKL68wD4tOLMLqqNX4d5d/42OPjzlBHFW5Mj9RXl5e6NChAxwdHaGjowNBEDgeSSSC\n8OvhmBQ6CQ6WDogLiEMj00ZSR6IaqsyhIVdXV5w/f16sPBwaIq33IOsBZh6eiRO3TmC112r0b9lf\n6kikAdR6HYGPjw/WrVuHlJQUpKenq36IqGq9mCDO4ScHWJtaI2FSAosAiaLMoSFDQ0PMmjUL8+fP\nh47O87ohk8lw/fp1tYcj0hbx9+MREBoAHZkO/hz9JxwsHaSORFqkzKEhOzs7REdHo27duuIE4tAQ\naZGs/CwEKgKxJX4LFvRYgLEuYzlBHFWIWoeGWrRogVq1alVo40RUun1X9qHNmjZIzU7FpUmX4Ofq\nxyJAkihzaMjIyAjOzs7o1q0bDAwMAPD0UaLKSHmago8PfIxLqZew6f1N6GbXTepIpOXKLATe3t7w\n9vZWnTLK00eJKkYQBGyK24TZ4bMxod0EbB28FYZ6hlLHIir7GEFWVhZq1aoFXV1dAEBRURHy8vJg\nbGysnkA8RkA10I2MG/AP8cej3Ef4ZeAvcG7gLHUkqmHUeoygZ8+eyM3NVT3PyclBr169KrQzIm1T\npCzCyrMr4b7eHT3seuCs31kWAap2yhwaysvLQ+3atVXPTUxMkJOTo9ZQRDXB5YeXMS54HPR09HBq\n3Cm0tGgpdSSiEpXZIzA2Nsa5c+dUz2NiYngWEdFrFBQVYP7x+egc1BkjHUdCMUbBIkDVWpk9gh9+\n+AFDhw6FlZUVACAlJQW///672oMRaaJz985hbPBYNDRpiPP+59G4TmOpIxGVqVzTUOfn5+Pq1asA\ngHfeeQdvvfVWpXaamZkJPz8/JCQkQCaTYePGjWjfvv3zQDxYTBootyAX3xz7BkFxQVjSawlGOo7k\n2XUkKrUcLFYoFKrHb731FhwcHODg4FCsCBw9erRCO502bRq8vLxw+fJlXLhwAa1bt67Qdoiqg+M3\nj8NprRNuZN7AhYALGOU0ikWANEqpPYJPP/0Ux48fR8+ePeHm5gYrKysolUrcv38fMTExCA8PR7du\n3fCf//znjXb4+PFjuLi4lDpXEXsEpCmePHuCL/78Avuu7MNqr9XwbuUtdSTSYmq5Mc2SJUvw9OlT\n7Nu3D0eOHMHNmzcBAE2aNEGnTp0wZ86cYmcTldeNGzdQr149fPTRR4iPj0e7du2wYsUKGBkZqdYJ\nDAxUPZbL5ZDL5W+8HyJ1OvDXAQSEBqBX0164NOkSbxlJolMoFMVGbipD9FtVxsTEoEOHDjh16hTc\n3d3xySefwNTUFN9+++3zQOwRUDX2KOcRph+ajhO3TmD9gPXo0bSH1JGIAKj5VpUAEBISgsTEROTl\n5alemzt3boV22KhRIzRq1Aju7u4AgA8++ACLFi2q0LaIxCIIAv5I/APTDk7D8LbDcXHiRRi/pZ6r\n64nEVmYh8Pf3R25uLiIiIjB+/Hj88ccf8PT0rPAOGzRoABsbGyQlJaFly5YIDw9HmzZtKrw9InW7\n9/QeJoVOwl/pf2HPsD1o36i91JGIqlSZQ0MODg64ePEiHB0dceHCBWRlZaFv3744ceJEhXcaHx8P\nPz8/5Ofno1mzZggKCkKdOnWeB+LQEFUTgiBgY+xGfPHnFwhwC8CcznNgoGcgdSyiEql1aOjFVcRG\nRka4e/cuLCwscP/+/Qrt7AUnJydER0dXahtE6nQ94zrG7x+Px3mPET46HI6WjlJHIlKbMqeY6N+/\nPzIyMjBr1iy0a9cOtra2GDFihBjZiERXpCzCD2d+gMd6D/Rt1hdn/M6wCFCNV+bQUF5eHgwNDVWP\nXzx/8VqVB+LQEEkkITUB44LHwUDPABsGbEALixZSRyIqN7VOQ92xY0fVY0NDQ7z99tvFXiPSdPlF\n+fju2HeQb5ZjjPMYHPU9yiJAWqXUYwQpKSm4d+8ecnJycP78edWdyZ48ecJpqKnGiL4bjXHB42BT\nxwbnJ5yHTR0bqSMRia7UQnDo0CFs2rQJd+/excyZM1Wvm5iYYMGCBaKEI1KXnIIcBCoCsTl+M5b1\nXgYfBx/OD0Raq8xjBLt27cKQIUPEysNjBKR2x5KPwW+/H9waumFF3xWob1xf6khElVaZ785SC8HS\npUtVG375L6UXz2fMmFGxtGUFYiEgNXny7Almh89GSFIIfvT6EQPfGSh1JKIqo5brCJ4+fcquMtUY\noUmhmBg6EX2b98WliZdQx7CO1JGIqg3RJ50rC3sEVJXSc9Mx7eA0nLp9CusHrEd3u+5SRyJSC7We\nPnr16lX06NFDNR/QhQsXMG/evArtjEhMYX+FwfEnR5gZmuFCwAUWAaJSlNkj6NKlCxYvXoyAgADE\nxsZCEAS0bdsWCQkJ6gnEHgFV0uO8x5hxeAYibkRg48CN6GbXTepIRGqn1h5BTk5OsdlGZTIZ9PX1\nK7QzInULvx4Ox7WO0NPRw4WACywCROVQ5qRz9erVw99//616vnPnTlhZWak1FNGbysrPwmdHPsP+\npP3YMGAD+jTvI3UkIo1RZiFYvXo1/P39cfXqVTRs2BB2dnbYunWrGNmIyiXyZiTG7BuDzo074+LE\ni7xtJNEbeu11BC/Ly8uDUqmEkZERryOgaiG3IBdzIuZgx6UdWNt/La8LIK2m1usIrl69iujoaAwc\n+Pw/2a+//goPD4+KJSWqImfvnIXvXl84N3DGxYkXYWFkIXUkIo1V5llDnTt3RlhYGExMTAA8LxBe\nXl6IjIxUTyD2COg1nhU+Q+CxQATFBmHVe6vwYZsPpY5EVC2o9Q5lqampxc4S0tfXR2pqaoV2RlQZ\n51POw3evL5qbN0d8QDwsa1tKHYmoRiizEIwePRoeHh4YPHgwBEHA3r174evrK0Y2IgBAQVEBFkQu\nwI/RP2JZn2X4l8O/OP0JURUq1xQT586dQ2RkJGQyGbp06QIXF5dK7dTW1hampqbQ1dWFvr4+oqKi\n/j8Qh4boJZdSL8F3ry8sjS2xfsB6WJtaSx2JqFpSy+yj6mRnZ4dz587B3Nz81UAsBASgUFmIJaeW\nYOnppVjUYxHGuoxlL4DoNdR6jEBd+GVPpbmadhW+e31h/JYxYsbHoMnbTaSORFSjSVIIZDIZevbs\nCV1dXfj7+2P8+PHFlgcGBqoey+VyyOVycQOSJJSCEivPrsT8yPkI7BqIie4ToSMrcxYUIq2kUCig\nUCiqZFuSDA2lpKTAysoKDx8+RK9evbBq1Sp07tz5eSAODWml6xnX8dG+j6AUlAh6PwjNzZtLHYlI\no6h10jl1eDFXUb169TBo0KBiB4tJuwiCgJ+if4LnBk+8/877UPgqWASIRCb60FBOTg6KiopgYmKC\n7OxsHD58GF9//bXYMagauPX4FsYFj8PjvMc4PuY4WtdrLXUkIq0keo/gwYMH6Ny5M5ydneHp6Yn+\n/fujd+/eYscgCQmCgI2xG9FuXTt0s+2GU+NOsQgQSYi3qiRRpTxNwfj943H36V1s9t4MR0tHqSMR\n1Qgad4yAtI8gCNh2cRucf3ZGu4btcNbvLIsAUTUh2XUEpD1Ss1MxMXQirqRdQahPKNwaukkdiYhe\nwh4BqdWuxF1wWuuE5ubNcW7CORYBomqIPQJSi/TcdHwc9jFi7sVg99Dd6GDTQepIRFQK9gioyoUk\nhcDhJwfUN66PuIA4FgGiao49AqoyT589xSeHPsHRG0exbfA2dLXtKnUkIioH9gioSpy9cxYuP7tA\nBhniA+JZBIg0CHsEVClFyiIsPLEQq6JW4ad+P2Fw68FSRyKiN8RCQBWWnJmMUXtGwUDXAOcnnOdN\nY4g0FIeGqEK2XdwGj/Ue8H7HG4dHHWYRINJg7BHQG3mc9xiTwybjXMo5HBp5CC5WlbttKRFJjz0C\nKrcTt07A+WdnmBqY4tyEcywCRDUEewRUpkJlIb499i3WnVuH9QPWY8A7A6SORERViIWAXuta+jWM\n3DMSdQzqIC4gDg1qN5A6EhFVMQ4NUYkEQcDmuM1o/0t7jGg7AmH/CmMRIKqh2COgV2TkZiAgNACJ\nDxMRMToCDpYOUkciIjVij4CKUSQr4LTWCQ1qN0CUXxSLAJEWYI+AAAD5Rfn4WvE1Nsdtxi8Df8F7\nLd6TOhIRiYSFgJD0KAk+u3xgZWKFuIA41DeuL3UkIhKRJENDRUVFcHFxwYABPA1RSoIgYMP5DXh3\n47sY5zIOwcODWQSItJAkPYIVK1bA3t4eT58+lWL3BOBRziOM3z8e1zOu49iYY7CvZy91JCKSiOg9\ngjt37iAsLAx+fn4QBEHs3ROA8OvhcFrrhKZmTXHW7yyLAJGWE71HMH36dCxevBhPnjwpdZ3AwEDV\nY7lcDrlcrv5gWuBZ4TPMiZiDHZd2YJP3JvRs2lPqSERUQQqFAgqFokq2JRNE/LM8JCQEBw4cwI8/\n/giFQoGlS5di//79xQPJZOwpqEHiw0T47PKBnZkd1g9Yj7pGdaWORERVqDLfnaIODZ06dQrBwcGw\ns7PDiBEjEBERgdGjR4sZQesIgoA10WvQJagLJrtPxu6hu1kEiKgYUXsELzt27BiWLFnCHoEapWan\nYlzwOKQ8TcHWwVvxTt13pI5ERGqiMT2Cf5LJZFLuvkY7+PdBOK91Rtv6bXFq3CkWASIqlWQ9gtKw\nR1A5eYV5mB0+G3su78GWQVsgt5VLHYmIRFCZ705eWVyDXHxwET67fdC6bmvEB8TDrJaZ1JGISANw\n0rkaQCkoseLMCnTf0h0zO8zE7x/8ziJAROXGHoGGS3mago/2fYTMvEycHncazc2bSx2JiDQMewQa\nbP/V/XBq/cdcAAALzUlEQVRd5woPaw9EfhTJIkBEFcIegQYqKCrA539+jl2Ju/DHh3+gU+NOUkci\nIg3GQqBh7j65i2E7h6GOYR2cm3AOFkYWUkciIg3HoSENEn49HG7r3dCvRT/sH7GfRYCIqgR7BBpA\nKSgx7/g8rI1Zi22Dt6GbXTepIxFRDcJCUM2l5aRh5O6RyCnIQcyEGDQ0aSh1JCKqYTg0VI2duXMG\n7da1g3MDZ0T4RrAIEJFasEdQDQmCgJVnV2J+5HxsGLgBA98ZKHUkIqrBWAiqmSfPnmBc8Dhcz7iO\nM35n0NSsqdSRiKiG49BQNXLxwUW4r3eHRS0LnBx7kkWAiETBHkE1sTluMz498imW91mOkY4jpY5D\nRFqEhUBiuQW5mHpwKiJvRkLhq0Cb+m2kjkREWoZDQxK6ln4NHTd2RFZ+FqLHR7MIEJEkWAgksufy\nHnT4pQP8XPywbfA2mBiYSB2JiLQUh4ZE9vKEcSE+IfCw9pA6EhFpORYCEXHCOCKqjkQfGsrLy4On\npyecnZ1hb2+PL774QuwIkngxYZxXCy9OGEdE1YokN6/PycmBkZERCgsL0alTJyxZsgSdOj2fU7+m\n3bxeKSgx//h8/BTzE7YO3soJ44hILTTu5vVGRkYAgPz8fBQVFcHc3FyKGGrHCeOISBNIUgiUSiVc\nXV1x7do1TJw4Efb29sWWBwYGqh7L5XLI5XJxA1aBM3fOYNjOYRjedjjmd58PPR0ejiGiqqNQKKBQ\nKKpkW5IMDb3w+PFj9OnTB4sWLVJ92Wv60JAgCFgVtQrzjs/jhHFEJBqNGxp6oU6dOujXrx9iYmI0\n8q/+f3ry7An8gv1wLeMaJ4wjIo0h+llDaWlpyMzMBADk5ubiyJEjcHFxETtGlXsxYZx5LXNOGEdE\nGkX0HkFKSgp8fX2hVCqhVCoxatQo9OjRQ+wYVerFhHHLei/DKKdRUschInojkh4jKIkmHSPIK8zD\nlANTEHkzEruG7uJcQUQkmcp8d3KuoQq6ln4NHX7pwAnjiEjjsRBUwN4rezlhHBHVGDy5/Q0UFBXg\niz+/wM7EnZwwjohqDBaCcuKEcURUU3FoqBz+vP4n3Ne7c8I4IqqR2CN4DaWgxILIBVgTvQa/Df4N\n3e26Sx2JiKjKsRCU4lHOI4zcMxLZ+dmcMI6IajQODZVAKSjR89eecLR0RIRvBIsAEdVovKCsFA+z\nH6KecT2pYxARlUtlvjtZCIiIagBeWUxERBXGQkBEpOVYCIiItBwLARGRlmMhICLSciwERERajoWA\niEjLsRAQEWk5FoJyUCgUUkd4RXXMBFTPXMxUPsxUftU1V0WJXghu376Nbt26oU2bNmjbti1Wrlwp\ndoQ3Vh3/0atjJqB65mKm8mGm8quuuSpK9NlH9fX1sXz5cjg7OyMrKwvt2rVDr1690Lp1a7GjEBER\nJOgRNGjQAM7OzgCA2rVro3Xr1rh3757YMYiI6H8knXQuOTkZXbt2RUJCAmrXrv08kEwmVRwiIo1W\n0a9zyW5Mk5WVhQ8++AArVqxQFQGg4r8IERFVjCRnDRUUFGDIkCEYOXIkvL29pYhARET/I/rQkCAI\n8PX1hYWFBZYvXy7mromIqASiF4ITJ06gS5cucHR0VB0PWLhwIfr27StmDCIi+h/Rh4Y6deoEpVKJ\nRYsWITc3F1lZWYiPj39lPYVCgTp16sDFxQUuLi6YN2+e2rONHTsWlpaWcHBwKHWdqVOnokWLFnBy\nckJsbKzkmaRop/JeCyJmW5Unk9htlZeXB09PTzg7O8Pe3h5ffPFFieuJ/ZkqTy4pPlcAUFRUBBcX\nFwwYMKDE5WK3VVmZpGgnW1tbODo6wsXFBR4eHiWu88btJEigsLBQaNasmXDjxg0hPz9fcHJyEhIT\nE4utc/ToUWHAgAGi5jp+/Lhw/vx5oW3btiUuDw0NFd577z1BEAThzJkzgqenp+SZpGinlJQUITY2\nVhAEQXj69KnQsmXLV/79xG6r8mSSoq2ys7MFQRCEgoICwdPTU4iMjCy2XIrPVHlySdFWgiAIS5cu\nFXx8fErct1Rt9bpMUrSTra2t8OjRo1KXV6SdJDlYHBUVhebNm8PW1hb6+voYPnw49u3b98p6gshn\nEHXu3BlmZmalLg8ODoavry8AwNPTE5mZmXjw4IGkmQDx26k814KI3VblvT5F7LYyMjICAOTn56Oo\nqAjm5ubFlkvxmSpPLkD8trpz5w7CwsLg5+dX4r6laKuyMgHSnOn4un1WpJ0kKQR3796FjY2N6nmj\nRo1w9+7dYuvIZDKcOnUKTk5O8PLyQmJiotgxX1FS7jt37kiYSPp2Sk5ORmxsLDw9PYu9LmVblZZJ\nirZSKpVwdnaGpaUlunXrBnt7+2LLpWqnsnJJ0VbTp0/H4sWLoaNT8teSFG1VViYp2kkmk6Fnz55w\nc3PD+vXrX1lekXaS5DqC8lw05urqitu3b8PIyAgHDhyAt7c3kpKSREj3ev+sxFJfACdlO5V2LcgL\nUrTV6zJJ0VY6OjqIi4vD48eP0adPHygUCsjl8mLrSNFOZeUSu61CQkJQv359uLi4vHYeHzHbqjyZ\npPhMnTx5ElZWVnj48CF69eqFVq1aoXPnzsXWedN2kqRHYG1tjdu3b6ue3759G40aNSq2jomJiar7\n+t5776GgoADp6emi5vynf+a+c+cOrK2tJUwkXTuVdS2IFG1VViYpP1N16tRBv379EBMTU+x1qT9T\npeUSu61OnTqF4OBg2NnZYcSIEYiIiMDo0aOLrSN2W5UnkxSfKSsrKwBAvXr1MGjQIERFRRVbXqF2\nqsxBi4oqKCgQmjZtKty4cUN49uxZiQeL79+/LyiVSkEQBOHs2bNCkyZNRMl248aNch0sPn36tGgH\nq16XSYp2UiqVwqhRo4RPPvmk1HXEbqvyZBK7rR4+fChkZGQIgiAIOTk5QufOnYXw8PBi60jxmSpP\nLqn+/wmCICgUCqF///6vvC7V/7/XZRK7nbKzs4UnT54IgiAIWVlZQseOHYVDhw4VW6ci7STJ0JCe\nnh5Wr16NPn36oKioCOPGjUPr1q3x888/AwD8/f2xc+dO/PTTT9DT04ORkRF27Nih9lwjRozAsWPH\nkJaWBhsbG3zzzTcoKChQZfLy8kJYWBiaN28OY2NjBAUFSZ5JinY6efIkfvvtN9UpbACwYMEC3Lp1\nS5VL7LYqTyax2yolJQW+vr5QKpVQKpUYNWoUevToUexzLsVnqjy5pPhcvezFUIbUbVVWJrHb6cGD\nBxg0aBAAoLCwEP/617/Qu3fvSreTpJPOERGR9HiHMiIiLcdCQESk5VgIiIi0HAsBEZGWYyEgKkVq\nair69ev3Ru+ZMWMGIiMj1ZSISD1YCIhKsXr1aowZM+aN3jNx4kQsXrxYPYGI1ISFgLRedHQ0nJyc\n8OzZM2RnZ6Nt27ZISEjAzp07VT2CTZs2wdvbG71794adnR1Wr16NJUuWwNXVFR06dEBGRgYAoEWL\nFkhOTkZmZqaUvxLRG2EhIK3n7u6OgQMH4t///jdmz56NUaNGoW7dutDV1VVNHwAACQkJ2LNnD6Kj\nozFnzhyYmpri/Pnz6NChA7Zs2aJaz8XFBadPn5biVyGqEMluXk9UncydOxdubm6oVasWVq1ahaio\nKNWcLsDzq0q7desGY2NjGBsb4+2331bdqMTBwQEXLlxQrduwYUMkJyeL/SsQVRgLARGAtLQ0ZGdn\no6ioCLm5uQBencHRwMBA9VhHR0f1XEdHB4WFhaplgiBIPist0Zvg0BARns/RMm/ePPj4+GD27Nmw\ntbXF/fv3VctfNxPLP5elpKTA1tZWXVGJqhx7BKT1tmzZAgMDAwwfPhxKpRIdO3ZEYmIiCgsLkZOT\nAyMjI8hksmJ/5f/z8cvPY2NjS72PM1F1xEnniEoRGBiI1q1bY9iwYeV+T1JSEj799FMEBwerMRlR\n1eLQEFEpJk+ejM2bN7/Re9auXYvPPvtMTYmI1IM9AiIiLcceARGRlmMhICLSciwERERajoWAiEjL\nsRAQEWk5FgIiIi33f5w+Vkc37U5LAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x4e36b10>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Total Drag =  0.595 N\n"
     ]
    }
   ],
   "source": [
    "# Sketch the boundary layer and drag on the plate\n",
    "\n",
    "import numpy as np\n",
    "\n",
    "from math import *\n",
    "\n",
    "from __future__ import division\n",
    "\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "from numpy import sqrt\n",
    "\n",
    "# Given\n",
    "\n",
    "rho = 1.197               # air density in kg/m**3\n",
    "\n",
    "mu = 18.22*10**-6         # viscosity in Ns/m**2\n",
    "\n",
    "l = 5                     # length of the plate\n",
    "\n",
    "V = 8                     # velocity in m/s\n",
    "\n",
    "Rec = 5*10**5              # crictical reynolds number\n",
    "\n",
    "l1 = 0.951                # length from 0 to 0.951\n",
    "\n",
    "l2 = 5.0                  # length from 0 to 5\n",
    "\n",
    "l3 = 0.951                # length from 0 to 0.951\n",
    "\n",
    "# Solution\n",
    "\n",
    "X = Rec/525576\n",
    "\n",
    "x = [0,0.1,0.3,0.6,0.951];\n",
    "\n",
    "d = 0.0069*np.sqrt(x)*100\n",
    "\n",
    "plt.figure()\n",
    "plt.plot(x, d, 'r')\n",
    "plt.xlabel('x(m)')\n",
    "plt.ylabel('delta(cm)')\n",
    "plt.title('delta v/s x')\n",
    "plt.legend('L')\n",
    "plt.show()\n",
    "\n",
    "X1 = [0.951,1.5,2.0,2.5,3.0,4.0,5.0]\n",
    "\n",
    "Dt = 0.0265*np.power(X1,(4/5))*100\n",
    "\n",
    "plt.figure()\n",
    "plt.plot(X1, Dt, 'g')\n",
    "plt.xlabel('x(m)')\n",
    "plt.ylabel('delta(cm)')\n",
    "plt.title('delta v/s x')\n",
    "plt.legend('T')\n",
    "plt.show()\n",
    "\n",
    "Td = 0.664*sqrt(mu*rho*V**3*l1)+0.036*rho*V**2*l2*(mu/(rho*V*l2))**0.2-0.036*rho*V**2*l3*(mu/(rho*V*l3))**0.2\n",
    "\n",
    "print \"Total Drag = \",round(Td,3),\"N\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Example 7.5 Page no 270"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Drag on the sphere =  0.0043 N\n"
     ]
    }
   ],
   "source": [
    "# Determine drag on the sphere\n",
    "\n",
    "from math import *\n",
    "\n",
    "from pylab import plt\n",
    "\n",
    "from __future__ import division\n",
    "\n",
    "# Given\n",
    "\n",
    "d = 0.01         # doameter of sphere in m\n",
    "\n",
    "v = 0.05         # velocity in m/s\n",
    "\n",
    "S = 1.26         # specific gravity\n",
    "\n",
    "mu = 0.826       # kinematic viscosity in Ns/m**2\n",
    "\n",
    "rho = S*1000     # density\n",
    "\n",
    "# Solution\n",
    "\n",
    "R = rho*v*d/mu\n",
    "\n",
    "# for the above rho\n",
    "\n",
    "Cd = 35\n",
    "\n",
    "Fd = 0.5*Cd*rho*v**2*pi*d**2/4\n",
    "\n",
    "print \"Drag on the sphere = \",round(Fd,4),\"N\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 2",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}