{ "metadata": { "name": "", "signature": "sha256:58be2ba5e7552ab96c774dd3b25145aaa3c2ce840367ab463ac8e75c36ccb849" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter5-Axial-flow Compressors and Fans" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg156" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate the\n", "\n", "##given data\n", "T01 = 293.;##in K\n", "pi = 5.;##pressure ratio\n", "R = 0.5;##stage reaction\n", "Um = 275.;##in m/s\n", "phi = 0.5;##flow coefficient\n", "psi = 0.3;##stage loading factor\n", "eff_stage = 0.888;##stage efficiency\n", "Cp = 1005.;##J/(kgC)\n", "gamma = 1.4;\n", "\n", "##Calculations\n", "beta1 = (180./math.pi)*math.atan((R + 0.5*psi)/phi);\n", "beta2 = (180./math.pi)*math.atan((R - 0.5*psi)/phi);\n", "alpha2 = beta1;\n", "alpha1 = beta2;\n", "delT0 = psi*(Um**2)/Cp;\n", "N = (T01/delT0)*((pi**((gamma-1.)/(eff_stage*gamma))) - 1.);\n", "N = math.ceil(N);\n", "eff_ov = ((pi**((gamma-1.)/gamma)) - 1.)/((pi**((gamma-1.)/(eff_stage*gamma))) - 1.);\n", "print'%s %.2f %s %.2f %s'%('The flow angles are: beta1 = alpha2 = ',beta1,' deg' and 'beta2 = alpha1 = ',math.ceil(beta2),' deg.');\n", "print'%s %.2f %s '%('\\n The number of stages required = ',N,'');\n", "print'%s %.2f %s'%('\\n The overall efficiency = ',eff_ov*100,' percentage');\n", "\n", "##there is a small error in the answer given in textbook\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The flow angles are: beta1 = alpha2 = 52.43 beta2 = alpha1 = 35.00 deg.\n", "\n", " The number of stages required = 9.00 \n", "\n", " The overall efficiency = 86.06 percentage\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg160" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate the\n", "\n", "##given data\n", "R = 0.5;##stage reaction\n", "s_c = 0.9;##space-chord ratio\n", "beta1_ = 44.5;##in deg\n", "beta2_ = -0.5;##in deg\n", "h_c = 2.0;##height-chord ratio\n", "lamda = 0.86;##work done factor\n", "i = 0.4;##mean radius relative incidence\n", "rho = 3.5;##density in kg/m^3\n", "Um = 242.;##in m/s\n", "eps_max = 37.5;##in deg\n", "eps = 37.5;##in deg\n", "delp0 = 0.032;##the profile total pressure loss coefficient\n", "##Calculations\n", "theta = beta1_ - beta2_;\n", "deltaN = (0.229*theta*(s_c**0.5))/(1 - (theta*(s_c**0.5)/500.));\n", "beta2N = deltaN + beta2_;\n", "eps_ = 0.8*eps_max;\n", "i_ = beta2N + eps_ - beta1_;\n", "i = 0.4*eps_ + i_;\n", "beta1 = beta1_ + i;\n", "beta2 = beta1 - eps;\n", "alpha2 = beta1;\n", "alpha1 = beta2;\n", "phi = 1/(math.tan(alpha1*math.pi/180.) + math.tan(beta1*math.pi/180.));\n", "psi = lamda*phi*(math.tan(alpha2*math.pi/180.) - math.tan(alpha1*math.pi/180.));\n", "betam = (180./math.pi)*math.atan(0.5*(math.tan(beta1*math.pi/180.) + math.tan(beta2*math.pi/180.)));\n", "CL = 2*s_c*math.cos(betam*math.pi/180.)*(math.tan(beta1*math.pi/180.) - math.tan(beta2*math.pi/180.));\n", "CDp = s_c*(delp0)*((math.cos(betam*math.pi/180.))**3)/((math.cos(beta1*math.pi/180.))**2);\n", "CDa = 0.02*s_c/h_c;\n", "CDx = 0.018*CL**2;\n", "CD = CDp + CDa + CDx;\n", "eff_tt = 1. - (CD*phi**2)/(psi*s_c*((math.cos(betam*math.pi/180.))**3));\n", "delp = eff_tt*psi*rho*Um**2;\n", "\n", "##Results\n", "print'%s %.2f %s %.2f %s'%('(i)The nominal deflection= ',eps_,' deg'and '.\\n the nominal incidence = ',i_,' deg.');\n", "print'%s %.2f %s %.2f %s '%('\\n (ii)The inlet flow angle, beta1 = alpha2 = ',beta1,' deg'and '\\n outlet flow angle beta2 = alpha1 = ',beta2,' deg.');\n", "print'%s %.2f %s %.2f %s '%('\\n (iii)The flow coefficient = ',phi,''and '\\nThe stage loading factor = ',psi,'');\n", "print'%s %.2f %s'%('\\n (iv) The rotor lift coefficient = ',CL,'');\n", "print'%s %.2f %s '%('\\n (v) The overall drag coefficient of each row = ',CD,'');\n", "print'%s %.2f %s %.2f %s'%('\\n (vi) The total-to-total stage efficiency = ',eff_tt,''and '\\n The pressure rise across the stage =',delp/1000,' kPa');\n", "\n", "\n", "##there are small errors in the answers given in textbook\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i)The nominal deflection= 30.00 .\n", " the nominal incidence = -4.31 deg.\n", "\n", " (ii)The inlet flow angle, beta1 = alpha2 = 52.19 \n", " outlet flow angle beta2 = alpha1 = 14.69 deg. \n", "\n", " (iii)The flow coefficient = 0.64 0.57 \n", "\n", " (iv) The rotor lift coefficient = 1.46 \n", "\n", " (v) The overall drag coefficient of each row = 0.09 \n", "\n", " (vi) The total-to-total stage efficiency = 0.86 100.34 kPa\n" ] } ], "prompt_number": 2 } ], "metadata": {} } ] }