{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter9 - Optoelectronics modulators" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.1 : Page 227" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The thickness of the a quarter wave plate,x = 0.0164 mm\n" ] } ], "source": [ "#The thickness\n", "#given data :\n", "lamda=589.3*10**-9## in m\n", "ne=1.553#J\n", "no=1.544#\n", "x=(lamda/(4*(ne-no)))*10**3#\n", "print \"The thickness of the a quarter wave plate,x = %0.4f mm\"%x" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.2 : Page 228" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The thickness of the a quarter wave plate,x = 0.0017 mm\n" ] } ], "source": [ "#The thickness\n", "#given data :\n", "lamda=589.3*10**-9## in m\n", "ne=1.486#\n", "no=1.658#\n", "x=(lamda/(2*(no-ne)))*10**3#\n", "print \"The thickness of the a quarter wave plate,x = %0.4f mm\"%x" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.3: Page 234" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "change in refrative index = 1.032\n", "net phase shift = 2.065 \n", "Vpi = 7.61 kV\n" ] } ], "source": [ "from __future__ import division\n", "from math import pi\n", "#change in refractive index ,net phase shiftand Vpi\n", "v=5##kV\n", "l=1##cm\n", "ez=(v*10**3)/(l*10**-2)##in V/m\n", "no=1.51##\n", "r63=10.5*10**-12##m/V\n", "dn=((1/2)*no**3*r63*ez)##\n", "h=550##nm\n", "dfi=((2*pi*dn*l*10**-2)/(h*10**-9))##\n", "fi=2*dfi##\n", "vpi=((h*10**-9)/(2*no**3*r63))*10**-3##kV\n", "print \"change in refrative index = %0.3f\"%dfi\n", "print \"net phase shift = %0.3f \"%fi\n", "print \"Vpi = %0.2f kV\"%vpi\n", "#refractive index and phase shift is in the form of pi in the textbook" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.4: Page 237" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "part (a)\n", "phase differnce = 1.371e+04\n", "part (b)\n", "additional phase differnce = 1.246\n", "part (c)\n", "Vpi = 504.25 V\n" ] } ], "source": [ "from __future__ import division\n", "#phase difference,additional phase difference and Vpi\n", "print \"part (a)\"\n", "h=550##nm\n", "l=3##cm\n", "no=1.51##\n", "ne=1.47##\n", "dfi=((2*pi*l*10**-2*(no-ne))/(h*10**-9))##\n", "print \"phase differnce = %0.3e\"%dfi\n", "#phase difference is in the form of pi in the textbook\n", "print \"part (b)\"\n", "no=1.51##\n", "r63=26.4*10**-12##m/V\n", "V=200##\n", "d=0.25##cm\n", "dfi=((pi*r63*no**3*(V)*(l*10**-2))/(h*10**-9*d*10**-2))##\n", "print \"additional phase differnce = %0.3f\"%dfi\n", "#additional phase difference is in the form of pi in the textbook\n", "print \"part (c)\"\n", "r63=26.4*10**-12##m/V\n", "V=200##\n", "d=0.25##cm\n", "dfi=((pi*r63*no**3*(V)*(l*10**-2))/(h*10**-9*d*10**-2))##\n", "vpi=((h*10**-9)/(no**3*r63))*(d/l)##V\n", "print \"Vpi = %0.2f V\"%vpi" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 9.5 : Page 239" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "part (a)\n", "angle = 0.09 degree\n", "part (b)\n", "The relative intensity = 0.246\n" ] } ], "source": [ "from __future__ import division\n", "from math import asin,degrees\n", "#angle and relative intensity\n", "#given data :\n", "print \"part (a)\"\n", "m=1#\n", "l=633*10**-9## in m\n", "f=5*10**6## in Hz\n", "v=1500##in m/s\n", "n=1.33## for water\n", "A=v/f#\n", "theta=asin((l/(n*A)))#\n", "print \"angle = %0.2f degree\"%degrees(theta)\n", "print \"part (b)\"\n", "del_n=10**-5#\n", "L=1*10**-2## in m\n", "lamda=633*10**-9## in m\n", "eta=(pi**2*del_n**2*L**2)/lamda**2#\n", "print \"The relative intensity = %0.3f\"%eta" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }