{ "metadata": { "name": "", "signature": "sha256:0b5d1bccf0455332d8d5a07c9417496fa58f8299e63a3ce7cb14b721d96c210d" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 12 : Reaction Turbine" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.1 Page No : 250" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "D1 = 0.6\n", "D2 = 0.3\n", "x2 = 90.\n", "B1 = 0.15\n", "N = 300./60\n", "x1 = 15.\n", "Vf1 = 3.\n", "\n", "# Calculations \n", "Vf2 = Vf1\n", "u1 = math.pi*D1*N\n", "u2 = math.pi*D2*N\n", "Vw1 = Vf1/math.tan(math.radians(x1))\n", "y1 = math.tan(math.radians(Vf1/(Vw1-u1)))\n", "Q = math.pi*D1*B1*Vf1\n", "w = 9810\n", "g = 9.81\n", "P = w*Q*Vw1*u1/(g*1000)\n", "\n", "# Results \n", "print \"blade angles, Power developed in Kw\",round(y1,4),round(P,4)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "blade angles, Power developed in Kw 0.0296 89.5063\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.2 Page No : 251" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "# Variables\n", "D1 = 1.\n", "N = 200./60\n", "B1 = 0.15\n", "Vf1 = 3.\n", "Vf2 = Vf1\n", "x2 = 90.\n", "\n", "# Calculations \n", "Q = 3.142*D1*B1*Vf1\n", "u1 = 3.142*D1*N\n", "Vw1 = u1\n", "w = 9810\n", "g = 9.81\n", "P = (w*Q*Vw1*u1)/(g*1000)\n", "H = (Vw1*u1/g)+(Vf2*Vf2/(2*g))\n", "nh = Vw1*u1/(g*H)\n", "\n", "\n", "# Results \n", "print \"power developed in Kw,hydraulic efficiency\",round(P,3),round((nh*100),0),\"%\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "power developed in Kw,hydraulic efficiency 155.092 96.0 %\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.3 Page No : 253" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "D1 = 0.75\n", "D2 = 0.5\n", "x1 = 20.\n", "Vf1 = 3.\n", "Vf2 = 3.\n", "B1 = 0.15\n", "N = 250./60\n", "\n", "# Calculations \n", "u1 = math.pi*D1*N\n", "u2 = math.pi*D2*N\n", "Vw1 = Vf1/math.tan(math.radians(x1))\n", "y1 = math.degrees(math.atan(Vf1/(u1-Vw1)))\n", "y2 = math.degrees(math.atan(Vf2/u2))\n", "Q = 3.142*D1*B1*Vf1\n", "w = 9810\n", "g = 9.81\n", "P = w*Q*Vw1*u1/(g*1000)\n", "H = (Vw1*u1/g)+(Vf2*Vf2/(2*g))\n", "nh = Vw1*u1/(g*H)\n", "\n", "# Results \n", "print \"hydraulic efficiency : %.2f %% \\\n", "\\npower developed in Kw : %.2f \\\n", "\\nblade angle at inlet and outlet : %.3f and %.3f\"%(nh*100,P,y1,y2)\n", "\n", "# note : rounding off error." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "hydraulic efficiency : 94.73 % \n", "power developed in Kw : 85.81 \n", "blade angle at inlet and outlet : 62.300 and 24.625\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.4 Page No : 254" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "H = 150.\n", "Q = 6.\n", "N = 400./60\n", "D1 = 1.2\n", "x1 = 20.\n", "x2 = 90.\n", "B1 = 0.1\n", "\n", "# Calculations \n", "u1 = math.pi*D1*N\n", "Vf1 = Q/(math.pi*D1*B1)\n", "Vw1 = Vf1/math.tan(math.radians(x1))\n", "Vw2 = 0\n", "w = 9810\n", "g = 9.81\n", "P = w*Q*Vw1*u1/(g*1000)\n", "\n", "# Results \n", "print \"whirl component at inlet and outlet m/s : %.5f and %d \\\n", "\\npower developed in Kw : %.4f\"%(round(Vw1,5),Vw2,round(P,4))\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "whirl component at inlet and outlet m/s : 43.72746 and 0 \n", "power developed in Kw : 6593.9458\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.5 Page No : 256" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "D1 = 0.76\n", "D2 = 0.5\n", "x1 = 20.\n", "Vf1 = 4.\n", "Vf2 = Vf1\n", "B1 = 0.15\n", "N = 300./60\n", "\n", "# Calculations \n", "u1 = math.pi*D1*N\n", "u2 = math.pi*D2*N\n", "Vw1 = Vf1/math.tan(math.radians(x1))\n", "y1 = math.degrees(math.atan(Vf1/(u1-Vw1)))\n", "y2 = math.degrees(math.atan(Vf2/u2))\n", "Q = 3.142*D1*B1*Vf1\n", "w = 9810.\n", "g = 9.81\n", "P = w*Q*Vw1*u1/(g*1000)\n", "\n", "# Results \n", "print \"blade angle at inlet and outlet : %.2f and %.2f \\\n", "\\npower developed in Kw : %.2f\"%(y1,y2,P)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "blade angle at inlet and outlet : 76.66 and 26.99 \n", "power developed in Kw : 187.97\n" ] } ], "prompt_number": 13 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.6 Page No : 257" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "no = 0.8\n", "P = 147.*1000\n", "H = 10.\n", "g = 9.81\n", "\n", "# Calculations \n", "u1 = 0.95*(math.sqrt(2*g*H))\n", "Vf1 = 0.3*(math.sqrt(2*g*H))\n", "N = 160./60\n", "Vw2 = 0\n", "nh = (H-(0.2*H))/H\n", "Vw1 = nh*g*H/u1\n", "x1 = math.degrees(math.atan(Vf1/Vw1))\n", "y1 = math.degrees(math.atan(Vf1/(u1-Vw1)))\n", "D1 = u1/(math.pi*N)\n", "w = 9810.\n", "p = 147.*1000\n", "Q = p/(w*H*no)\n", "B1 = Q/(math.pi*D1*Vf1)\n", "\n", "# Results \n", "print \"guide blade angle : %.4f degrees \\\n", "\\nwheel vane angle : %.4f degrees \\\n", "\\ndiameter of wheel : %.7f m**3/s \\\n", "\\nwidth of wheel at inlet in cm : %.2f\"%(x1,y1,D1,B1*100)\n", "\n", "# note : rounding off error." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "guide blade angle : 35.4699 degrees \n", "wheel vane angle : 29.5604 degrees \n", "diameter of wheel : 1.5883803 m**3/s \n", "width of wheel at inlet in cm : 8.93\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.7 Page No : 259" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "sp = 25.*(10**6)\n", "H = 40.\n", "no = 0.9\n", "P = 25.*1000\n", "g = 9.81\n", "\n", "# Calculations \n", "u1 = 2*(math.sqrt(2*g*H))\n", "Vf1 = 0.6*(math.sqrt(2*g*H))\n", "w = 9810\n", "Q = sp/(w*no*H)\n", "De = (Q*4/(math.pi*Vf1*(1-(0.35**2))))**0.5\n", "Db = 0.35*De\n", "N = u1*60/(math.pi*De)\n", "Ns = N*(P**0.5)/(H**1.25)\n", "\n", "# Results \n", "print \"diameter of runner and boss : %.4f and %.4f m \\\n", "\\nspeed and specific speed of runner in r.p.m : %.2f and %.2f \"%(De,Db,N,Ns)\n", "\n", "# note: rounding off error." ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "diameter of runner and boss : 2.4720 and 0.8652 m \n", "speed and specific speed of runner in r.p.m : 432.87 and 680.39 \n" ] } ], "prompt_number": 18 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 12.8 Page No : 260" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math \n", "\n", "# Variables\n", "D = 4.5\n", "d = 2.\n", "P = 20608.\n", "N = 140./60\n", "H = 22.\n", "nh = 0.94\n", "w = 9810.\n", "g = 9.81\n", "no = 0.85\n", "\n", "# Calculations \n", "Q = P*1000/(w*no*H)\n", "Vf1 = Q*4/(math.pi*((D**2)-(d**2)))\n", "u1 = math.pi*D*N\n", "Vw1 = nh*g*H/u1\n", "x1 = math.degrees(math.atan(Vf1/Vw1))\n", "\n", "# Results \n", "print \"discharge through the turbine : %.4f m**3/s \\\n", "\\nguide blade angle at inlet : %d degrees\"%(Q,x1)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "discharge through the turbine : 112.3376 m**3/s \n", "guide blade angle at inlet : 55 degrees\n" ] } ], "prompt_number": 20 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }