{ "metadata": { "name": "", "signature": "sha256:74db613da6801f860dadcdbf59265a8239e5864c8922257a769d0c0fa0f7c4e0" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Chapter 8 : Laminar Flow" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.1 Page no 286" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Determine maximum velocity and shear stress\n", "\n", "# Given\n", "\n", "from math import *\n", "\n", "P1 = 200 # Pressure at inlet in kPa\n", "\n", "P2 = 260 # Pressure at outlet in kPa\n", "\n", "d = 0.004 # diameter in m\n", "\n", "L = 8 # length of pipe in meters\n", "\n", "z = 6 # height of the pipe from the ground\n", "\n", "g = 9.81 # acceleration due to gravity in m/s**2\n", "\n", "# properties of kerosene\n", "\n", "mu = 19.1*10**-4 # viscosity of kerosene at 20 deg C\n", "\n", "S = 0.81 # specific gravity of kerosene\n", "\n", "rho = 1000 # density in kg/m**3\n", "\n", "# Solution\n", "\n", "# calculating direction of flow\n", "\n", "p1 = (P1+g*z*S)*1000 # point 1\n", "\n", "p2 = (P2)*1000 # point 2\n", "\n", "# direction of flow is from point 1-2\n", "\n", "# shear stress\n", "\n", "Sp = -((p1-p2)/sqrt(L**2+z**2))\n", "\n", "r = d/2\n", "\n", "Tau_max = r*Sp/2\n", "\n", "print \"(a) Maximum shear stress =\",round(Tau_max,3),\"N/m**2\"\n", "\n", "# maximum velocity\n", "\n", "Vmax = r**2*Sp/(4*mu)\n", "\n", "print \"(b) Maximum velocity =\",round(Vmax,3),\"m/s\"\n", "\n", "# discharge\n", "\n", "Q = pi*r**4*Sp/(8*mu)\n", "\n", "print \"(c) Discharge = \",round(Q,7),\"m**3/s\"\n", "\n", "# calculate reynolds number\n", "\n", "V = Vmax/2\n", "\n", "R = rho*V*d*S/mu\n", "\n", "print \"Reynolds number =\",round(R,0),\"is less than 2000, the flow is laminar and the calculations are valid\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Maximum shear stress = 1.232 N/m**2\n", "(b) Maximum velocity = 0.645 m/s\n", "(c) Discharge = 4.1e-06 m**3/s\n", "Reynolds number = 547.0 is less than 2000, the flow is laminar and the calculations are valid\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example no 8.2 Page no 289" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Determine the head loss\n", "\n", "# Given\n", "\n", "d = 0.02 # diameter of the pipe in m\n", "\n", "l = 30 # length of the pipe in m\n", "\n", "v = 0.1 # velocity in m/s\n", "\n", "g = 9.81 # acceleration due to gravity in m/s**2\n", "\n", "# for water at 5 deg C\n", "\n", "nu = 1.54*10**-6 # kinematic viscosity of water in m**2/s\n", "\n", "# Solution\n", "\n", "R = v*d/nu\n", "\n", "print \"R = \",round(R,0),\"is lesss than 2000 , the flow is laminar\"\n", "\n", "f = 64/R # friction factor\n", "\n", "Hf = f*l*v**2/(2*g*d) # head loss due to friction\n", "\n", "H=Hf*100\n", "\n", "print \"Head loss = \",round(H,2),\"cm of water\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "R = 1299.0 is lesss than 2000 , the flow is laminar\n", "Head loss = 3.77 cm of water\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.3 Page no 290" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Horsepower required to pump 50 tons of oil\n", "\n", "# Given\n", "\n", "from math import *\n", "\n", "# oil properties\n", "\n", "S = 0.92 # specific gravity\n", "\n", "gma = S*62.4 # density in lbs/ft**3\n", "\n", "nu=0.0205 # viscosity in ft**2/s\n", "\n", "W = 50 # weight of oil\n", "\n", "d = 9 # diameter of the pipe in inches\n", "\n", "g = 32.2 # acceleration due to gravity in ft/s**2\n", "\n", "# Solution\n", "\n", "Q = W*2000/(gma*3600) # discharge in ft**3/s\n", "\n", "A = pi*d**2/(4*144) # area of pipe\n", "\n", "V = Q*1000/(A) # velocity in ft/s\n", "\n", "R = V*0.75/(nu*1000) # Reynolds number\n", "\n", "print \"R =\",round(R,2),\"is less than 2000 and hence flow is laminar\"\n", "\n", "f = 64/R # friction factor\n", "\n", "Hf = (f*5280*(V/1000)**2)/(2*g*0.75)\n", "\n", "Hp = gma*Q*Hf/(550)\n", "\n", "print \"Horse power required to pump the oil = \",round(Hp,1)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "R = 40.07 is less than 2000 and hence flow is laminar\n", "Horse power required to pump the oil = 10.6\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.4 Page no 291" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Viscosity of the liquid in poise\n", "\n", "# Given\n", "\n", "from math import *\n", "\n", "V = 50 # Volume in m**3\n", "\n", "d = 5 # diameter in m\n", "\n", "d1 = 0.1 # diameter of bore\n", "\n", "l = 10 # length of the tube\n", "\n", "t = 20*60 # time in seconds\n", "\n", "rho = 0.88 # density in g/cm**3\n", "\n", "H1 = 5 # height from the base in m\n", "\n", "A = pi*d**2/4\n", "\n", "a = pi*d1**2/4\n", "\n", "# Solution\n", "\n", "# From derivation we obtain a equation for T\n", "\n", "H2 = H1-(V/A)\n", "\n", "mu = t*rho*a*(0.1)*98.1/(32*A*10*log(H1/H2))\n", "\n", "print \"Viscosity of the liquid =\",round(mu,4),\"poise\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Viscosity of the liquid = 0.0182 poise\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 8.5 Page no 297" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Velocity distribution; Discharge ; shear on the upper plate\n", "\n", "# Given\n", "\n", "from math import *\n", "\n", "# properties of kerosene oil at 20 deg C\n", "\n", "S = 0.81 # specific gravity of oil\n", "\n", "mu = 4*10**-5 # viscosity of oil in lb.s/ft**2\n", "\n", "gma = 62.4*S # density in lbs/ft**3\n", "\n", "p1 = 6.51 # pressure at point 1 in psia\n", "\n", "p2 = 8 # pressure at point 2 in psia\n", "\n", "h = 0.006 # distance between the plate in ft\n", "\n", "l = 4 # length of the plate in ft\n", "\n", "theta = pi/6 # angle of inclination\n", "\n", "# Solution\n", "\n", "# point 1\n", "\n", "P1 = p1*144 + gma*l*sin(theta)\n", "\n", "# point 2\n", "\n", "P2 = p2*144\n", "\n", "# flow is taking from poont 2-1\n", "\n", "Sp = (P2-P1)/4\n", "\n", "# equation for u = 2154.75*y-359125*y**2\n", "\n", "y = h\n", "\n", "# discharge per ft width\n", "\n", "q = (2154.75*y**2/2) - (359125*y**3/3)\n", "\n", "print \"Discharge q = \",round(q,3),\"per unit ft of the plate\"\n", "\n", "# to find shear at the top of the plate take du/dy = 0\n", "\n", "dV = 2154.75 - 718250*h\n", "\n", "# shear stress\n", "\n", "T = -mu*dV\n", "\n", "print \"Shear stress on the plate = \",round(T,3),\"lbs/ft**2 and resisting the motion of the plate\"\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Discharge q = 0.013 per unit ft of the plate\n", "Shear stress on the plate = 0.086 lbs/ft**2 and resisting the motion of the plate\n" ] } ], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }