{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter7 - Optoelectronic sources" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.1: Page 153" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Intrinsic carrier concentration ,ni = 2.2e+12 m**-3\n" ] } ], "source": [ "from __future__ import division\n", "from math import sqrt, pi, exp\n", "#Intrinsic carrier\n", "#given data :\n", "m=9.11*10**-31## in kg\n", "k=1.38*10**-23## in JK**-1\n", "h=6.626*10**-34## in Js\n", "ev=1.6*10**-19## in J\n", "T=300## in K\n", "me=0.07*m## in kg\n", "mh=0.56*m## in kg\n", "Eg=1.43*ev## in J\n", "ni=2*((2*pi*k*T)/h**2)**(3/2)*(me*mh)**(3/4)*exp(-Eg/(2*k*T))#\n", "print \"Intrinsic carrier concentration ,ni = %0.1e m**-3\"%ni" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.2: Page 155" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Diffusion potential, Vd = 1.234 V\n" ] } ], "source": [ "#Diffusion potential\n", "from math import log\n", "#given data :\n", "Na=5*10**23## in m**-3\n", "Nd=5*10**21## in m**-3\n", "T=300## in K\n", "e=1.6*10**-19## in J\n", "k=1.38*10**-23## in JK**-1\n", "V=(k*T)/e#\n", "ni=2.2*10**12## in m**-3\n", "Vd=V*log((Na*Nd)/ni**2)#\n", "print \"Diffusion potential, Vd = %0.3f V\"%Vd" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.3: Page 161" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Injection efficiency, eta_inj = 0.8247\n" ] } ], "source": [ "from __future__ import division\n", "#Injection efficiency\n", "#given data :\n", "Na=10**23## in m**-3\n", "Nd=10**21## in m**-3\n", "T=300## in K\n", "e=1.6*10**-19## in J\n", "k=1.38*10**-23## in JK**-1\n", "mue=0.85## in m**2V**-1s**-1\n", "muh=0.04## in m**2V**-1s**-1\n", "De=(mue*k*T)/e## in m**2s**-1\n", "Dh=(muh*k*T)/e## in m**2s**-1\n", "Le=1#\n", "Lh=Le#\n", "eta_inj=1/(1+((De/Dh)*(Lh/Le)*(Nd/Na)))#\n", "print \"Injection efficiency, eta_inj = %0.4f\"%eta_inj" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.4: Page 171" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "part (a)\n", "Internal quantum efficiency = 0.50\n", "part (b)\n", "External quantum efficiency = 0.0337\n" ] } ], "source": [ "from __future__ import division\n", "#Internal and quantum efficiency\n", "#given data :\n", "print \"part (a)\"\n", "tau_rr=1#\n", "tau_nr=tau_rr#\n", "eta_int=1/(1+(tau_rr/tau_nr))#\n", "print \"Internal quantum efficiency = %0.2f\"%eta_int\n", "print \"part (b)\"\n", "ns=3.7#\n", "na=1.5#\n", "As=0#\n", "eta_ext=eta_int*(1-As)*((2*na**3)/(ns*(ns+na)**2))#\n", "print \"External quantum efficiency = %0.4f\"%eta_ext" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.5: Page 180" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The number of longitudinal modes excited = 1.001e-03 nm\n" ] } ], "source": [ "#The number of longitudinal modes excited\n", "#given data :\n", "lamda=632.8*10**-9## in m\n", "n=1#\n", "L=20*10**-2## in m\n", "del_lamda=((lamda)**2/(2*n*L))*10**9#\n", "print \"The number of longitudinal modes excited = %0.3e nm\"%del_lamda" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.6: Page 183" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "part (a)\n", "The reduction in threshold gain = 1.31 mm**-1\n", "part (b)\n", "Differential quantum efficiency = 0.42\n" ] } ], "source": [ "from __future__ import division\n", "from math import sqrt, pi, exp,log\n", "#The reduction and Differential quantum efficiency\n", "#given data :\n", "print \"part (a)\"\n", "alfa_eff=1.5## in mm**-1\n", "gama=0.8#\n", "L=0.5## in mm\n", "R1=0.35#\n", "R2=R1#\n", "R2a=1.0#\n", "g_th1=(1/gama)*(alfa_eff+(1/(2*L))*log(1/(R1*R2)))#\n", "g_th2=(1/gama)*(alfa_eff+(1/(2*L))*log(1/(R1*R2a)))#\n", "del_gth=g_th1-g_th2#\n", "print \"The reduction in threshold gain = %0.2f mm**-1\"%del_gth\n", "print \"part (b)\"\n", "eta_D=(gama*(g_th2-alfa_eff))/(g_th2)#\n", "print \"Differential quantum efficiency = %0.2f\"%eta_D" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 7.7: Page 192" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "part (a)\n", "The internal power efficiency = 0.48\n", "part (b)\n", "The external power efficiency = 0.012\n", "part (c)\n", "The overall source fiber power coupling efficiency = 8.51e-04\n", "The optical loss = 30.70 dB\n" ] } ], "source": [ "from math import log10\n", "#Internal and external power efficiency\n", "#given data :\n", "print \"part (a)\"\n", "As=0##\n", "ns=3.7## assuming that the example 7.4\n", "eta_int=0.50## internal efficiency\n", "V=1.5## in V\n", "I=120*10**-3## in A\n", "IBYe=120*10**-3## \n", "Eph=1.43## in eV\n", "eta_int=0.50## internal efficiency\n", "fi_int=eta_int*IBYe*Eph#\n", "t_power=I*V#\n", "P_int=fi_int/t_power#\n", "print \"The internal power efficiency = %0.2f\"%P_int\n", "print \"part (b)\"\n", "eta_ext=eta_int*(1-As)*2/(ns*(ns+1)**2)#\n", "fi_ext=eta_ext*IBYe*Eph#\n", "t_power=I*V#\n", "P_ext=fi_ext/t_power#\n", "print \"The external power efficiency = %0.3f\"%P_ext\n", "print \"part (c)\"\n", "V=1.5## in V\n", "I=120*10**-3## in A\n", "IBYe=120*10**-3## \n", "Eph=1.43## in eV\n", "n1=1.5#\n", "n2=1.48#\n", "na=n1#\n", "eta_ext=0.0337#\n", "eta_T=eta_ext*((n1**2-n2**2)/na**2)#\n", "fi_T=eta_T*IBYe*Eph#\n", "t_power=I*V#\n", "sfpc=fi_T/t_power#\n", "O_loss=-10*log10(sfpc)#\n", "print \"The overall source fiber power coupling efficiency = %0.2e\"%sfpc\n", "print \"The optical loss = %0.2f dB\"%O_loss" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.9" } }, "nbformat": 4, "nbformat_minor": 0 }