{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Chapter 4 : Fluid Dynamics" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 4.1 Page no 159" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Difference in pressure in section 1 and 2 = 1157.0 kN/m**2\n" ] } ], "source": [ "# Difference in pressure at top and bottom\n", "\n", "from math import *\n", "\n", "from __future__ import division\n", "\n", "# Given\n", "\n", "d1 = 0.1 # diameter in m\n", "\n", "d2 = 0.05 # diameter in m\n", "\n", "Q = 0.1 # discharge in m**3/s\n", "\n", "A1 = pi*d1**2/4\n", "\n", "A2 = pi*d2**2/4\n", "\n", "gma =9810 # specific weight\n", "\n", "z= 6 # difference in the height\n", "\n", "g = 9.81\n", "\n", "# Solution\n", "\n", "V1 = Q/A1 # velocity at section 1\n", "\n", "V2 = Q/A2 # velocity at section 2\n", "\n", "dP = gma*((V2**2/(2*g))-(V1**2/(2*g))-z)/1000\n", "\n", "print \"Difference in pressure in section 1 and 2 = \",round(dP,1),\"kN/m**2\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 4.2 Page no 160" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Actual discharge = 2.0 l/s\n" ] } ], "source": [ "# Actual discharge\n", "\n", "from math import *\n", "\n", "from __future__ import division\n", "\n", "# Given\n", "\n", "d = 2.5 # diameter in cm\n", "\n", "h =200 # head in cm\n", "\n", "Cd = 0.65 # coefficient of discharge\n", "\n", "A =pi*d**2/4\n", "\n", "g = 9.81 # acceleration due to gravity in m/s**2 \n", "\n", "# Solution\n", "\n", "Q = Cd*A*sqrt(2*g*h)/100\n", "\n", "print \"Actual discharge =\",round(Q,2),\"l/s\"\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 4.3 Page no 162" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Discharge through the orifice = 2.69 m**3/s\n" ] } ], "source": [ "# Discharge through the orifice\n", "\n", "from __future__ import division\n", "\n", "from math import *\n", "\n", "from scipy import integrate\n", "\n", "import numpy as np\n", "\n", "# Given\n", "\n", "H1 = 3 # height in m\n", "\n", "H2 = 4 # height in m\n", "\n", "b = 0.5 # width in m\n", "\n", "Cd = 0.65 # co-efficient of discharge \n", "\n", "g = 9.81 # acceleration due to grvity in m/s**2\n", "\n", "# Solution\n", "\n", "q = lambda h: h**(1/2)\n", " \n", "Q,err = integrate.quad(q, H1, H2)\n", "\n", "Qt = Cd*b*sqrt(2*g)*Q\n", "\n", "print \"Discharge through the orifice =\",round(Qt,2),\"m**3/s\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 4.4 Page no 163" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Total Discharge = 1.95 m**3/s\n" ] } ], "source": [ "# discharge through orifice\n", " \n", "from math import *\n", "\n", "from scipy import integrate\n", "\n", "from __future__ import division\n", "\n", "import numpy as np\n", "\n", "# Given\n", "\n", "b = 1 # bredth of the tank\n", "\n", "d = 0.5 # depth of the tank\n", "\n", "h1 = 0.2 # height of the orifice in m\n", "\n", "Cd = 0.6 # coefficient of discharge\n", "\n", "H1 = 2 # height in m\n", "\n", "H2 = 2+h1 # height in m\n", "\n", "g = 9.81 # acceleration due to gravity in m/s**2\n", "\n", "A = 1*0.3 # area of submerged section in m**2\n", "\n", "# Solution\n", "\n", "q = lambda h: h**(1/2)\n", " \n", "Q,err = integrate.quad(q, H1, H2)\n", "\n", "Q1 = Cd*b*sqrt(2*g)*(Q) # Flow through area 1\n", "\n", "Q2 = Cd*sqrt(2*g*H2)*A\n", "\n", "Td = Q1+Q2\n", "\n", "print \"Total Discharge =\",round(Td,2),\"m**3/s\"\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 4.5 Page no 165" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Actual discharge = 0.000454 m**3/s\n" ] } ], "source": [ "# Determine flow rate of water\n", "\n", "from math import *\n", "\n", "from __future__ import division\n", "\n", "# Given\n", "\n", "d1 = 2 # radius of pipe\n", "\n", "d2 = 1 # radius of throat\n", "\n", "D1 = 40\n", "\n", "D2 = 20\n", "\n", "A1 = pi*D1**2/4\n", "\n", "A2 = pi*D2**2/4\n", "\n", "Cd = 0.95\n", "\n", "# Solution\n", "\n", "V2 = sqrt(21582/0.9375)\n", "\n", "Q = 1.52*pi*(d1/100)**2/4\n", "\n", "Qa = Q*Cd\n", "\n", "print \"Actual discharge =\",round(Qa,6),\"m**3/s\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 4.6 Page no 166" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "velocity at the dept of 1 ft = 5.67 ft/s\n" ] } ], "source": [ "# Velocity of stream point at the point of insertion\n", "\n", "from math import *\n", "\n", "from __future__ import division\n", "\n", "# Given\n", "\n", "dx = 0.5 # in ft\n", "\n", "K = 1 # constant\n", "\n", "g = 32.2 # acceleration due to gravity in ft/s**2\n", "\n", "# solution\n", "\n", "V = sqrt(2*g*dx)\n", "\n", "print \"velocity at the dept of 1 ft =\",round(V,2),\"ft/s\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example no 4.7 Page no 172" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Discharge throught the system = 190.0 l/s\n" ] } ], "source": [ "# Discharge throught the system\n", "\n", "from math import *\n", "\n", "from __future__ import division\n", "\n", "gma= 0.8 # specific weight\n", "\n", "V2 = 40 # velocity in m/s\n", "\n", "z1 =25 # height at point 1\n", "\n", "g = 9.81 # acceleration due to gravity in m/s**2\n", "\n", "d = 15 # diameter of the nozzle in cm\n", "\n", "# Solution\n", "\n", "V2 = sqrt(2*g*z1/4.25)\n", "\n", "A = pi*(d/100)**2/4\n", "\n", "Q = A*V2*1000\n", "\n", "print \"Discharge throught the system =\",round(Q,0),\"l/s\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 4.8 Page no 174" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Power input = 32.5 kW\n" ] } ], "source": [ "# Power input to the pump\n", "\n", "from math import *\n", "\n", "from __future__ import division\n", "\n", "\n", "# Given\n", "\n", "Eff = 0.8 # pump efficiency\n", "\n", "Hl = 30 # head loss in m\n", "\n", "D1 =6 # diameter in cm\n", "\n", "D2 = 2 # diameter in cm\n", "\n", "gma = 9810 # specific weight in N/m**3\n", "\n", "V2 = 40 # velocity in m/s\n", "\n", "P1 = -50 # pressure at point 1 in N/m**2\n", "\n", "z2 = 100 # height at point 2\n", "\n", "g = 9.8 # acceleration due to gravity in m/s**2\n", "\n", "z1 = 30 # height in m\n", "\n", "# Solution\n", "\n", "V1=(2/6)**2*V2\n", "\n", "Q = (pi*6**2/4)*V1*10**-4\n", "\n", "Hs = z2 + (V2**2/(2*g)) + z1 + (50/gma) -(V1**2/(2*g))\n", "\n", "P = gma*Q*Hs\n", "\n", "Pi = (P/Eff)/1000\n", "\n", "print \"Power input = \",round(Pi,1),\"kW\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example 4.9 Page no 176" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Elevation at height A = 492.39 m\n", "Elevation at height B = 576.23 m\n" ] } ], "source": [ "# Pressure head at A and B\n", "\n", "from math import *\n", "\n", "# Given\n", "\n", "Q = 0.2 # discharge in m**3/s\n", "\n", "d1 = 0.25 # diameter of the pipe in m\n", "\n", "A = pi*d1**2/4 # area of the pipe\n", "\n", "za = 480 # height in m\n", "\n", "z1 = 500 # height in m\n", "\n", "z3 = 550 # elevation in m\n", "\n", "gma =9810 # specific weight in N/m**2\n", "\n", "g =9.81 # acceleration due to gravity in m/s**2\n", "\n", "# Solution\n", "\n", "V=Q/A # Velocity of in m/s\n", "\n", "Hl1 = (0.02*100*V**2/(0.25*2*9.81))\n", "\n", "# pressure head at A\n", "\n", "Pa =(z1-za-(V**2/(2*g))-Hl1)\n", "\n", "El = za+Pa\n", "\n", "print \"Elevation at height A =\",round(El,2),\"m\"\n", "\n", "# pressure head at B\n", "\n", "hs = z3 - z1 + (0.02*(500/0.25)*(V**2/(2*g))) \n", "\n", "El2 = El+hs\n", "\n", "print \"Elevation at height B =\",round(El2,2),\"m\"\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.3" } }, "nbformat": 4, "nbformat_minor": 0 }