{ "metadata": { "name": "", "signature": "sha256:c40ddac3b7701237847f45087b69fa1d6ec2c89a5cfffd6cb1ce1ff8fa694b86" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter4-Axial-flow Turbines:Two-dimensional Theory" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg101" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate the\n", "\n", "##given data\n", "phi = 0.4;\n", "epsilon = 28.6;##in deg\n", "\n", "##calculations\n", "alpha2 = (180./math.pi)*math.atan(1./phi);##in deg\n", "zeta = 0.04*(1+ 1.5*(alpha2/100.)**2);\n", "eta = 1 + (phi**2)*(zeta*((1./math.cos(math.pi*alpha2/180.))**2) +0.5);\n", "\n", "##results\n", "print'%s %.2f %s'%('The efficiency = ',1/eta,'');\n", "print('This value appears to be the same as the peak value of efficiency curve.\\n');\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The efficiency = 0.86 \n", "This value appears to be the same as the peak value of efficiency curve.\n", "\n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg105" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate the\n", "\n", "##given data\n", "alpha2 = 70.;##in deg\n", "p01 = 311.;##in kPa\n", "T01 = 850.;##in degC\n", "p3 = 100.;##in kPa\n", "eff_tot_stat = 0.87;\n", "U = 500.;##in m/s\n", "Cp = 1.148;##in kJ/(kgC)\n", "gamma = 1.33;\n", "\n", "##Calculations\n", "delW = eff_tot_stat*Cp*(T01+273.15)*(1.-(p3/p01)**((gamma-1.)/gamma));##specific work\n", "cy2 = delW*1000./U;##in m/s\n", "c2 = cy2/math.sin(math.pi*alpha2/180.);##in m/s\n", "T2 = (T01+273.15) - 0.5*(c2**2)/(Cp*1000.);##Nozzle exit temperature in K\n", "M2 = c2/math.sqrt(gamma*287.*T2);##Nozzle exit mach number\n", "cx = c2*math.cos(math.pi*alpha2/180.);##axial velocity in m/s\n", "eff_tot_tot = 1./((1./eff_tot_stat)-((cx**2)/(2.*1000.*delW)));##Total to total efficiency\n", "R = 1. - 0.5*(cx/U)*math.tan(math.pi*alpha2/180.);##stage reaction\n", "\n", "##results\n", "print'%s %.2f %s'%('(i) The specific work done =',delW,' kJ/kg.\\n');\n", "print'%s %.2f %s'%('(ii) The Mach number leaving the nozzle = ',M2,'');\n", "print'%s %.2f %s'%('(iii) The axial velocity = .\\n',cx,'m/s');\n", "print'%s %.2f %s'%('(iv) The total-to-total efficiency = .\\n',eff_tot_tot,'');\n", "print'%s %.2f %s'%('(v) The stage reaction = .\\n',R,'');\n", "\n", "\n", "##there are small errors in the answers given in the book\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i) The specific work done = 275.24 kJ/kg.\n", "\n", "(ii) The Mach number leaving the nozzle = 0.96 \n", "(iii) The axial velocity = .\n", " 200.36 m/s\n", "(iv) The total-to-total efficiency = .\n", " 0.93 \n", "(v) The stage reaction = .\n", " 0.45 \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg106" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate the\n", "\n", "##given data\n", "H_b = 5.0;##average bladeaspect ratio for the stage\n", "t_c = 0.2;##max. blade thickness to chord ratio\n", "Re = 1*10**5;##average Reynolds number\n", "cx = 200.;##in m/s\n", "cy2 = 552.;##in m/s\n", "U = 500.;##in m/s\n", "c2 = 588.;##in m/s\n", "delW = 276.;##in kJ\n", "c3 = 200.;##in m/s\n", "Cp = 1.148;##in kJ/(kgC)\n", "T2 = 973.;##in K\n", "T01 = 1123.;##in K\n", "alpha1 = 0.;##in deg\n", "alpha2 = 70.;##in deg\n", "\n", "##calculations\n", "eps = alpha1 + alpha2;##in deg\n", "zetaN = 0.04*(1. + 1.5*(eps/100.)**2);\n", "zetaN1 = (1.+zetaN)*(0.993 + 0.021/H_b) - 1;\n", "beta2 = (180./math.pi)*math.atan((cy2-U)/cx);\n", "beta3 = (180./math.pi)*math.atan(U/cx);\n", "epsR = beta2 + beta3;\n", "zetaR = 0.04*(1. + 1.5*(epsR/100.)**2);\n", "zetaR1 = (1.+zetaR)*(0.975 + 0.075/H_b) - 1;\n", "w3_U = math.sqrt(1.+(cx/U)**2);\n", "eff_ts = 1./(1. + (zetaR1*w3_U + zetaN1*((c2/U)**2) + (cx/U)**2)/(2.*cy2/U));\n", "T3 = T01 - (delW*1000. + 0.5*c3**2.)/(Cp*1000.);\n", "eff_ts1 = 1/(1. + (zetaR1*(w3_U)**2 + (T3/T2)*zetaN1*((c2/U)**2.) + (cx/U)**2.)/(2.*cy2/U));\n", "\n", "##Results\n", "print'%s %.2f %s'%('The total-to static efficiency = ',eff_ts,'');\n", "print('\\n The result is very close to the value assumed in first example.')\n", "print'%s %.2f %s'%('\\n The total-to-static efficiency after including the temperature ratio in the equation = ',eff_ts1,'');\n", "\n", "##there are small errors in the answers given in the book\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The total-to static efficiency = 0.87 \n", "\n", " The result is very close to the value assumed in first example.\n", "\n", " The total-to-static efficiency after including the temperature ratio in the equation = 0.87 \n" ] } ], "prompt_number": 3 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg119" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate the\n", "\n", "##given data\n", "T02 = 1200.;##in K\n", "p01 = 4.0;##in bar\n", "dt = 0.75;##tip diameter in m\n", "hb = 0.12;##blade height in m\n", "v = 10500.;##shaft speed in rev/min\n", "R = 0.5;##degree of reaction at mean radius\n", "phi = 0.7;##flow coefficient\n", "psi = 2.5;##stage loading coefficient\n", "eff_noz = 0.96;##Nozzle efficiency\n", "Cp = 1160.;##in kJ/(kgC)\n", "gamma = 1.33;\n", "Rg = 287.8;##specific gas constant\n", "A2 = 0.2375;##in m^2\n", "K = 2/3.;##stress taper factor\n", "rho = 8000.;##in kg/m^3\n", "\n", "##calculations\n", "beta3 = (180./math.pi)*math.atan((0.5*psi + R)/phi);\n", "beta2 = (180./math.pi)*math.atan((0.5*psi - R)/phi);\n", "alpha2 = beta3;\n", "alpha3 = beta2;\n", "rm = (dt-hb)/2.;\n", "Um = (v/30.)*math.pi*rm;\n", "cx = phi*Um;\n", "c2 = cx/(math.cos(alpha2*math.pi/180.));\n", "T2 = T02 - 0.5*(c2**2)/Cp;\n", "p2 = p01*((1-((1.-(T2/T02))/eff_noz))**(gamma/(gamma-1.)));\n", "mdot = ((p2*10**5)/(Rg*T2))*A2*cx;\n", "Ut = (v/30.)*math.pi*0.5*dt; \n", "sig_rho = K*0.5*(Ut**2)*(1-((dt-2.*hb)/dt)**2);\n", "sig1 = rho*sig_rho;\n", "Tb = T2 + 0.85*((cx/math.cos(beta2*math.pi/180.))**2.)/(2.*Cp);\n", "\n", "##Results\n", "print'%s %.2f %s %.2f %s'%('(i)The relative and absolute angles for the flow: \\n beta3 = ',beta3,' deg' and 'beta2 = ',beta2,' deg.');\n", "print'%s %.2f %s %.2f %s'%(' alpha2 = ',alpha2,' deg' and 'alpha3 = ',alpha3,'deg.');\n", "print'%s %.2f %s'%('\\n (ii) The velocity at nozzle exit = ',c2,' m/s');\n", "print'%s %.2f %s %.2f %s %.2f %s '%('\\n (iii)The static temperature and pressure at nozzle exit assuming a nozzle efficiency of ',eff_noz,''and ': \\n T2 = ',T2,'K'and '\\n p2 =',p2,' bar');\n", "print'%s %.2f %s' %('\\n and mass flow = ',mdot,'kg/s');\n", "print'%s %.2f %s %.2f %s '%('\\n (iv)The rotor blade root stress assuming the blade is tapered with a stress taper factor K of 2/3 and \\n the blade material density is ',rho,' kg/m2'and ' =',sig1/(10**6),' MPa');\n", "print'%s %.2f %s'%('\\n (v) The approximate average mean blade temperature is Tb = ',Tb,' K');\n", "\n", "\n", "\n", "#\n", "\n", "##there are very small errors in the answers given in textbook\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(i)The relative and absolute angles for the flow: \n", " beta3 = 68.20 beta2 = 46.97 deg.\n", " alpha2 = 68.20 alpha3 = 46.97 deg.\n", "\n", " (ii) The velocity at nozzle exit = 652.82 m/s\n", "\n", " (iii)The static temperature and pressure at nozzle exit assuming a nozzle efficiency of 0.96 1016.30 \n", " p2 = 1.99 bar \n", "\n", " and mass flow = 39.10 kg/s\n", "\n", " (iv)The rotor blade root stress assuming the blade is tapered with a stress taper factor K of 2/3 and \n", " the blade material density is 8000.00 = 243.74 MPa \n", "\n", " (v) The approximate average mean blade temperature is Tb = 1062.56 K\n" ] } ], "prompt_number": 4 } ], "metadata": {} } ] }