{ "metadata": { "name": "", "signature": "sha256:cbbbd782e97b8d2c203c41af40ff309bb2ebc35eec66c67612404180f6673343" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter 7: Dimensional Analysis and Modeling" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.7-4, Page No:290" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable Decleration\n", "g_earth=9.81 #Acceleration due to gravity on earth in m/^2\n", "theta=(pi*5)/180 #Angle above the horizon in radians\n", "v=21 #Speed of the baseball in m/s\n", "zo=2 #Height at wich the ball is left in m\n", "t_star=2.75 #Time required to hit the ground in s\n", "\n", "#Calculations\n", "#Part(a)\n", "g_moon=g_earth/6 #Acceleration due to gravity on the moon in m/s^2\n", "w_o=v*sin(theta) #Vertical component of Speed in m/s\n", "Fr_square=w_o**2/(g_moon*zo) #Value of froude number square \n", "t_a=(t_star*zo)/w_o #Estimated time required to hit the ground in s\n", "#Part(b)\n", "#simplfying the calculations\n", "a=w_o**2+(2*zo*g_moon)\n", "b=a**0.5\n", "t_b=(w_o+b)/g_moon #Exact time required for the ball to hit the ground in s\n", "\n", "#Result\n", "print \"The estimated time required to hit the ground is\",round(t_a,2),\"s\"\n", "print \"The exact time required for the ball to hit the ground is\",round(t_b,2),\"s\"\n", "#Due to the decimal accuracy the answer in textbook differs " ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The estimated time required to hit the ground is 3.01 s\n", "The exact time required for the ball to hit the ground is 3.04 s\n" ] } ], "prompt_number": 9 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.7-5, Page No:293" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable Decleration\n", "Vp=50 #Velocity in the prototype in mi/h\n", "um=1.754*10**-5 #Viscosity in the model in kg/m.s\n", "up=1.849*10**-5 #Viscosity in the prototype in kg/m.s\n", "rhop=1.184 #Density of air in prototype in kg/m^3\n", "rhom=1.269 #Density of air in model in kg/m^3\n", "Lp_Lm=5 #ratio of length \n", "\n", "#Calculations\n", "a=um/up\n", "b=rhop/rhom\n", "Vm=Vp*a*b*Lp_Lm #Velocity in the model in mi/h\n", "\n", "#result\n", "print \"The velocity in the wind tunnel required is\",round(Vm),\"mi/h\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The velocity in the wind tunnel required is 221.0 mi/h\n" ] } ], "prompt_number": 16 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.7-6, Page No:294" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable Decleration\n", "Fd=94.3 #Average Drag force on the model in N\n", "Vp=float(50) #Velocity of the prototype in mi/h\n", "Vm=float(221) #Velocity of the model in mi/h\n", "rhop=1.184 #Density of air in prototype in kg/m^3\n", "rhom=1.269 #Density of air in model in kg/m^3\n", "Lp_Lm=5 #ratio of length \n", "\n", "#Calculations\n", "a=(rhop/rhom)\n", "c=(Lp_Lm**2)\n", "b=Vm/Vp\n", "Fd_p=(Fd*a*c)/(b**2) #Drag Force on the prototype in N\n", "\n", "#Result\n", "print \"The Drag force on the prototype is\",round(Fd_p),\"N\"\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Drag force on the prototype is 113.0 N\n" ] } ], "prompt_number": 44 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.7-10, Page No:313" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "import matplotlib.pyplot as plt\n", "\n", "#Variable Decleration\n", "Lm=0.991 #Length of the model truck in m\n", "Hm=0.257 #height of the model truck in m\n", "Wm=0.159 #Width of the model truck in m\n", "rho=1.184 #Density of Air in kg/m^3\n", "u=1.849*10**-5 #Viscosity of air in kg/m.s\n", "FD_m=89.9 #Drag Force in the model in N\n", "V_m=70 #Velocity in the model in m/s\n", "C=16 #Geometric Ratio\n", "Vp=26.8 #Velocity of the prototype in m/s\n", "\n", "#Calculations\n", "\n", "V=range(20,75,5) #Velocity array each in m/s\n", "F=[12.4,19,22.1,29,34.3,39.9,47.2,55.5,66,77.6,89.9] #Drag force array in N\n", "X=transpose(F) #Transpose of the matrix in order to mutliply\n", "#Simplfying the calculations by using steps\n", "\n", "CD_m1=(X/V)\n", "CD_m2=CD_m1/V\n", "CD_m=(2*CD_m2)/(rho*Wm*Hm) #Drag Coefficient \n", "\n", "Y=transpose(V)\n", "Re_m=(rho*Y*Wm)/u #Reynolds Number for each set\n", "\n", "#Calculations for prototype\n", "Re_p=(rho*Vp*C*Wm)/u #Reynolds Number for the prototype\n", "\n", "#Aerodynamic Drag Calculations\n", "FD_p=0.5*rho*Vp**2*C**2*Wm*Hm*CD_m[10] #Aerodynamic Drag on the Vehicle in N\n", "\n", "#Result\n", "print \"The Aerodynamic Drag on the Vehicle is\",round(FD_p),\"N\"\n", "\n", "plt.plot(Re_m,CD_m,'ro')\n", "plt.ylabel('Cd')\n", "plt.xlabel('Re')\n", "plt.show()\n", "\n", "#The answer in the textbook has been rounded off to the nearest value" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Aerodynamic Drag on the Vehicle is 3373.0 N\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEPCAYAAACDTflkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFK5JREFUeJzt3X+QZWV95/H3127sjj8CKin8AYZUa1wwoGgK3STCNdmZ\n6ThR8quiRAuNlrEqsXuS3Y0sjBS9ZWaTWHFdetwoGiXGimA2CZZUG2bG0pshiaLo8DOA0EAFjBkN\nURKMPcUM3/3jnhnuXHra7sd77u17+v2qujXnPufMOd+HHu6nz3POc25kJpIklXjCsAuQJI0uQ0SS\nVMwQkSQVM0QkScUMEUlSMUNEklSs1hCJiI9ExP6IuOUY68+LiJsiYl9EfDkifrrOeiRJ/RV1zhOJ\niFcADwN/mplnLLP+yZn5nWr5DODqzHxebQVJkvqq1jORzLwO+NYK67/T9fYpwL/UWY8kqb/Gh11A\nRPw88HvAs4DNQy5HkrQGQ7+wnpmfzMzTgFcDHxt2PZKk1Rv6mchhmXldRIxHxDMy88HudRHhA74k\nqUBmRp37H+qZSERMRURUyy8B6A2QwzKzsa9LL7106DXYN/tn/5r3GoRaz0Qi4krgXODEiLgfuBQ4\nDiAzLwd+CbggIh6hcxfX6+qsR5LUX7WGSGae/z3Wvxt492r29c4tWxg/cICDExNsnp3lnK1b+1Kj\nJKncurkm8r387u7dR5a3Ly4CNCZIWq3WsEuoTZP7BvZv1DW9f4NQ62TDfomIx1V5yZYtvOvaa4dS\njySNgoggm3xh/fsxtrQ07BIkacMb2RA5NDk57BIkacMbyRC5eGqKTTMzwy5Dkja8kbmwfsmWLYwt\nLXFocpLpmZnGXFSXpFE2OhfWR6BOSVpPvLAuSVrXDBFJUrGRuSYySHsXFtg9P+8MeUn6HgyRHnsX\nFti1bRs7qlnx0LwZ8pLULw5n9dg9P39UgADsWFxkz86dQ6pIktYvQ6TH+IEDy7Y7Q16SHs8Q6XFw\nYmLZdmfIS9LjGSI9Ns/Osn1q6qg2Z8hL0vKcbLiMvQsL7Nm588gM+U3OkJc0ggYx2dAQkaSGcsa6\nJGldM0QkScUMEUlSMUNEklTMEJEkFTNEJEnFDBFJUjFDRJJUzBCRJBUzRCRJxQwRSVKxWkMkIj4S\nEfsj4pZjrH99RNwUETdHxN9FxJl11iNJ6q+6z0SuAKZXWH8PcE5mngm8C/hgzfVIkvqo1hDJzOuA\nb62w/vOZ+VD19nrg5DrrkST113q6JvIW4NPDLkKStHrjwy4AICJeCbwZ+Mlh1yJJWr2hh0h1Mf1D\nwHRmHnPoa25u7shyq9Wi1WrVXpskjZJ2u0273R7oMWv/ZsOIOBW4JjPPWGbdc4HPAm/IzC+ssA+/\n2VCS1mjkvx43Iq4EzgVOBPYDlwLHAWTm5RHxx8AvAP9Y/ZVHMvPsZfZjiEjSGo18iPSLISJJa+d3\nrEuS1jVDRJJUzBCRJBUzRCRJxQwRSVIxQ0SSVMwQkSQVM0QkScUMEUlSMUNEklTMEJEkFTNEJEnF\nDBFJUjFDRJJUzBCRJBUzRCRJxQwRSVIxQ0SSVMwQkSQVM0QkScUMEUlSMUNEklTMEJEkFTNEJEnF\nDBFJUjFDRJJUzBCRJBUzRCRJxQwRSVKxWkMkIj4SEfsj4pZjrP9PEfH5iFiKiP9WZy2SpP6r+0zk\nCmB6hfUPAjPAH9ZchySpBrWGSGZeB3xrhfXfzMwbgEfqrEOSVA+viUiSio0Pu4DVmpubO7LcarVo\ntVpDq0WS1qN2u0273R7oMSMz6z1AxKnANZl5xgrbXAo8nJnvOcb6rLtOSWqaiCAzo85jrJfhrFo7\nKUmqR61nIhFxJXAucCKwH7gUOA4gMy+PiGcCXwJ+EHgU+Hfg9Mx8uGc/nolI0hoN4kyk9uGsfjBE\nJGntNtJwliRpBBkikqRihogkqZghIkkqZohIkooZIpKkYoaIJKmYISJJKmaISJKKGSKSpGKGiCSp\nmCEiSSpmiEiSihkikqRihogkqZghIkkqZohIkooZIpKkYoaIJKmYISJJKmaISJKKGSKSpGKGiCSp\nmCEiSSo2PuwC1LF3YYHd8/OMHzjAwYkJNs/Ocs7WrcMuS5JWZIisA3sXFti1bRs7FhePtG2vlg0S\nSeuZw1nrwO75+aMCBGDH4iJ7du4cUkWStDqGyDowfuDAsu1jS0sDrkSS1uaYw1kR8UtAAlH9eZTM\n/KvvtfOI+AiwFfhGZp5xjG3mgZ8F/gN4U2buW13pzXFwYmLZ9kOTkwOuRJLWZqUzkVdXrzcDHwZe\nX73+uGpbjSuA6WOtjIhXAc/LzOcDvw68f5X7bZTNs7Nsn5o6qu3iqSk2zcwMqSJJWp1jnolk5psA\nImIPcHpmfr16/yzgo6vZeWZeFxGnrrDJaw7vKzOvj4gTIuKkzNy/quob4vDF80t27mRsaYlDk5NM\nz8x4UV3Sureau7NOAf656/1+4Ll9Ov5zgPu73j8AnFwdY0M5Z+tWQ0PSyFlNiHwG2BURH6dzfeS1\nwJ4+1hA97x93/QVgbm7uyHKr1aLVavWxBEkafe12m3a7PdBjRuayn9lExPOBkzLzbyPiF4FXVKu+\nBXw8M+9e1QE6w1nXLHdhPSI+ALQz86rq/R3Aub3DWRGRx6pTkrS8iCAze39R76uVLqz/H+DfoHMn\nVmb+dmb+NvBJ4L19Ov6ngAsAIuLlwLc32vUQSRplKw1nnZSZN/c2ZubNEfEjq9l5RFwJnAucGBH3\nA5cCx1X7uTwzPx0Rr4qIu4HvAL+25h5IkoZmpeGsuzPzeWtdVweHsyRp7QYxnLXSmcgNEfHrmfnB\nnqLeCny5zqJUPx/4KKkfVgqR3wKujojX81hovBSYAH6h7sJUHx/4KKlfjjmcBRARAbwS+DE6t97e\nlpmfHVBt3XU4nNVH79yyhd/dvftx7Zds2cK7rr12CBVJqsOwh7OoPrk/W73UED7wUVK/+BTfDcgH\nPkrqF0NkA/KBj5L6ZcVrIuuF10T6b+/CAnu6Hvi4yQc+So0ziGsihogkNdSwH3siSdKKDBFJUjFD\nRJJUzBCRJBUzRCRJxQwRSVIxQ0SSVMwQkSQVM0QkScUMEUlSMUNEklTMEJEkFTNEJEnFDBFJUjFD\nRJJUzBCRJBUzRCRJxQwRSVIxQ0SSVMwQkSQVqzVEImI6Iu6IiLsi4sJl1j8tIq6OiJsi4vqIeGGd\n9UiS+qu2EImIMeB9wDRwOnB+RJzWs9nFwFcy80XABcBlddUjSeq/Os9Ezgbuzsz7MvMR4CrgvJ5t\nTgM+B5CZdwKnRsQP1ViTJKmP6gyR5wD3d71/oGrrdhPwiwARcTbww8DJNdYkSeqj8Rr3navY5veB\nyyJiH3ALsA84tNyGc3NzR5ZbrRatVuv7r1CSGqTdbtNutwd6zMhczWd9wY4jXg7MZeZ09f4i4NHM\n/IMV/s69wBmZ+XBPe9ZVpyQ1VUSQmVHnMeoczroBeH5EnBoRTwReC3yqe4OIOL5aR0S8Ffib3gCR\nJK1ftQ1nZebBiHg7sAsYAz6cmbdHxNuq9ZfTuWvrTyIigVuBt9RVj4Zr78ICu+fnGT9wgIMTE2ye\nneWcrVuHXZak71Ntw1n95HDWaNu7sMCubdvYsbh4pG371BRbLrvMIJFqNOrDWRIAu+fnjwoQgB2L\ni+zZuXNIFUnqF0NEtRs/cGDZ9rGlpQFXIqnfDBHV7uDExLLthyYnB1yJpH4zRFS7zbOzbJ+aOqrt\n4qkpNs3MDKkiSf3ihXUNxN6FBfbs3MnY0hKHJifZNDPjRXWpZoO4sG6ISFJDeXeWJGldM0QkScUM\nEUlSMUNEklTMEJEkFTNEJEnFDBFJUjFDRJJUzBCRJBUzRCRJxQwRSVIxQ0SSVMwQkSQVM0QkScUM\nEUlSMUNEklTMEJEkFTNEJEnFxoddgFSXvQsL7J6fZ/zAAQ5OTLB5dtbvdZf6zBBRI+1dWGDXtm3s\nWFw80ra9WjZIpP5xOEuNtHt+/qgAAdixuMienTuHVJHUTIaIGmn8wIFl28eWlgZcidRstYZIRExH\nxB0RcVdEXLjM+hMj4tqIuDEibo2IN9VZjzaOgxMTy7YfmpwccCVSs9UWIhExBrwPmAZOB86PiNN6\nNns7sC8zXwy0gPdEhNdp9H3bPDvL9qmpo9ounppi08zMkCqSmqnOD+yzgbsz8z6AiLgKOA+4vWub\nrwNnVss/CDyYmQdrrEkbxOGL55fs3MnY0hKHJieZnpnxorrUZ5GZ9ew44peBLZn51ur9G4CXZeZM\n1zZPAD4L/CjwVOBXMvOvl9lX1lWnJDVVRJCZUecx6rwmsppP/YuBGzPz2cCLgf8bEU+tsSZJUh/V\nOZz1NeCUrvenAA/0bPMTwA6AzFyMiHuBFwA39O5sbm7uyHKr1aLVavW3Wkkace12m3a7PdBj1jmc\nNQ7cCfwM8E/AF4HzM/P2rm3+N/BQZv7PiDgJ+DJwZmb+a8++HM6SpDUaxHBWbWcimXkwIt4O7ALG\ngA9n5u0R8bZq/eXA/wKuiIib6AytvaM3QCRJ61dtZyL95JmIJK3dSJ+JSBuND3zURmSISH3gAx+1\nUfnsLKkPfOCjNipDROoDH/iojcoQkfrABz5qozJEpD7wgY/aqLzFV+qTvQsL7Ol64OMmH/ioIRvE\nLb6GiCQ1lPNEJK1o0HNThjEXZiP0cZQZItKIGvTclGHMhdkIfRx5mbnuX50yJXXbvnlzJjzu9c4t\nWxpxvGEccxh9rFP12Vnr57N3Z0kjatBzU4YxF2Yj9HHUGSLSiBr03JRhzIXZCH0cdYaINKIGPTdl\nGHNhNkIfR523+EojbNBzU4YxF2Yj9LEuzhOpGCKStHaDCBGHsyRJxQwRSVIxQ0SSVMwQkSQVM0Qk\nScUMEUlSMUNEklTMEJEkFTNEJEnFDBFJUjFDRJJUzBCRJBWrNUQiYjoi7oiIuyLiwmXW//eI2Fe9\nbomIgxFxQp01SZL6p7YQiYgx4H3ANHA6cH5EnNa9TWb+YWaelZlnARcB7cz8dl01rVftdnvYJdSm\nyX0D+zfqmt6/QajzTORs4O7MvC8zHwGuAs5bYftfBa6ssZ51q8n/kJvcN7B/o67p/RuEOkPkOcD9\nXe8fqNoeJyKeBGwB/rLGeiRJfVZniKzlW6ReDfztRhzKkqRRVts3G0bEy4G5zJyu3l8EPJqZf7DM\ntlcDn8jMq46xL7/WUJIKjOzX40bEOHAn8DPAPwFfBM7PzNt7tjseuAc4OTO/W0sxkqRajNe148w8\nGBFvB3YBY8CHM/P2iHhbtf7yatOfB3YZIJI0emo7E5EkNV+d80ROiYjPRcRtEXFrRMxW7U+PiD0R\n8dWI2N09uTAiLqomJt4REZu72l9aTUa8KyIu62qfiIhPVO1fiIgf7lr3xuoYX42IC2ro32REXB8R\nN0bEP0TE7zWpf13HGasmg17TtP5FxH0RcXPVvy82sH8nRMRfRMTt1b/RlzWhfxHxgnhskvK+iHgo\nImab0Leeem+ravt4Vc/67F9m1vICngm8uFp+Cp3rI6cB7wbeUbVfCPx+tXw6cCNwHHAqcDePnSl9\nETi7Wv40MF0t/wbwR9Xya4GrquWnA4vACdVrETihhj4+qfpzHPgC8FNN6l91rP8K/Bnwqep9Y/oH\n3As8vaetSf37KPDmrn+jxzepf9WxngB8HTilKX2rarwHmKjefwJ443rtX99/qCv8h/kk8F+AO4CT\nqrZnAndUyxcBF3Ztfy3wcuBZwO1d7a8DPtC1zcu6/if5ZrV8PvD+rr/zAeB1NfbtScCXgBc2qX/A\nycBngFcC11RtTerfvcAzetoa0T86gXHPMu2N6F/XvjcD1zWpb3Q+yO8EnlYd+xpg03rt30AewBgR\npwJnAdfT+Y+wv1q1HzipWn42nQmJhx2enNjb/jUem7R4ZEJjZh4EHoqIZ6ywr76KiCdExI10+vG5\nzLyNBvUPeC/wO8CjXW1N6l8Cn4mIGyLirVVbU/r3I8A3I+KKiPhKRHwoIp5Mc/p32Ot47EkXjehb\nZv4r8B7gH+nc2frtzNzDOu1f7SESEU+hMxN9W2b+e/e67ERd1l1DXTLz0cx8MZ3f2M+JiFf2rB/Z\n/kXEzwHfyMx9wLL3mY9y/yo/mZ3ntv0s8JsR8YrulSPev3HgJXSGLF4CfAf4H90bjHj/iIgn0pmo\n/P96141y3yJiCvgtOkNTzwaeEhFv6N5mPfWv7qf4HkcnQD6WmZ+smvdHxDOr9c8CvlG1f43OuOZh\nJ9NJwa9Vy73th//Oc6t9jQPHZ+aDy+zrFI5O177KzIeABeClNKd/PwG8JiLupfOb3k9HxMdoTv/I\nzK9Xf34TuJrO896a0r8HgAcy80vV+7+gEyr/3JD+QSf8v1z9/KA5P7sfB/4+Mx+szhL+CvjPrNef\nXR3jlNVYWgB/Cry3p/3dVON3dH4z6r049EQ6p+KLPHZx6HrgZdU+ey8Ovb9rvK/74tA9dC4MPe3w\ncp/7d+LhfQI/AOylM7GyEf3r6eu5PHZNpBH9o3Md66nV8pOBv6Mzvt6I/lXH2Qv8aLU8V/WtSf27\nCnhj1/tG9A14EXArnc+VoHODxG+u1/7V8qFTFfNTdMbSbwT2Va/pqsjPAF8FdncXCFxM586CO4At\nXe0vBW6p1s13tU8Afw7cRefuqFO71v1a1X5X9z+0PvbvDOArVf9uBn6n64cw8v3r6eu5PHZ3ViP6\nV/3PdmP1uhW4qEn9q47xIjo3fNxE57fZ45vSPzrB/y9Uvwg08Gf3DuC2qraP0rnzal32z8mGkqRi\nfj2uJKmYISJJKmaISJKKGSKSpGKGiCSpmCEiSSpW25dSSU0TEYfozAkao3Pf/QWZ+fBwq5KGyzMR\nafX+IzPPyswzgX8D3jbsgqRhM0SkMp8HpqDzwLyI+OvqacB7I+IFQ65NGhhDRFqjiBij85ytW6um\nDwIzmfnjdB6d/0fDqk0aNB97Iq1SRByk8xyi5wD30fninyfReZrqnV2bPjEzXzjwAqUh8MK6tHrf\nzcyzIuIHgF3AeXQeiPft7HwvibThOJwlrVFmfheYBXYADwP3RsQvA0THmcOsTxokQ0RavSNjv5l5\nI53bfH8FeD3wluqrkm8FXjOc8qTB85qIJKmYZyKSpGKGiCSpmCEiSSpmiEiSihkikqRihogkqZgh\nIkkqZohIkor9f3X4SsSs+H35AAAAAElFTkSuQmCC\n", "text": [ "" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Example 7.7-11, Page No:316" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "\n", "#Variable Decleration\n", "Lm_Lp=10**-2 #Length Scale Factor\n", "vp=1.002*10**-6 #Kinematic viscosity of the prototype in m^2/s\n", "\n", "#Calculations\n", "vm=vp*(Lm_Lp)**1.5 #Required Kinematic Viscosity in m^2/s\n", "\n", "#Result\n", "print \"Looking up in a table we cannot find a fluid of the kinematic viscosity\",vm,\"m^2/s\"\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Looking up in a table we cannot find a fluid of the kinematic viscosity 1.002e-09 m^2/s\n" ] } ], "prompt_number": 2 } ], "metadata": {} } ] }