{ "metadata": { "name": "", "signature": "sha256:f598cdc0d1e1209f88ec87b2a9e5b6a08368d8e1e45eff28590bd3252c8de961" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Chapter : Fluid Kinematics" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.1 Page no 117" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from math import *\n", "\n", "\n", "\n", "x=1 # x co-ordinate\n", "\n", "y=2 # y co-ordinate\n", "\n", "\n", "print \"(a) u = 4*X; v = -4*Y \"\n", "\n", "u = 4*x\n", "\n", "v=- 4*y\n", "\n", "print \"(b) u=\",round(u,0),\"m/s and v=\",round(v,0),\"m/s\"\n", "\n", "R =sqrt(u**2+v**2)\n", "\n", "ang = atan(v/u)*180/pi\n", "\n", "print \"(c) Magnitude of velocity =\",round(R,2),\"m/s and angle of resultant velocity = \",round(ang,1),\"deg\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) u = 4*X; v = -4*Y \n", "(b) u= 4.0 m/s and v= -8.0 m/s\n", "(c) Magnitude of velocity = 8.94 m/s and angle of resultant velocity = -63.4 deg\n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.2 Page no 119" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from math import *\n", "\n", "from __future__ import division\n", "\n", "\n", "d = 0.3 # diameter of pipe in m\n", "\n", "v = 15 # velocity in m/s\n", "\n", "rho = 997.1 # density in kg/m**3\n", "\n", "A = pi*d**2/4\n", "\n", "\n", "Q=A*v\n", "\n", "print \"(a) Discharge =\",round(Q,2),\"m**3/s\"\n", "\n", "mdot = rho*Q\n", "\n", "print \"(b) Mass flow rate = \",round(mdot,2),\"kg/s\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Discharge = 1.06 m**3/s\n", "(b) Mass flow rate = 1057.21 kg/s\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.3 Page no 120 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from math import *\n", "\n", "from __future__ import division\n", "\n", "from scipy import integrate\n", "\n", "\n", "Vo = 10 # velocity in m/s\n", "\n", "r1 = 0\n", "\n", "ro = 0.1 # radius in m\n", "\n", "N = 1\n", "\n", "\n", "R = lambda r: (10*r-1000*r**3)\n", "\n", "R1,err=integrate.quad(R,r1,ro)\n", "\n", "Q = R1*2*pi\n", "\n", "A = pi*(0.1)**2\n", "\n", "V = Q/A\n", "\n", "print \"Mean velocity of the flow =\",round(V,0),\"m/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Mean velocity of the flow = 5.0 m/s\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.4 Page no 126" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "import matplotlib.pyplot as plt\n", "\n", "from math import *\n", "\n", "from scipy import integrate\n", "\n", "import numpy as np\n", "\n", "from sympy import *\n", "\n", "\n", "\n", "\n", "x = Symbol('x')\n", "U = integrate(2,x)\n", "\n", "\n", "y = Symbol('y')\n", "\n", "V = integrate(-4*y,y)\n", "\n", "\n", "Zhi = U + V\n", "\n", "print Zhi # for x and y =0 we get C = 0\n", "\n", "X = [5,6,7,8,9,10,11,12,13,14,15,16,17]\n", "Y = [0,1.414,2,2.449,2.828,3.16,3.46,3.741,4,4.242,4.472,4.69,4.898]\n", "\n", "b1=plt.plot(X,Y)\n", "\n", "\n", "X1 = [2.5,3,4,5,6,7,8,9,10,11,12,13,14,15]\n", "Y1 = [0,1,1.732,2.23,2.645,3,3.31,3.60,3.87,4.123,4.35889,4.5825,4.795,5]\n", "\n", "b2=plt.plot(X1,Y1)\n", "\n", "\n", "X2 = [0.5,1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5,9.5,10.5,11.5,12.5,13.5,14.5,15.5]\n", "Y2 = [0,1.414,2,2.449,2.828,3.162,3.462,3.741,4,4.242,4.472,4.69,4.898,5.099,5.29,5.4772]\n", "\n", "b3=plt.plot(X2,Y2)\n", "\n", "plt.xlabel(\"x\")\n", "\n", "plt.ylabel(\"y\")\n", "\n", "plt.title(\"Streamline plot\")\n", "\n", "plt.legend([\"zhi=10\",\"zhi=5\",\"zhi=1\"])\n", "plt.show()" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "2*x - 2*y**2\n" ] } ], "prompt_number": 6 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.5 PAge no 127" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from math import *\n", "\n", "from sympy import *\n", "\n", "import numpy as np\n", "\n", "\n", "x = 2 # X co-ordinate\n", "\n", "Y = 4 # Y co-ordiante\n", "\n", "y = Symbol('y')\n", "\n", "zhi = 4*x*y\n", "\n", "zhiprime = zhi.diff(y)\n", "\n", "u = zhiprime\n", "\n", "x = Symbol('x')\n", "\n", "zhi = 4*x*Y\n", "\n", "zhiprime = zhi.diff(x)\n", "\n", "v = zhiprime\n", "\n", "R=sqrt(u**2+v**2)\n", "\n", "theta = atan(v/u)*180/pi\n", "\n", "print \"Resutant velocity magnitude = \",round(R,2),\"m/s\"\n", "\n", "print \"Angle =\",round(theta,1),\"deg with the X-axis in the 4th quadrant\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Resutant velocity magnitude = " ] }, { "output_type": "stream", "stream": "stdout", "text": [ "17.89 m/s\n", "Angle = 63.4 deg with the X-axis in the 4th quadrant\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.6 Page no 130" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from math import *\n", "\n", "from __future__ import division\n", "\n", "from sympy import *\n", "\n", "import numpy as np\n", "\n", "from scipy import integrate\n", "\n", "\n", "d1 = 0.09 # diameter in cm\n", "\n", "d2 = 0.025 # diameter in cm\n", "\n", "rho = 1000 # density in kg/m**3\n", "\n", "mdot = 25 # mass flow rate in kg/s\n", "\n", "\n", "x = Symbol('x')\n", "\n", "A1 = pi*d1**2/4\n", "\n", "A2 = pi*d2**2/4\n", "\n", "AA = A1 - ((A1-A2)/40)*10 # from figure\n", "\n", "V = mdot/(rho*AA)\n", "\n", "print \"(a) Velocity =\",round(V,1),\"m/s\"\n", "\n", "AX = (A1 - ((A1-AA)/40)*x)\n", "\n", "v = 25*10**4/(rho*AX)\n", "\n", "vprime = v.diff(x)\n", "\n", "V1 = vprime\n", "\n", "\n", "VPrime = 0.09\n", "\n", "Acx = V*VPrime\n", "\n", "print \"(b) Convective acceleration =\",round(Acx,3),\"m**2/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(a) Velocity = 5.1 m/s\n", "(b) Convective acceleration = 0.46 m**2/s\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.8 Page no 143 " ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from math import *\n", "\n", "\n", "\n", "\n", "y = Symbol('y')\n", "\n", "U = 16*y-12*x\n", "\n", "zhiprime = U.diff(y)\n", "\n", "u = zhiprime\n", "\n", "\n", "x = Symbol('x')\n", "\n", "V = 12*y-9*x\n", "\n", "zhiprime1 = V.diff(x)\n", "\n", "v = zhiprime1\n", "\n", "\n", "\n", "z = v-u\n", "\n", "print \"z = \",round(z,0)\n", "\n", "print \"Hence the flow is rotational\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "z = -25.0\n", "Hence the flow is rotational\n" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Example 3.10 Page no 148" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\n", "from math import *\n", "\n", "\n", "d1 = 0.1 # diameter in m\n", "\n", "d2 = 0.3 # diameter in m\n", "\n", "V1 = 30 # velocity in m/s\n", "\n", "\n", "V2 = (d1**2/d2**2)*V1\n", "\n", "print \"Velocity at the larger cross section = \",round(V2,2),\"m/s\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Velocity at the larger cross section = 3.33 m/s\n" ] } ], "prompt_number": 11 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }