{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Chapter 12: Turbomachines" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 12.1 Page no 443" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Efficiency of th pump = 74.0 %\n" ] } ], "source": [ "# Example 12.1\n", "\n", "from math import *\n", "\n", "from __future__ import division\n", "\n", "# Given\n", "\n", "Q = 0.25 # discharge from the pump in m**3/s\n", "\n", "gma= 0.8*9810 # specific weight in kg/m**3\n", "\n", "H=25 # elevation head in m\n", "\n", "T = 350 # Torque to drive the shaft in Nm\n", "\n", "N = 1800 # Speed in RPM\n", "\n", "w = 2*pi*N/60 # angular velocity\n", "\n", "# Solution\n", "\n", "Eff = gma*Q*H*100/(T*w) # efficiency\n", "\n", "print \"Efficiency of th pump =\",round(Eff,0),\"%\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 12.2 Page no 447" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " (a)\n", "Radial velocity at exit = 10.6 m/s\n", "Whirl velocity = 25.3 m/s\n", "Relative velocity = 12.25 m/s\n", "Actual velocity = 27.43 m/s\n", "(b)\n", "Head added for no inlet whirl = 81.0 m\n", "(c)\n", "Power required = 317.8 kW\n" ] } ], "source": [ "# Example 12.2\n", "\n", "from math import *\n", "\n", "from __future__ import division\n", "\n", "# Given\n", "\n", "d = 0.4 # diameter of the pump in m\n", "\n", "b = 0.03 # width in m\n", "\n", "theta = pi/3 # blade angle\n", "\n", "N = 1500 # speed in RPM\n", "\n", "Q = 0.4 # flow rate in m**3/s\n", "\n", "g = 9.81 # acceleration due to gravity in m/s**2\n", "\n", "# Solution\n", "\n", "w = 2*pi*N/60 # anggular velocity in rad/s\n", "\n", "u2 = (d/2)*w # blade velocity in m/s\n", "\n", "V2r = Q/(2*pi*(d/2)*b) # relative velocity in m/s\n", "\n", "print \"(a)\"\n", "\n", "print \"Radial velocity at exit =\",round(V2r,1),\"m/s\"\n", "\n", "V2t = u2 - V2r*(cos(theta)/sin(theta))\n", "\n", "print \"Whirl velocity = \",round(V2t,1),\"m/s\"\n", "\n", "v2 = V2r/sin(theta)\n", "\n", "print \"Relative velocity = \",round(v2,2),\"m/s\"\n", "\n", "V2 = sqrt(V2t**2+V2r**2)\n", "\n", "print \"Actual velocity =\",round(V2,2),\"m/s\"\n", "\n", "print \"(b)\"\n", "\n", "H = u2*V2t/g\n", "\n", "print\"Head added for no inlet whirl =\",round(H,0),\"m\"\n", "\n", "print \"(c)\"\n", "\n", "P = g*Q*H\n", "\n", "print \"Power required =\",round(P,1),\"kW\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 12.3 Page no 450" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Impeller size = 38.45 cm\n", "Speed of the pump = 1500.0 RPM\n" ] } ], "source": [ "# Example 12.3\n", "\n", "from math import *\n", "\n", "from __future__ import division\n", "\n", "# Given\n", "\n", "d = 0.36 # diameter of the impeller of pump\n", "\n", "N = 1500 # Speed of impeller in RPM\n", "\n", "# Solution\n", "\n", "# For best efficiency\n", "\n", "Q1 = 82 # discharge in l/s\n", "\n", "H1 = 17.5 # Head in m\n", "\n", "Eta = 0.8 # efficiency \n", "\n", "Q2 = 100 # discharge in l/s\n", "\n", "H2 = 20 # head in m\n", "\n", "# Solving the simulataneous equation we get\n", "\n", "D2 = 38.45\n", "\n", "print \"Impeller size =\",round(D2,2),\"cm\"\n", "\n", "N2 = 1500 \n", "\n", "print \"Speed of the pump =\",round(N2,0),\"RPM\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 12.4 Page no 454 " ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Discharge, Q = 1.11 ft**3/s\n", "Dynamic head of the pump, H = 122.1 m\n", "Specific speed of the pump, Ns = 1096.0 RPM\n" ] } ], "source": [ "# Example 12.4\n", "\n", "from math import *\n", "\n", "from __future__ import division\n", "\n", "# Given\n", "\n", "q = 500 # discharge in cgm\n", "\n", "Q = 500/449 # discharge in ft**3/s\n", "\n", "D = 0.667 # diameter in ft\n", "\n", "A = pi*D**2/4\n", "\n", "V = Q/A # velocity in ft/s\n", "\n", "g = 32.2 # acceleration due to gravity in ft/s**2\n", "\n", "N = 1800 # speed in RPM\n", "\n", "# Solution\n", "\n", "# for water at 65 deg C\n", "\n", "nu = 1.134*10**-5 # viscosity in ft**2/s\n", "\n", "e = 0.00085 # epssilon in ft\n", "\n", "r = 0.001275 \n", "\n", "R = V*D/nu # reynolds no\n", "\n", "f = 0.022 # from moody's diagram\n", "\n", "Hl = V**2*(12.1+(f*224.9))/64.4\n", "\n", "hs = 119.4 + Hl\n", "\n", "print \"Discharge, Q = \",round(Q,2),\"ft**3/s\"\n", "print \"Dynamic head of the pump, H =\",round(hs,1),\"m\"\n", "\n", "Ns = N*sqrt(q)/(hs)**(3/4)\n", "\n", "print \"Specific speed of the pump, Ns =\",round(Ns,0),\"RPM\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 12.5 Page no 457" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Minimum value of static suction lift = 4.02 m\n" ] } ], "source": [ "# Example 12.5 \n", "\n", "from math import *\n", "\n", "from __future__ import division\n", "\n", "# Given\n", "\n", "H = 60 # height in m\n", "\n", "Pb = 98*10**3 # barometric pressure in N/m**2\n", "\n", "Hl = 1 # head in m\n", "\n", "Pv = 1707 # vapour pressure \n", "\n", "sigma = 0.08\n", "\n", "w = 9810 # specific weight\n", "\n", "# Solution\n", "\n", "Npsh_m = sigma*60 # minimum NPSH\n", "\n", "Hsm = (Pb/w)-(Pv/w)-Npsh_m-Hl\n", "\n", "print \"Minimum value of static suction lift = \",round(Hsm,2),\"m\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.3" } }, "nbformat": 4, "nbformat_minor": 0 }