{ "metadata": { "name": "", "signature": "sha256:0b768eee327c152542090a0f937dd89a2c22ad814a4f647a6c9e07a61c4c86d1" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 7 : Flow Through Open Channels" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.1 Page No : 140" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "b = 6. # m width\n", "i = 1./1000 # slope\n", "d = 2. # m, depth of water\n", "C = 50 # Constant \n", "\n", "# Calculations \n", "A = b*d\n", "m = A/(b+2*d)\n", "Q = A*C*((i*m)**0.5)\n", "\n", "# Results \n", "print \"flow rate assuming chezys consmath.tant eqaul to 50 in m3/sec\",round(Q,4)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "flow rate assuming chezys consmath.tant eqaul to 50 in m3/sec 20.7846\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.2 Page No : 140" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "b = 5. #m wide\n", "d = 3. #m deep\n", "i = 1./1000 #slope \n", "C = 55. #constant\n", "\n", "# Calculations \n", "A = b*d\n", "m = A/(b+2*d)\n", "Q = A*C*((i*m)**0.5)\n", "v = Q/A\n", "\n", "# Results \n", "print \"flow rate assuming chezys constant eqaul to 55 in m3/sec & velocity of flow in m/sec : \",v,Q\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "flow rate assuming chezys constant eqaul to 55 in m3/sec & velocity of flow in m/sec : 2.03100960116 30.4651440174\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.3 Page No : 141" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "b = 2.5 #m wide\n", "d = 2.5 #m depth\n", "C = 56. #constant\n", "A = b*(7.5+d)*0.5\n", "\n", "# Calculations \n", "P = 2.5+((b*b+d*d)**0.5)*2\n", "m = A/P\n", "i = 1./1200\n", "Q = A*C*((m*i)**0.5)\n", "\n", "# Results \n", "print \"the diacharge through the channel in litres/sec\",round((Q*1000),4)\n", "\n", "# note : rounding off error." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the diacharge through the channel in litres/sec 23093.0995\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.4 Page No : 142" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "\n", "# Variables\n", "b = 3.5 #m, width\n", "i = 1./1000 # slope\n", "d = 1.5 #m, depth of flow\n", "C = 60. # degree C\n", "y = 60. #Constant\n", "\n", "# Calculations \n", "x = 1.5/math.tan(math.radians(y))\n", "w = b+x*2\n", "A = (w+b)*0.5*d\n", "P = b+2*((x*x+d*d)**0.5)\n", "m = A/P\n", "Q = A*C*((m*i)**0.5)\n", "\n", "# Results \n", "print \"discharge carried by the canal in litres/sec : %.2f\"%(Q*1000)\n", "\n", "# note : rounding off error.\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "discharge carried by the canal in litres/sec : 12049.94\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.5 Page No : 142" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "b = 9. #m, width\n", "i = 1./3000 #slope \n", "d = 1.2 #m, water depth\n", "\n", "# Calculations \n", "w = b+d\n", "A = (w+b)*0.5*d\n", "P = b+2*((d*d+d*d*0.25)**0.5)\n", "m = A/P\n", "C = 50.\n", "V = C*((m*i)**0.5)\n", "Q = V*A\n", "\n", "# Results \n", "print \"average velocity of flow, rate of flow\",round(V,7),round((Q*1000),3)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "average velocity of flow, rate of flow 0.9064695 10442.529\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.6 Page No : 143" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "Q = 0.1 \n", "b = 0.6 #m, width\n", "C = 56 # constant\n", "d = 0.3 #m, depth of flow\n", "\n", "# Calculations \n", "a = b*d\n", "v = Q/a\n", "p = b+2*d\n", "m = a/p\n", "i = (v*v)/(C*C*m)\n", "k = a*C*(m**0.5)\n", "\n", "# Results \n", "print \"bottom slope neccessary for uniform flow,conveyance of the channel section\",round(i,7),round(k,7)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "bottom slope neccessary for uniform flow,conveyance of the channel section 0.0006561 3.9039672\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.7 Page No : 144" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "i = 1./1000 #slope\n", "d = 1.5 #m, depth of water\n", "Cd = 0.55 #co-effient\n", "a = d*d\n", "C = 40. # constant\n", "g = 9.81\n", "\n", "# Calculations \n", "m = d\n", "Q = a*C*((d*i)**0.5)\n", "H = (3*Q/(Cd*2*((2*g)**0.5)))**0.4\n", "height = d+3-H\n", "\n", "# Results \n", "print \"height of the dam in m\",round(height,3)\n", "\n", "# note : book answer is wrong. kindly check." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "height of the dam in m 3.143\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.8 Page No : 145" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "b = 1.4 #m, width\n", "d = 1.4 #m, depth\n", "n = 1./4 # side slope \n", "i = 1./700 #bad slope\n", "\n", "# Calculations \n", "N = 0.025\n", "a = d*(b+(n*d))\n", "p = b+(2*d*((n*n+1)**0.5))\n", "m = a/p\n", "q = (a*(m**0.6666)*(i**0.5))/N\n", "\n", "# Results \n", "print \"discharge from the trapezoidal channel in litres/sec\",round((q*1000),3)\n", "\n", "# note : rounding off error." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "discharge from the trapezoidal channel in litres/sec 2551.276\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.9 Page No : 146" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "Q = 0.3 #m**3/s rate\n", "D = 1.5 #m diameter\n", "N = 0.02 #N \n", "A = 3.142*D*D/(4*2)\n", "p = 3.142*D/2\n", "\n", "# Calculations \n", "m = A/p\n", "i = ((Q*N)/(A*(m**0.6666)))**2\n", "\n", "# Results \n", "print \"the slope of the sewer\",round(i,7)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the slope of the sewer 0.0001705\n" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.10 Page No : 147" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "D = 2.4 #m diameter\n", "d = 1.5 #m, depth of water \n", "i = 1./1500 #gradient \n", "N = 0.02 # N Manning formula\n", "\n", "# Calculations \n", "a = (d-(D/2))/(D/2)\n", "z = math.degrees(math.acos(a))\n", "z1 = math.radians(180 - z)\n", "P = D*z1\n", "A = D*D*0.25*(z1-(math.sin(2*z1)/2))\n", "m = A/P\n", "Q = (A*(m**0.6666)*(i**0.5))/N\n", "\n", "# Results \n", "print \"the discharge through the sewer in m**3/s : %.5f\"%Q\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the discharge through the sewer in m**3/s : 2.96839\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.11 Page No : 148" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "b = 1.5 #m, wide\n", "d = 0.8 #m, depth\n", "Q = 0.75 #m**3/s\n", "i = 1./2500 #slope \n", "\n", "# Calculations \n", "A = b*d\n", "P = b+(2*d)\n", "m = A/P\n", "C = Q/(((m*i)**0.5)*A)\n", "z = (157.6/C)-1.81\n", "K = z*(m**0.5)\n", "\n", "# Results \n", "print \"Chezys constant and coefficient of roughness\",round(C,2),round(K,3)\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Chezys constant and coefficient of roughness 50.23 0.826\n" ] } ], "prompt_number": 12 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.12 Page No : 149" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "b = 10. #m wide\n", "d = 4. #m, depth of water\n", "i = 1./1000 #slope\n", "N = 0.03 #N Kutter's fprmula\n", "\n", "# Calculations \n", "A = b*d\n", "P = b+(2*d)\n", "m = A/P\n", "z1 = 23+(0.00155/i)+(1/N)\n", "z2 = 1+((23+(0.00155/i))*(N/(m**0.5)))\n", "C = z1/z2\n", "Q = A*C*((m*i)**0.5)\n", "\n", "# Results \n", "print \"discharge through the recmath.tangular channel in litres/sec\",round((Q*1000),3)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "discharge through the recmath.tangular channel in litres/sec 73053.236\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.13 Page No : 150" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "b = 4. #m wide\n", "d = 1.5 #m, depth of water\n", "i = 1./1000 #slope\n", "C = 55. # constant\n", "\n", "# Calculations and Results\n", "A = b*d\n", "P = b+(2*d)\n", "m = A/P\n", "Q = A*C*((m*i)**0.5)\n", "d1 = (A/2)**0.5\n", "b1 = d1*2\n", "print \"the new dimension of the channel\",round(b1,3),round(d1,3)\n", "\n", "P1 = b1+(2*d1)\n", "m1 = A/P1\n", "Q1 = A*C*((m1*i)**0.5)\n", "Qf = Q1-Q\n", "print \"increase in discharge in m3/sec\",round(Qf,3)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the new dimension of the channel 3.464 1.732\n", "increase in discharge in m3/sec 0.05\n" ] } ], "prompt_number": 14 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.14 Page No : 151" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "i = 1./2500 #slope\n", "N = 0.02 # N, Manning's formula \n", "Q = 14. #m**3/s\n", "\n", "# Calculations \n", "n = 1./(math.radians(math.tan(60)))\n", "a = (3**0.5)\n", "d = ((Q*N*(2**0.6666))/((i**0.5)*a))**(3./8)\n", "b = d*2/(3**0.5)\n", "\n", "# Results \n", "print \"dimension of the channel\",round(b,4),round(d,4)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "dimension of the channel 3.0065 2.6037\n" ] } ], "prompt_number": 15 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.15 Page No : 152" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "Q = 20.2 #m**3/s\n", "i = 1./2500 #slope\n", "C = 60. #Constant \n", "\n", "# Calculations \n", "n = 1./(math.radians(math.tan(60)))\n", "a = (3**0.5)\n", "d = ((Q*(2**0.5))/(C*a*(i**0.5)))**0.4\n", "b = 2*d/(a)\n", "\n", "# Results \n", "print \"dimension of the cross section in m\",round(b,4),round(d,4)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "dimension of the cross section in m 3.294 2.8527\n" ] } ], "prompt_number": 17 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.16 Page No : 153" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "Q = 10. #m**3/s\n", "V = 2. #m/s, velocity\n", "A = Q/V \n", "n = 1. #m length \n", "\n", "# Calculations \n", "d = (A/1.828)**0.5\n", "b = 0.828*d\n", "A1 = (b+(2*d*((n*n+1)**0.5)))\n", "print \"area in m2 of lining required for 1m canal lenght\",round(A1,3)\n", "\n", "# note : rounding off error." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "area in m2 of lining required for 1m canal lenght 6.047\n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.17 Page No : 154" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "n = 1. \n", "Q = 14. #m**3/s\n", "i = 1./1000 #slope\n", "C = 44. #constant\n", "a = 1.828 \n", "\n", "# Calculations \n", "d = ((Q*(2**0.5))/(C*a*(i**0.5)))**0.4\n", "b = d*0.828\n", "cost = (b+n*d)*4\n", "A = 1.828*d*d\n", "C1 = 70.\n", "d1 = ((Q*(2**0.5))/(C1*a*(i**0.5)))**0.4\n", "b1 = 0.828*d1\n", "cost1 = (b1+n*d1)*4\n", "costl = (b1+(2*d1*((n*n+1)**0.5)))\n", "totalcost = cost1+costl\n", "\n", "# Results \n", "print \"lined channel is cheaper ,dimension in m\",round(b1,4),round(d1,3)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "lined channel is cheaper ,dimension in m 1.5626 1.887\n" ] } ], "prompt_number": 19 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.18 Page No : 156" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "d = 1.2 #m diameter\n", "i = 1./1500 #slope \n", "C = 52. #constant\n", "z = 1.9-1./1 \n", "\n", "# Calculations \n", "z1 = math.acos(z)\n", "x = math.pi-z1\n", "A = d*d*0.25*(x-(math.sin(2*x)/2))\n", "P = d*x\n", "m = A/P\n", "Q = A*C*((m*i)**0.5)\n", "\n", "# Results \n", "print \"the maximium discharge through the channel in litres/sec\",round((Q*1000),3)\n", "\n", "# note : rounding off error." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "the maximium discharge through the channel in litres/sec 873.637\n" ] } ], "prompt_number": 21 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }