{ "metadata": { "name": "", "signature": "sha256:719cabf4d155b5060d8459b45f43cc016b1e1aad0e88a0a317b0beeb5ac9abba" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Chapter2-Basic Thermodynamics, Fluid Mechanics: Definitions of Efficiency" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex1-pg40" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate the polyefficency and overall total to total efficiency\n", "\n", "##given data\n", "gamma = 1.4;\n", "pi = 8.;##pressure ratio\n", "T01 = 300.;##inlet temperature in K\n", "T02 = 586.4;##outlet temperature in K\n", "\n", "##Calculations\n", "##Calculation of Overall Total to Total efficiency\n", "Tot_eff = ((pi**((gamma-1.)/gamma))-1.)/((T02/T01)-1.);\n", "\n", "##Calculation of polytropic efficiency\n", "Poly_eff = ((gamma-1.)/gamma)*((math.log(pi))/math.log(T02/T01));\n", "\n", "##Results\n", "print'%s %.2f %s'%('The Overall total-to-total efficiency is ',Tot_eff,'');\n", "print'%s %.2f %s'%('The polytropic efficiency is ',Poly_eff,'');\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The Overall total-to-total efficiency is 0.85 \n", "The polytropic efficiency is 0.89 \n" ] } ], "prompt_number": 1 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex2-pg44" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate the\n", "\n", "##given data\n", "T01 = 1200.;##Stagnation temperature at which gas enters in K\n", "p01 = 4.;##Stagnation pressure at which gas enters in bar\n", "c2 = 572.;##exit velocity in m/s\n", "p2 = 2.36;##exit pressure in bar\n", "Cp = 1.160*1000.;##in J/kgK\n", "gamma = 1.33\n", "\n", "##calculations\n", "T2 = T01 - 0.5*(c2**2)/Cp;##Calculation of exit temperature in K\n", "Noz_eff = ((1.-(T2/T01))/(1.-(p2/p01)**((gamma-1.)/gamma)));##Nozzle efficiency\n", "\n", "##Results\n", "print'%s %.2f %s'%('Nozzle efficiency is ',Noz_eff,'');\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Nozzle efficiency is 0.96 \n" ] } ], "prompt_number": 2 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex3-pg51" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate the\n", "\n", "##given data\n", "cp = 0.6;##coefficient of pressure\n", "AR = 2.13;##Area ratio\n", "N_R1 = 4.66;\n", "\n", "##calculations\n", "cpi = 1. - (1./(AR**2));\n", "Diff_eff = cp/cpi;##diffuser efficiency\n", "theta = 2.*(180./math.pi)*math.atan((AR**0.5 - 1.)/(N_R1));##included cone angle\n", "\n", "##Results\n", "print'%s %.2f %s'%('cpi = \\n',cpi,'');\n", "print'%s %.2f %s'%('The included cone angle can be found = ',theta,' deg.');\n", "\n", "\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "cpi = \n", " 0.78 \n", "The included cone angle can be found = 11.26 deg.\n" ] } ], "prompt_number": 4 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex4-pg52" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate the\n", "\n", "##given data\n", "AR = 1.8;##Area ratio\n", "cp = 0.6;##coefficient of pressure\n", "N_R1 = 7.85;\n", "\n", "##calculations\n", "Theta = 2.*(180./math.pi)*math.atan((AR**0.5 - 1.)/(N_R1));##included cone angle\n", "cpi = 1.-(1./(AR**2));\n", "Diff_eff = cp/cpi;##diffuser efficeincy\n", "\n", "##Results\n", "print'%s %.2f %s'%('The included cone angle can be found = ',Theta,' deg.\\n');\n", "print'%s %.2f %s'%('cpi = \\n',cpi,'');\n", "print'%s %.2f %s'%('Diffuser efficiency = ',Diff_eff,'');\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The included cone angle can be found = 4.98 deg.\n", "\n", "cpi = \n", " 0.69 \n", "Diffuser efficiency = 0.87 \n" ] } ], "prompt_number": 5 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Ex5-pg53" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import math\n", "#calculate the\n", "\n", "##given data\n", "AR = 2.0;##Area ratio\n", "alpha1 = 1.059;\n", "B1 = 0.109;\n", "alpha2 = 1.543;\n", "B2 = 0.364;\n", "cp = 0.577;##coefficient of pressure\n", "\n", "##calculations\n", "cp = (alpha1 - (alpha2/(AR**2))) - 0.09;\n", "Diff_eff = cp/(1.-(1./(AR**2)));##Diffuser efficiency\n", "\n", "##Results\n", "print'%s %.2f %s'%('The diffuser efficiency = ',Diff_eff,'');\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "The diffuser efficiency = 0.78 \n" ] } ], "prompt_number": 6 } ], "metadata": {} } ] }