{ "metadata": { "name": "", "signature": "sha256:660b58ce5549971732bb596c053d13f5d0e377188e83a206668b2a45ad57c696" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 3:Pressure and Fluid Statics" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.3-1, Page No:75" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable Decleration\n", "Pvac=40 #Vaccum Gauge Reading in kPa\n", "Patm=100 #Atmospheric Pressure in kPa\n", "\n", "\n", "#Calculations\n", "Pabs=Patm-Pvac #Absolute Pressure reading in kPa\n", "\n", "\n", "#Result\n", "print\"The absolute Pressure is\",Pabs,\"kPa\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The absolute Pressure is 60 kPa\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.3-2, Page No:80" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable Decleration\n", "h=0.74 #Barmoetric Pressure in m\n", "g=9.805 #Acceleration due to gravity in m/s^2\n", "rho=13570 #Density of mercury in kg/m^3\n", "c=1000 #Conversion factor in N/m^2\n", "\n", "\n", "#Calculations\n", "Patm=(rho*g*h)/c #Atmospheric Pressure in kPa\n", "\n", "\n", "#Result\n", "print\"The Atmospheric Pressure is\",round(Patm,1),\"kPa\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Atmospheric Pressure is 98.5 kPa\n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.3-3, Page No:80" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable Decleration\n", "h_arm_bottle=1.2 #Height of bottle above armlevel in m\n", "rho=1020 #Density of IV fluid in kg/m^3\n", "g=9.81 #Acceleration due to gravity in m/s^2\n", "P_gauge=20 #Gauge pressure in part b calculations in kPa\n", "c=1000 #Conversion factor in kg.m/s^2\n", "\n", "\n", "#Calculations\n", "\n", "#Part(a)\n", "Pgaugearm=rho*g*h_arm_bottle/c #Gauge Pressure in kPa\n", "\n", "#Part(b)\n", "h_arm_bottle=(P_gauge*c)/(rho*g) # Height of the surface of the IV Fluid in m\n", "\n", "#Result\n", "print\"The gaguge pressure at 1.2m is\",round(Pgaugearm),\"kPa\"\n", "print\"The height of the surface of the IV Fluid at 20kPa is\",round(h_arm_bottle),\"m\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The gaguge pressure at 1.2m is 12.0 kPa\n", "The height of the surface of the IV Fluid at 20kPa is 2.0 m\n" ] } ], "prompt_number": 8 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.3-4, Page No:81" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable Decleration\n", "H=4 #Thickness of gradient zone in m\n", "rho_o=1040 #Density at the water surface in kg/m^3\n", "s=4 #Depth in m\n", "g=9.81 #Acceleration due to gravity in m/s^2\n", "h1=0.8 #Surface zone thickness in m\n", "c=1000 #Conversion Factor in kg.m/s^2\n", "pi=3.14\n", "\n", "\n", "#Calculations\n", "P1=(rho_o*g*h1)/c # Gauge Pressure at bottom of surface zone in kPa\n", "\n", "\n", "#After carrying out the integral\n", "\n", "\n", "#The next three steps are for mere mathametical simplicity\n", "theta=(pi*s)/(4*H) #Angle Conversion into degrees\n", "x=round(tan(theta)) #Tangent calculation\n", "y=arcsinh(x) #Sine Inverse Hyperbolic calculation\n", "P2=P1+((y*rho_o*g*4*H)/(pi*c)) #Gauge Pressure at the bottom in kPa \n", "\n", "\n", "\n", "#Result\n", "print\"The gauge pressure at the bottom is\",round(P2),\"kPa\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The gauge pressure at the bottom is 54.0 kPa\n" ] } ], "prompt_number": 36 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.3-5, Page No:83" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable Decleration\n", "SG=0.85 #Specific Gravity of the Fluid \n", "h=0.55 #Manometer column height in m\n", "rho_H2O=1000 #Density of water in kg/m^3\n", "Patm=96 #Local Atmospheric Pressure in kPa\n", "g=9.81 #Acceleration due to gravity in m/s^2\n", "c=1000 #Conversion Factor in N/m^2\n", "\n", "\n", "#Calculations\n", "rho=rho_H2O*SG #Density of the fluid in kg/m^3\n", "P=Patm+((rho*g*h)/c) #Absolute Pressure in the tank in kPa\n", "\n", "\n", "\n", "#Result\n", "print\"The absolute pressure in the tank is\",round(P,1),\"kPa\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The absolute pressure in the tank is 100.6 kPa\n" ] } ], "prompt_number": 39 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.3-6, Page No:84" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable Decleration\n", "H=1400 #Altitude of tank in m\n", "Patm=85.6 #Atmospheric Pressure at H altitude in kPa\n", "h1=0.1 #m\n", "h2=0.2 #m\n", "h3=0.35 #m\n", "rho_water=1000 #Density of water in kg/m^3\n", "rho_oil=850 #Density of oil in kg/m^3\n", "rho_mercury=13600 #Density of mercury in kg/m^3\n", "g=9.81 #Acceleration due to gravity in m/s^2\n", "c=1000 #Conversion Factor in N/m^2\n", "\n", "\n", "\n", "#Calculations\n", "\n", "#For Simplicity we do the following\n", "X=g*(rho_mercury*h3-rho_water*h1-rho_oil*h2)\n", "P1=Patm+((X/c)) #Pressure at point 1 in kPa\n", "\n", "#Result\n", "print\"The pressure at point1 is\",round(P1),\"kPa\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The pressure at point1 is 130.0 kPa\n" ] } ], "prompt_number": 53 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.3-8,Page No:92\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable Decleration\n", "s=8 #Distance of top of the edge of the door in m\n", "b=1.2 #Height of the door in m\n", "w=1 #width of the door\n", "rho=1000 #Density of water in kg/m^3\n", "g=9.81 #Acceleration due to gravity in m/s^2\n", "c=1000 #Conversion Factor in kg.m/s^2\n", "\n", "#Calculations\n", "Pavg=(rho*g*(s+(b/2)))/c #Average Pressure in kN/m^2\n", "\n", "#Hydrostatic Force\n", "Fr=Pavg*(b*w) #Hydrostatic Force in kN\n", "yp=s+(b/2)+(b**2/(12*(s+(b/2)))) #Center of pressure in m\n", "\n", "#Result\n", "print\"The Average Pressure is\",round(Pavg,1),\"kN/m^2\"\n", "print\"The resultant Hydrostatic Force is\",round(Fr,1),\"kN\"\n", "print\"The center of pressure is at\",round(yp,2),\"m\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Average Pressure is 84.4 kN/m^2\n", "The resultant Hydrostatic Force is 101.2 kN\n", "The center of pressure is at 8.61 m\n" ] } ], "prompt_number": 56 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.3-9,Page No:95\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable Decleration\n", "R=0.8 #Radius in m\n", "s=4.2 #m\n", "g=9.81 #Acceleration due to gravity in m/s^2\n", "rho=1000 #Density of water in kg/m^3\n", "b=1 #m\n", "h_bottom=5 #Depth in m\n", "c=1000 #Conversion Factor in kg m/s^2\n", "\n", "#Calculations\n", "\n", "#Part(a)\n", "\n", "#Horizontal Force \n", "Fh=(rho*g*(s+(R/2))*(R*b))/c #Horizontal Force in kN\n", "\n", "#Verticla Force\n", "Fy=(rho*g*h_bottom*R*b)/c #Vertical Force in kN\n", "\n", "#Weight of fluid block\n", "W=(rho*g*(R**2-((pi*R**2)/4))*b)/c #Weight of fluid block in kN\n", "Fv=Fy-W #Net upward Force in kN\n", "Fr=(Fh**2+Fv**2)**0.5 #Resultant Force in kN\n", "thet=arctan(Fv/Fh) #Theta in radians\n", "theta=(180/pi)*thet #Thetain degrees\n", "\n", "#Part(b)\n", "\n", "#Weight of the cylinder per m length\n", "Wcyl=Fr*sin(thet) #Weight of the cylinder in kN\n", "\n", "#Result\n", "print\"The magnitude of hydrostatic force is\",round(Fr,1),\"kN\"\n", "print\"The direction of the hydrostatic force is\",round(theta,1),\"degrees\"\n", "print\"The weight of the cylinder per m length is\",round(Wcyl,1),\"kN\"\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The magnitude of hydrostatic force is 52.3 kN\n", "The direction of the hydrostatic force is 46.4 degrees\n", "The weight of the cylinder per m length is 37.9 kN\n" ] } ], "prompt_number": 68 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.3-10,Page No:98" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable Decleration\n", "rho_w=1000 #Density of water in kg/m^3\n", "h_sub=0.1 #m\n", "R=0.005 #Radius in m\n", "\n", "#Calculations\n", "\n", "#Part(a) is theoretical hence not coded here\n", "\n", "#Part(b)\n", "V=pi*R**2*h_sub #Volume in m^3\n", "m=rho_w*V # Mass in kg\n", "\n", "#Result\n", "print\"The mass is\",m,\"kg\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The mass is 0.00785 kg\n" ] } ], "prompt_number": 70 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.3-11,Page No:99" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable Decleration\n", "rho_f=1025 #Density of sea-water in kg/m^3\n", "rho_concrete=2300 #Density of concrete in kg/m^3\n", "g=9.81 #Acceleration due to gravity in m/s^2\n", "l=0.4 #length of block in m\n", "b=0.4 #breadth of block in m\n", "h=3 #height of block in m\n", "c=1000 #Conversion factor in kg.m/s^2\n", "\n", "#Calculations\n", "\n", "#Part(a)\n", "V=l*b*h #Volume in m^3\n", "Ft_air=(rho_concrete*g*V)/c #Tension in the rope in kN\n", "W=Ft_air #kN\n", "\n", "#Part(b)\n", "Fb=(rho_f*g*V)/c #Force of Buoyancy in kN\n", "\n", "Ft_Water=W-Fb #Tension in the rope under water in kN\n", "\n", "#Result\n", "print\"The tension in the string under water is\",round(Ft_Water),\"kN\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The tension in the string under water is 6.0 kN\n" ] } ], "prompt_number": 72 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.3-12, Page No:106" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable decleration\n", "vo=0 #Initial Velocity in km/h\n", "vf=90 #Final Velocity in km/h\n", "t=10 #Acceleration time in s\n", "h=0.8 #Height of the tank in m\n", "b1=2 #Breadth of the tank in m\n", "b2=0.6 #Width of the tank in m\n", "g=9.81 #Acceleration due to gravity in m/s^2\n", "c=3.6 #Conversion factor in km/h\n", "az=0 #Acceleration in the z direction in m/s^2\n", "d=100 #Conversion from m to cm\n", "\n", "#Calculations\n", "ax=((vf-vo)/t)/c #Acceleration in x direction in m/s^2\n", "thet=arctan(ax/(g+az)) #Theta in radians\n", "\n", "#CASE 1\n", "delta_zs1=d*(b1/2)*tan(thet) #cm\n", "\n", "#CASE 2\n", "delta_zs2=d*(b2/2)*tan(thet) #cm\n", "\n", "#Result\n", "print\"Assuming the tipping is not a problem,The tank should be definitely be placed in such a\"\n", "print\"way that the short side is parallel to the direction of motion\"\n", "print\"As\",round(delta_zs2,1),\"cm <\",round(delta_zs1,1),\"cm\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Assuming the tipping is not a problem,The tank should be definitely be placed in such a\n", "way that the short side is parallel to the direction of motion\n", "As 7.6 cm < 25.5 cm\n" ] } ], "prompt_number": 78 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 3.3-13,Page No:109" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "g=9.81 #Acceleration due to gravity in m/s^2\n", "H=0.6 #Height of vertical cylinder container in m\n", "ho=0.5 #Height of partially filled container in m\n", "rho=850 #Density of liquid in kg/m^3\n", "R=0.1 #Radius in m\n", "c=60 #Conversion factor in s\n", "\n", "#Calculations\n", "w=((4*g*(H-ho))/R**2)**0.5 #Max rotational Speer in rad/s\n", "n_dot=(w/(2*pi))*c #RPM\n", "\n", "#Result\n", "print\"The Rotational speed at which the liquid just starts to spill is\",round(n_dot),\"RPM\"\n", "\n", "\n", "\n", "\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Rotational speed at which the liquid just starts to spill is 189.0 RPM\n" ] } ], "prompt_number": 81 } ], "metadata": {} } ] }